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1 Singular Homology Theory (Cont.)

1.1 Classical Theorems of Topology (Cont.)

Lemma 1.1. Let F : Rn+1
R
n+1 be the reflection at a hyperplaneH ⊂ R

n+1. Then we have in particular

F ∈ O(n+ 1) with det(F) = −1 and hence F(Sn) ⊂ Sn. Write f = F|Sn . Then deg(f) = −1.

Corollary 1.2.

(i) For any orthogonal map A ∈ O(n) we have deg(A|Sn−1) = det(A).
(ii) The antipodal map −id : Sn Sn has degree deg(−id) = (−1)n+1.

(iii) If f : Sn Sn has no fixed point then deg(f) = (−1)n+1.

Theorem 1.3 (Hairy Ball Theorem). The n–sphere Sn admits a continuous vector field without zeroes if

and only if n is odd.

Proof. If V is such a vector field then we may assume that ‖V(p)‖ = 1 for all p ∈ Sn. Consider the
homotopy H : Sn × [0, 1] Sn given by

H(p, t) = cos(t)p+ sin(t)V(p).

It is a homotopy from id to − id which is impossible unless n is odd because of corollary 1.2.
If n = 2k− 1 is odd then

V(x1, . . . , x2k) = (x2,−x1, . . . , x2k,−x2k−1)

defines a continuous vector field on Sn without zeroes.

Theorem 1.4. If n is even then Z× is the only nontrivial group which can act freely on Sn.

Proof. Assume that a group G acts freely on Sn. Consider the homomorphism d : G Z
× given by

d(g) = deg(ℓg) where ℓg denotes the left translation by g. But ℓg has no fixed point for g 6= e, hence
deg(ℓg) = −1 by corollary 1.2. This implies ker(d) = 1 and that G embeds into Z

×; i. e. G is either
trivial or Z×.

Theorem 1.5.

(i) If D ⊂ Sn is homeomorphic to the closed k–disk Dk for any 0 6 k 6 n then

H̃i(S
n
rD) = 0

for all i ∈ Z.

(ii) If S ⊂ Sn is homeomorphic to Sk for any 0 6 k < n then

H̃i(S
n
r S) =

{
Z, i = n− k− 1

0, otherwise.

Remark 1.6.

(i) For n = 2 the second part of theorem 1.5 is precisely the classical Jordan curve theorem.
(ii) In higher dimensions the complement of an embedded (n − 1)–sphere in Sn has 2 connected

components but in general these are not homeomorphic to balls; contrary to dimension n = 2.
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The proof of this theorem uses a general tool to calculate homology. Assume a spaceXmay be written
as X = A◦ ∪ B◦ for subsets A,B ⊂ X. Write iA : A ∩ B A, iB : A ∩ B B, jA : A X and
jB : B X for the inclusions. Then there is a short exact sequence

0 C•(A ∩ B)
(iA)∗+(iB)∗

C•(A)⊕ C•(B)
(jA)∗−(jB)∗

CU
• (X) 0

where CU
• (X) denotes the chain complex of U–small chains in X for the cover U = {A,B}. Hence, one

obtains a long exact sequence

· · · Hi(A ∩ B) Hi(A)⊕Hi(B) Hi(X) · · ·

in homology; the Mayer–Vietoris sequence. Similarly, there is a long exact sequence

· · · H̃i(A ∩ B) H̃i(A)⊕ H̃i(B) H̃i(X) · · ·

in reduced homology.

Proof of theorem 1.5.

(i) For k = 0 it is clear that Sn r D ∼= R
n. In general, let h : Ik D be a homeomorphism

and consider the open sets A = Sn r h(Ik−1 × [0, 1/2]) and B = Sn r h(Ik−1 × [1/2, 1]). Then
A ∪ B = Sn r h(Ik−1 × {1/2}) and A ∩ B = Sn r D. By induction, we may conclude that
H̃•(A ∪ B) = 0. Mayer–Vietoris now implies that

0 H̃i(S
n
rD) H̃i(A)⊕ H̃i(B) 0

is exact for all i. Assume there is a nontrivial class α = [c] ∈ H̃i(S
n
r D). Then (iA)∗c is not a

boundary in A or (iB)∗c is not a boundary in B. By iterating this construction, we obtain nested
intervals Im ⊂ I of length 2−m for allm ∈ N such that c is not a boundary in Sn r h(Ik−1 × Im).
Let {p} =

⋂
Im. By induction, c is a boundary in Sn r h(Ik−1 × {p}), i. e. c = ∂b for some chain b

in Sn r h(Ik−1 × {p}). But then—by compactness—there is some large m0 such that the support
of b avoids h(Ik−1 × Im0

). Hence, b is actually a chain in Sn r h(Ik−1 × Im0
) and there c = ∂b is

a boundary contrary to our assumptions.
(ii) For k = 0 it is again clear that Sn r S ≃ Sn−1. In general, write S = D1 ∪D2 with Di ∼= D

k and
D1 ∩D2

∼= Sk−1. For A = Sn rD1 and B = Sn rD2 Mayer–Vietoris gives an exact sequence

· · · H̃i+1(A)⊕ H̃i+1(B) H̃i+1(A ∪ B) H̃i(A ∩ B) H̃i(A)⊕ H̃i(B) · · ·

i. e. by induction there is an isomorphism

H̃i(A ∩ B) = H̃i(S
n
r S) ∼=

{
Z i+ 1 = n− k

0 otherwise.

Theorem 1.7 (Invariance of domain). If X ⊂ R
n is homeomorphic to an open subset of R

n then X itself

must be open.

Proof. IdentifyRn with Snr{N}. Then it is enough to show thatX is open in Sn. Let f : X f(X) ⊂ R
n

be a homeomorphism onto an open subset f(X) ⊂ R
n. Then, for all x ∈ X there exists a neighbourhood

D ⊂ X of x such thatD ∼= Dn and ∂D ∼= Sn−1. Theorem 1.5 implies that SnrD is path–connected and
that SnrS has 2 path–connected components. Hence,DrS is a path–connected component of SnrS
and as such is open because SnrS is locally path connected. Therefore,DrS is an open neighbourhood
of x in Sn which finishes the proof.
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1.2 CW–Complexes and Cellular Homology

Definition 1.8. Let X be a topological space and letA ⊂ X be a subset. One says that X is obtained from
A by attaching n–cells if there are mapsϕα : Sn−1

α A from the standard (n−1)–sphere Sn−1
α = Sn−1

such that there is a pushout diagram

∐
α∈I S

n−1
α A

∐
α∈ID

n
α X,

∐
αϕα

∐
αψα

i. e. such that
X = A ⊔α∈I D

n
α

(x ∼ ϕα(x) for x ∈ ∂D
n
α).

The n–cell enα is the homeomorphic image of (Dnα)
◦ in X.

Definition 1.9. A topological space X is called CW–complex if it is obtained in the following way:
(i) The 0–skeleton X(0) =

∐
α∈I e

0
α is just a discrete topological space.

(ii) The n–skeleton is obtained from Xn−1 by attaching n–cells.
(iii) The space X is equal to the union

⋃
n>0 X

(n) carries the “weak topology” or “colimit topology,”

i. e. a subset A ⊂ X is open if and only if A ∩ X(n) is open for all n > 0.

Remark 1.10.

(i) IfX is finite–dimensional, i. e.X = X(n) for somen > 0, then part (iii) of the definition is automatic.
(ii) The map ψα : D

n
α X(n) X is called the characteristic map of the n–cell enα. Note that ψα

induces a homeomorphism between the interiors of Dnα and enα.
(iii) The space X is finite, i. e. it has only finitely many cells, if and only if X is compact.
(iv) All CW–complexes are Hausdorff spaces.

Example 1.11.

(i) The n–sphere Sn is a CW–complex with two cells; one 0–cell, the north pole for instance, and
one n–cell, the sphere itself.

(ii) There are other CW–structures on Sn. For example, one can start with S0 and in every dimension
k attach two k–cells. Here, the k–skeleton is simply the k–sphere Sk. This CW–structure has the
advantage of being invariant under the antipodal map. Hence, we get a CW–structure on RP

n

with one cell in each dimension and k–skeleton RP
k.

Definition 1.12. Let X be a CW–complex. A subset A ⊂ X is called a subcomplex if A is the union of
cells of X such that if enα ⊂ A then also enα ⊂ A.

Remark 1.13. For each cell enα ⊂ A in a subcomplex A ⊂ X one has that ϕα(S
n−1
α ) ⊂ A. In particular

A is a CW–complex itself.

Example 1.14. For any CW–complex, the k–skeleton X(k) ⊂ X is a subcomplex. In particular, Sk ⊂ Sn

and RP
k ⊂ RP

n are subcomplexes.

Lemma 1.15. Let X be a CW–complex with a compact subset K ⊂ X. Then K is contained in some finite

subcomplex of X.
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Proof. The subsetKmeets only finitelymany cells, for suppose there exists a sequence xi, i ∈ N of points
in K such that the xi lie in distinct cells. Then S = {x1, . . . } ⊂ K is closed: Assume by induction that
S∩X(n−1) is closed. For each n–cell enα the preimage ϕ−1

α (S) ⊂ Sn−1
α is closed and hence ψ−1

α (S) ⊂ Dnα
is closed. This implies that S ∩ X(n) is closed. Similarly, any subset of S is closed, whence S is discrete.
Hence, S being also compact, it is finite, contradictory to our assumption.
Now, every finite union of cells is contained in a finite subcomplex: For an n–cell enα, consider

ϕα(S
n−1
α ) ⊂ X(n−1). This is compact, hence by the previous paragraph it is contained in a finite union

of cells of dimension at most n− 1. By induction, we may assume that ϕα(S
n−1
α ) is contained in a finite

subcomplexA ⊂ X. Hence, enα is contained in the finite subcomplex enα∪A. Since a finite union of finite
subcomplexes is again a finite subcomplex the result follows.

Proposition 1.16. Let X be a CW–complex. Then

(i) the relative homology Hk(X
(n),X(n−1)) is nonzero only for k = n and Hn(X

(n),X(n−1)) is the free

abelian group on the set of n–cells.

(ii) the n–skeleton has no homology in degree k > n, i. e. Hk(X
(n)) = 0 for k > n. In particular, if X is

finite dimensional then it has no homology in degrees bigger than dimX.
(iii) the map i∗ : Hk(X

(n)) Hk(X) induced by the inclusion i : X
(n) X is an isomorphism for k <

n.

Proof.

(i) Observe that (X(n),X(n−1)) is a good pair: If X(n) arises from X(n−1) by attaching n–cellsDnα for
α ∈ I then a neighbourhood which deformation retracts to X(n−1) may be obtained by attaching
D(n) r {0} for α ∈ I. Also, the quotient X(n)/X(n−1) is just

X(n)/X(n−1) ∼=
∨

α∈I

Snα.

We obtain
Hk(X

(n),X(n−1)) ∼= H̃k

( ∨

α∈I

Snα

)
∼=
⊕

α∈I

H̃k(S
n
α)

which gives the result.
(ii) Look at the long exact sequence of a pair:

· · · Hk+1(X
(n),X(n−1)) Hk(X

(n−1)) Hk(X
(n)) Hk(X

(n),X(n−1)) · · ·

Part (i) implies that this sequence gives rise to isomorphisms

Hk(X
(n)) ∼ Hk(X

(n−1)) ∼ · · · ∼ Hk(X
(0)) = 0

for k > n > 0.
(iii) The same long exact sequence as in (ii) give rise to isomorphisms

Hk(X
(n)) ∼ Hk(X

(n+1)) ∼ · · · ∼ Hk(X
(n+m))

for k < n and any m > 0 which are induced by the obvious inclusions. This proves (iii) for
finite dimensional X. In general, i∗ : Hk(X

(n)) Hk(X) is injective: Take [c] ∈ Hk(X
(n)) such

that i∗([c]) = 0 ∈ Hk(X), i. e. there exists some b ∈ Ck(X) with ∂b = c. But b has compact
support, hence b is chain in Ck(X

n+m) for somem > 0 because of lemma 1.15. This implies that
[c] = 0 ∈ Hk(X

(n+m)) and the result for finite dimensional X implies that [c] = 0. Surjectivity
may be checked analogously.
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Now, look at the long exact sequences of (X(n+1),X(n)), (X(n),X(n−1)) and (X(n−1),X(n−2)):

Hn+1(X
(n+1),X(n))

Hn(X
(n))

Hn(X
(n),X(n−1))

Hn−1(X
(n−1))

Hn−1(X
(n−1),X(n−2))

∂n+1 jn

∂n jn−1

jn◦∂n+1

jn−1◦∂n

Write dn+1 = jn ◦∂n+1 and dn = jn−1 ◦∂n. Then dn ◦dn+1 = 0. Hence, we obtain the so called cellular
chain complex (CCW

• ,d•) where C
CW
n = Hn(X

(n),X(n−1)) and dn = jn−1 ◦ ∂n. By passing to homology
we get the cellular homology groups HCW

n (X) = Hn(C
CW
• ,d•).

Remark 1.17. The reduced homology H̃n(S
n) is canonically isomorphic to Z. A preferred isomorphism

is given as follows: For n = 0 the homology H̃0(S
0) is just the kernel ker ε of the augmentation ε and

we map n(x1 − x0) to n; here S
0 = {x0, x1}. For n > 1 we can use the Mayer–Vietoris sequence for

Sn = Dn+ ∪Dn−. It implies that the boundary map H̃n(S
n) H̃n−1(S

n−1) is an isomorphism.
As a consequence the isomorphism Hn(X

(n),X(n−1)) ∼= Z
(I) only depends on the attaching maps

ϕα : S
n−1
α X(n−1).

Proposition 1.18. There is an isomorphism HCW
n (X) ∼= Hn(X) for all n ∈ Z.

Proof. From the long exact sequence of the pair (X(n+1),X(n)) and proposition 1.16 we have an isomor-
phism Hn(X) ∼= Hn(X

(n))/ im∂n+1. On the other hand, because of Hn(X(n−1)) = 0 the map jn is
injective, hence Hn(X) ∼= im jn/ kerdn+1. Now, exactness at Hn(X

(n),X(n−1)) implies that we have
im jn = ker∂n = kerdn. Hence, Hn(X) ∼= kerdn/ imdn+1 = H

CW
n (X).

Consider the commutative diagram

Hn(X
(n),X(n−1)) Hn−1(X

(n−1),X(n−2))

⊕
α∈I Zα

⊕
β∈J Zβ

dn

∼= ∼=

(dαβ)α,β

where I parameterises the n–cells of X and J the (n− 1)–cells of X, i. e.

dn(e
n
α) =

∑

β∈J

dαβe
n−1
β

for dαβ ∈ Z.

Lemma 1.19. The integer dαβ is the degree of the composite map

Sn−1
α

ϕα
X(n−1) X(n−1)

(X(n−1) r en−1
β )

∼= Sn−1
β .
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Proof. Consider the diagram ...

Remark 1.20. There is a canonical injection H̃k(X) Hk(X), more precisely, the augmentation
ε : C0(X) Z induces a split short exact sequence

0 H̃0(X) H0(X)
ε

Z 0.

Remark 1.21.

(i) If X is a CW–complex without n–cells then Hn(X) = HCW
n (X) = 0.

(ii) More generally, if X has k n–cells, then Hn(X) is generated by at most k elements.
(iii) In particular, if X is a finite CW–complex, then H•(X) is finitely generated.

Example 1.22.

(i) Real projective space RPn has a cell decomposition RP
n = e0∪· · ·∪en where the attaching maps

ϕ : Sk−1 X(k−1) = RP
k−1 = Sk−1/Z× are just the quotient maps. For n = 2 the cellular chain

complex has the form

0 Z
d2

Z
d1

Z 0

where d2 = deg(S1 S1) = 2 with S1 S1 the nontrivial double cover and the second map
is d1 = deg(S0 ∗/∅) = 0. Hence, the homology of RP2 is

H2(X) = kerd2 = 0

H1(X) = kerd1/ imd2 = Z/2

H0(X) = Z/ imd1 = Z.

(ii) Let X = Σg be the orientable surface of genus g. It is a quotient of a 4g–gon and has a cellular
decomposition with X(1) =

∨2g
i=1 S

1
i and X

(2) = X. One obtains the cellular chain complex

0 Z
d2

⊕

ai ,bi

Z
d1

Z 0

with d1 = 0 and d2,x = deg(S1 X(1) X(1)/(X(1)
r e1x)) for x ∈ {ai,bi}. Now, a moment’s

thought reveals d2,x = 0. Hence,

H2(Σg) = Z

H1(Σg) = Z
2g

H0(Σg) = Z.

(iii) Consider complex projective space CP
n = C

n+1/C× = S2n+1/S1. It is parameterised by homo-
geneous coordinates [z0 : · · · : zn] and one can always choose zn to be real and nonnegative.
Considering D2n

+ = {(z0, . . . , zn) ∈ S2n+1 : zn+1 ∈ R>0} one sees—with the equivalence relation
∼ such that z ∼ λz for λ ∈ S1 and z ∈ ∂D2n

+ —that one can write complex projective space as
CP

n = D2n
+ /∼ = CP

n−1 ∪ e2n with attaching map ϕ : S2n−1
CP

n−1 just the quotient map.
Inductively one obtains a cell decomposition CP

n = e0 ∪ e2 ∪ · · · ∪ e2n and hence the homology

Hk(CP
n) =

{
Z k even and 0 6 k 6 2n

0 otherwise.
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Our next goal is to compute the homologyH•(RP
n). First, we need a tool to compute degrees of maps

f : Sn Sn for n > 1. Suppose that there exists some y ∈ Sn such that the fibre f−1(y) = {x1, . . . , xm}

is finite. Then there exists an open neighbourhoods V ⊂ Sn of y and Ui ⊂ S
n of xi such that the Ui are

pairwise disjoint and f(Ui) ⊂ V . In particular, f(Uir {xi}) ⊂ Vr {y}. From this we obtain the following
commutative diagram:
Since there is a canonical isomorphismHn(S

n) ∼= Z, the groupsHn(Ui,Uirxi) andHn(V ,Vry) are
also canonically isomorphic toZ. Hence, themap f∗ : Hn(Ui,Uirxi) Hn(V ,Vry) is multiplication
with some deg f|xi ∈ Z, the local degree of f at xi.

Example 1.23. If f : Sn Sn is a homeomorphism, then for any y ∈ Sn the fibre over y has cardinality
#f−1(y) = 1 and deg f|f−1(y) = deg f ∈ Z

×.

Proposition 1.24. One always has

deg f =
n∑

i=1

deg f|xi .

Proof. By excision the inclusion

m∐

i=1

(Ui,Ui r xi) (Sn,Sn r f−1(y))

induces isomorphisms on homology

m⊕

i=1

Hn(Ui,Ui r xi) ∼ Hn(S
n,Sn r f−1(y)).

We obtain a commutative diagram

⊕m
i=1Hn(Ui,Ui r xi) Hn(S

n,Sn r f−1(y))

Hn(Ui,Ui r xi) Hn(S
n,Sn r xi)

∼=

pi

∼=

ki

and a short diagram chase reveals

j(1) =
m∑

i=1

ki(1) ∈ Hn(S
n,Sn r f−1(y)).

On application of f∗ one sees

deg f = f∗(j(1)) =
m∑

i=1

f∗(ki(1)) =
m∑

i=1

deg f|xi .

For RPn = en ∪ · · · ∪ e0 we obtain the cellular chain complex

0 Z
dn

Z . . . Z
d1

Z 0

and it remains to compute the differential dk. We have dk = deg f for the composition

f : Sk−1 ϕ
RP

k−1 q RP
k−1

RP
k−2

= Sk−1.
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Embedding Sk−2 into Sk−1 as the equatorial sphere yields Sk−1 r Sk−2 = (Dk−1
+ )◦ ∪ (Dk−1

− )◦ and f
restricts to embeddings f± : (Dk−1

± )◦ Sk−1 such that f− = f+ ◦ τ for the antipodal map τ = − id.
Denote by N and S the north and south pole of Sk−1 respectively. Then

deg f = deg f|N + deg f|S = 1+ (−1)k =

{
2 k even

0 k odd.

Hence, for even n the cellular chain complex looks like

0 Z
2

Z
0

Z . . . Z
0

Z 0

and for odd n it looks like

0 Z
0

Z
2

Z . . . Z
0

Z 0.

Hence, we obtain the homology

Hk(RP
n) =






Z k = n and n odd

Z/2 k odd and 0 < k < n

Z k = 0

0 otherwise.

For a finite CW–complex X we can define an Euler–characteristic of X:

Definition 1.25. The Euler–characteristic of X is

χ(X) =

∞∑

k=0

(−1)k ck ∈ Z

where ck is the number of k–cells of X.

A priori it is not clear that χ(X) is a topological invariant of X. However, we have the following result.

Proposition 1.26. For a finite CW–complex one has

χ(X) =

∞∑

k=0

(−1)k rkHk(X).

The number bk = rkHk(X) is also called the k
th Betti number of X.

Proof. Look at the cellular chain complex

0 Cn
dn

Cn−1 . . . C0 0

where the abelian groups Ck are finitely generated. Write Zk = kerdk, Bk = imdk+1 andHk = Zk/Bk.
We obtain short exact sequences

0 Zk Ck
dk

Bk−1 0
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and
0 Bk Zk Hk 0.

Now, it is well known that rank of finitely generated abelian groups is additive over short exact se-
quences. Hence, rkCk = rkZk + rkBk−1 and rkZk = rkBk + rkHk. In summary, we obtain

χ(X) =

∞∑

k=0

(−1)k ck =

=

∞∑

k=0

(−1)k bk +
∞∑

k=0

(−1)k rkBk−1 +

∞∑

k=0

(−1)k rkBk =

=

∞∑

k=0

(−1)k rkHk(X).

Example 1.27. Denote by Σg the closed oriented surface of genus g. From our computation of the
homology H•(Σg) we immediately obtain χ(Σg) = 2− 2g.
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2 Homology with Coefficients & Cohomology

2.1 Categories and Functors

Definition 2.1. A category C consists of
(i) a class of objects Ob(C).
(ii) for each pair (X, Y) of objects of C a set ofmorphisms C(X, Y) together with distinguished elements

idX ∈ C(X,X) for all X ∈ Ob(C).
(iii) for each triple (X, Y,Z) of objects of C a composition map

C(X, Y)× C(Y,Z)
◦

C(X,Z)

written as ◦(g, f) = f◦g paralleling composition of functions of sets. This composition is supposed
to be associative and to have identities, i. e. (f◦g)◦h = f◦ (g◦h) and id◦ f = f = f◦ id, whenever
these equations make sense.

Remark 2.2. A category Cwhere Ob(C) is in fact a set is called small. Sometimes our concept of category
is called a locally small category in the literature, since morphisms are supposed to form sets.

Example 2.3. Examples of categories abound:
(i) There is a category Set of sets with functions as morphisms.
(ii) There is a category Top whose objects are topological spaces and whose morphisms are continu-

ous maps.
(iii) There is a category Ho(Top) whose objects are topological spaces and whose morphisms are

homotopy classes of continuous maps.
(iv) There is a category Top2 whose objects are pairs (X,A) of topological spaces and whose mor-

phisms are maps of pairs.
(v) There is a category Top∗ whose objects are pointed spaces and whose morphisms are basepoint–

preserving maps.
(vi) There is a category Grp of groups with group homomorphisms.
(vii) There is a category Ab of abelian groups with group homomorphisms. This is called a full sub-

category of Grp, it has the same morphisms but fewer objects than Grp.
(viii) There is a category k–Vect of vector spaces over a field k with k–linear maps.
(ix) There is a category R–Mod of R–modules with R–linear maps.

Definition 2.4. Let C and D be categories. A covariant functor F : C D consists of an assignment
F : Ob(C) Ob(D) together with assignments F : C(X, Y) D(FX, FY) for all objects X, Y ∈ Ob(C)
such that F(f ◦ g) = Ff ◦ Fg and F id = id whenever these equations make sense. If there is no danger of
confusion, we write f∗ instead of Ff.

Similarly, a contravariant functor F : C D is an assignment on object together with assignments
C(X, Y) D(FY, FX) such that F(f ◦ g) = Fg ◦ Ff and F id = id. If there is no danger of confusion we
write f∗ for Ff if F is contravariant.

Example 2.5. Examples of covariant functors abound:
(i) The fundamental group defines a functor π1 : Top∗ Grp. Similarly, there are homology

functors Hn : Top Ab and Hn : Top
2 Ab.

(ii) For any category C and any object X there is a functor C(X, _) = Hom(X, _) : C Set such that
Hom(X, f)(ϕ) = f ◦ϕ.

(iii) There are various forgetful functors obtained by forgetting structure, for example Top Set

or Ab Grp.
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Examples of contravariant functors include:
(i) For a category C and an object Y there is a functor C(_, Y) = Hom(_, Y) : C Set such that

Hom(f, Y)(ϕ) = ϕ ◦ f.
(ii) The contravariant functor Hom(_, k) in the case of k–Vect factors through the category of vector

spaces. This is simply the functor mapping a vector space to its dual.

Definition 2.6. Let C and D be categories with functors F,G : C D. A natural transformation

η : F G assigns to each object X ∈ Ob(C) a morphism ηX : F(X) G(X) such that

F(X) G(X)

F(Y) G(Y)

ηX

F(f) G(f)

ηY

commutes for all morphisms f : X Y. There is of course an analogous definition in the contravariant
case.

Example 2.7. For any pair (X,A) the connecting homomorphism ∂n : Hn(X,A) Hn−1(A) in the
long exact sequence defines a natural transformation between the two functors F and G defined by
F(X,A) = Hn(X,A) and G(X,A) = Hn−1(A).

2.2 Homology with Coefficients

Let G be an abelian group. The idea of homology with coefficients is to apply the functor _ ⊗ G to the
singular chain complex of a space X and to take homology afterwards. In this sense, one obtains a chain
complex with coefficient in G.
Recall, that for abelian groupsA and B the tensor product ⊗ : A×B A ⊗ B satisfies the following

universal property: For any Z–bilinear mapping b : A × B C there exists a unique Z–linear map
b : A ⊗ B C making the diagram

A ⊗ B C

A× B

b

⊗
b

commutative. This property characterises the tensor product of A and B up to unique isomorphism.
Furthermore, given homomorphisms ϕ1 : A1 B1 and ϕ2 : A2 B2 there exists a unique homo-
morphism ϕ1 ⊗ ϕ2 : A1 ⊗ A2 B1 ⊗ B2 such that

A1 ×A2 A1 ⊗ A2

B1 × B2 B1 ⊗ B2

ϕ1×ϕ2

⊗

ϕ1⊗ϕ2

⊗

is commutative. It is immediate that this makes _ ⊗ _ into a bifunctor Ab × Ab Ab. This functor
is symmetric and restricts to functors _ ⊗ G for any abelian group G.
Given a topological space X define the singular chain complex of X with coefficients in G, written

C•(X;G), to be the tensor product C•(X) ⊗ G.

Definition 2.8. For an abelian group G the homology Hn(X;G) = Hn(C•(X;G)) is called the nth

singular homology group with coefficients in G.
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Remark 2.9.

(i) It is clear that C•(X;Z) = C•(X) and Hn(X;Z) = Hn(X).
(ii) Any homomorphism ϕ : G H of abelian groups G and H induces a functorial chain map

ϕ∗ : C•(X;G) C•(X;H), whence a map ϕ∗ : Hn(X;G) Hn(X;H) on homology, which is
natural with respect to maps f : X Y

Of course, there is a corresponding notion of relative homology with coefficients. Define the rel-
ative chain complex C•(X,A;G) = C•(X;G)/C•(A;G) with coefficients in G and relative homology
Hn(X,A;G) = Hn(C•(X,A;G)). Similarly, one may define reduced homology with coefficients by ten-
soring the augmented singular chain complex with G, i. e. H̃n(X;G) = Hn(C̃•(X) ⊗ G).

Remark 2.10. All the properties of singular homology, e. g. functoriality, the long exact sequence, ho-
motopy invariance, excision, Mayer–Vietoris, carry over to homology with coefficients.

Example 2.11. The computation of the following examples carries over to homology with coefficients:
(i) H̃•(∗;G) = 0.
(ii) H̃n(S

n;G) = G and H̃k(S
n;G) = 0 for k 6= n.

Once we have the computation of the reduced homology of spheres available, the development of
cellular homology with coefficients works analogously. One defines

CCW
n (X;G) = Hn(X

(n),X(n−1);G) ∼=
⊕

α∈I

Gα

with boundary operators dn :
⊕
αGα

⊕
βGβ as before. In fact, the matrix elements (dn)αβ of

these boundary operators are given by the same mapping degrees as before:

Lemma 2.12. If f : Sn Sn has degree m ∈ Z, then f∗ : H̃n(S
n;G) H̃n(S

n;G) is again multiplica-

tion by m.

Proof. For g ∈ G consider the unique homomorphism ϕ : Z G mapping 1 to g. Consider the
commutative diagram

H̃n(S
n;Z) H̃n(S

n;Z)

H̃n(S
n;G) H̃n(S

n;G)

f∗

ϕ∗ ϕ∗

f∗

and chase 1 ∈ Z ∼= H̃n(S
n;Z). It follows, that, relative to the identifications H̃n(S

n;Z) ∼= Z and
H̃n(S

n;G) ∼= G, we have
f∗(g) = f∗ϕ∗(1) = ϕ∗f∗(1) = deg(f)g.
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Example 2.13.

(i) The cellular chain complex of RPn with coefficients Z/2 looks like

CCW
• (RPn,Z/2) = 0 Z/2

0
Z/2

2=0
. . .

0
Z/2 0

for odd n and like

CCW
• (RPn,Z/2) = 0 Z/2

2=0
Z/2

0
. . .

0
Z/2 0

for even n. It follows that

Hk(RP
n;Z/2) =

{
Z/2 0 6 k 6 n

0 otherwise.

(ii) If k is a field of characteristic char(k) 6= 2, then 2 : k k is an isomorphism and the cellular
chain complex looks like

CCW
• = 0 k

0
k ∼ k

0
. . .

0
k 0

for odd n and like
CCW

• = 0 k ∼ k
0
k ∼ . . .

0
k 0

for even n. Hence, we obtain the homology

Hm(RPn;k) =






k m = n odd

k m = 0

0 otherwise.

2.3 Cohomology

Let G be an abelian group. Apart from taking the tensor product with G we could also apply the con-
travariant functor Hom(_,G) to the singular chain complex C•(X) of a topological space X. Recall that
any group homomorphism ϕ : A B between abelian groups A and B induces a group homomor-
phism ϕ∗ : Hom(B,G) Hom(A,G) by precomposition. This is the action of the functor Hom(_,G)
on morphisms. Define

Cn(X;G) = Hom(Cn(X),G).

Elements ϕ ∈ Cn(X;G) are called singular n–cochains with coefficients in G and may be identified
with a function ϕ : ∆n(X) G (because Cn(X) is free on ∆n(X)). Define the coboundary map

δn : Cn(X;G) Cn+1(X;G) by δn = ∂∗n+1. In this way, we obtain the singular cochain complex

C•(X;G) with coefficients in G:

C•(X;G) = . . . Cn−1(X;G)
δn−1

Cn(X;G)
δn

Cn+1(X;G) . . . .

The action of δn is given more explicitly by

δn(ϕ)c = ϕ(∂n+1c)

for every cochain ϕ ∈ Cn(X;G) and every chain c ∈ Cn+1(X;G). More generally, we call every se-
quence diagram

. . . Cn−1 δn−1

Cn
δn

Cn+1 . . .
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with δnδn−1 = 0 a cochain complex. Observe that there is really only a difference in notation between
cochain complexes and chain complexes. Hence, we will silently use all our results about chain com-
plexes for cochain complexes to; perhaps with the prefix “co” to avoid confusion. In particular, we have
the cohomology Hn(C•) = Zn(C•)/Bn(C•) of a cochain complex C•(X). Dual to the case of chain
complexes, elements of Zn = ker δn are called n–cocycles and elements of Bn = im δn−1 are called
n–coboundaries.
If C• = Hom(C•,G) arises by dualisation of a chain complex C•, then

• ϕ ∈ Cn is an n–cocycle if and only if δnϕ = 0, i. e. ϕ vanishes on Bn ⊂ Cn.

• ϕ ∈ Cn is an n–coboundary if and only if there is some ϕ ′ ∈ Cn−1 such that δn−1ϕ ′ = ϕ.

Definition 2.14. For a topological spaceX the groupHn(X;G) = Hn(C•(X;G)) is called thenth singular

cohomology group of X with coefficients in G.

Let’s look more closely at a few special cases. For n = 0 a 0–cochain ϕ ∈ C0(X;G) may be identified
with a function ϕ : X G. This function is a cocycle if and only if ϕ(σ(1)) = ϕ(σ(0)) for all paths
σ : I X, i. e. ϕ is constant on path–components. Hence, we obtain the explicit description

H0(X;G) = Gπ0(X) = Hom(H0(X;Z),G)

for the 0th singular cohomology group of X.
We can define a reduced version of cohomology by applying the functor Hom(_,G) to the reduced

singular chain complex C̃•(X) and taking cohomology. After applying Hom(_,G) we have the cochain
complex

C̃•(X;G) = 0 Hom(Z,G)
ε∗

C0(X;G)
∂∗

1
C1(X;G)

∂∗

2
. . .

where ε : C0(X) Z denotes the augmentation map. Hence, we obtain the reduced singular cohomol-

ogy of X with coefficients in G as

H̃k(X;G) = Hk(C̃•(X;G)).

In degree k = 0 we have (ε∗λ)(x) = λ(1) ∈ G for x ∈ X and λ ∈ Hom(Z,G). Hence, im ε∗ consists
of the constant functions ϕ : X G. By identifying G with constant functions X G we obtain a
short exact sequence

0 G H0(X;G) H̃0(X;G) 0.

Similarly, we can define a relative version of cohomology; simply apply Hom(_,G) to the relative
chain complex C•(X,A) = C•(X)/C•(A) to obtain the cochain complex C•(X,A;G) and take coho-
mology to obtain the relative singular cohomology Hn(X,A;G) of a pair (X,A) with coefficients in G.
Cochain ϕ ∈ Cn(X,A;G) may be identified with cochains ϕ ∈ Cn(X;G) vanishing on Cn(A). In fact,
C•(X,A;G) ⊂ C•(X;G) is a subcomplex.
Applying the functor Hom(_,G) to the tautological short exact sequence

0 C•(A)
i∗

C•(X)
j∗
C•(X,A) 0

we obtain an exact sequence of cochain complexes

0 C•(X,A;G)
j∗

C•(X;G)
i∗

C•(A;G) 0
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because the original sequence splits degreewise. Hence, there is a long exact sequence

. . . Hn(X,A;G)
j∗

Hn(X;G)
i∗

Hn(A;G)
δn

Hn+1(X,A;G) . . .

A similar calculation gives the analogous sequence for reduced cohomology. In particular, for a pair
(X, {x0}) there is a long exact sequence

. . . H̃n({x0};G) H̃n(X;G) Hn(X, {x0};G) H̃n+1({x0};G) . . .

But H•({x0};G) = 0 whence there are isomorphisms H̃n(X;G) ∼ H̃n(X, {x0};G) for all n.
Given a map f : X Y, applying Hom(_,G) to the induced homomorphism f∗ : C•(X) C•(Y)

and taking cohomology gives a morphism f∗ : Hn(Y;G) Hn(X;G) for all n. It is immediate that this
defines a contravariant functor Hn(_;G) : Top Ab. Similarly, singular cohomology of pairs defines
a contravariant functor Hn(_, _;G) : Top2 Ab.
These functors are homotopy invariant, as in the case of singular homology, because a homotopy

between maps f,g : X Y induces a chain homotopy between f∗ and g∗. This chain homotopy is
preserved when applying additive functors, e. g. Hom(_,G), whence the induced maps f∗ and g∗ on
cohomology coincide. One may argue analogously for homotopies between maps of pairs.

Singular cohomology also satisfies an excision property: for a pair (X,A) of topological spaces and a
subspace B ⊂ A such that B ⊂ A◦, the inclusion i : (X r B,A r B) (X,A) induces isomorphisms
i∗ : Hn(X,A;G) Hn(X r B,A r B;G) for all n. This is shown by simply dualising the proof of
excision for singular homology.
In a similar spirit, cohomology admits Mayer–Vietoris sequences. For subspace A,B ⊂ X such that

X = A◦ ∪ B◦ the inclusions iA : A ∩ B A, iB : A ∩ B B, jA : A X and jB : B X induce a
short exact sequence of chain complexes

0 C•
U(X;G)

j∗A−j∗B
C•(A;G)⊕ C•(B;G)

i∗A+i∗B
C•(A ∩ B;G) 0

where U denotes the cover {A,B} of X. Hence, there is a long exact sequence

. . . Hn(X;G)
j∗A−j∗B

Hn(A;G)⊕Hn(B;G)
i∗A+i∗B

Hn(A ∩ B;G)
δn

Hn+1(X;G) . . .

in cohomology.

16



3 Homological Algebra

One might naively think that the functors Hom(_,G) and _ ⊗ G commute with taking homology,
i. e. that Hn(X;G) = Hom(Hn(X);G) and Hn(X;G) = Hn(X) ⊗ G, and that we have gained nothing
new by introducing these variants of singular homology. But in general this is far from true. Consider
for example the cellular chain complex C• of RP

2:

C• = 0 Z
2

Z
0

Z 0

Then H2(C•) = 0, H1(C•) = Z/2 and H0(C•) = Z. But after applying the functor _ ⊗ Z/2 to C• we
obtain the chain complex

0 Z/2
0

Z/2
0

Z/2 0

and the homology Hk(C• ⊗ Z/2) = Z/2 for 0 6 k 6 2. Similarly, applying Hom(_,Z) we obtain the
cochain complex

0 Z
0

Z
2

Z 0

whence

Hk(Hom(C•,Z)) =






Z/2 k = 2

0 k = 1

Z k = 0.

3.1 The Universal Coefficient Theorem for Homology

Lemma 3.1. The functor _ ⊗ G : Ab Ab is right exact, i. e. if

A
α
B

β
C 0

is exact, then so is

A ⊗ G
α⊗id

B ⊗ G
β⊗id

C ⊗ G 0.

Proof. Exactness at C ⊗ G is clear. Any additive functor preserves complexes, which of course implies
im(α ⊗ id) ⊂ ker(β ⊗ id). Hence, β ⊗ id factors through B ⊗ G/im(α ⊗ id):

B ⊗ G C ⊗ G

B ⊗ G/im(α ⊗ id)

β⊗id

ψ

In fact, ψ is an isomorphism if and only if im(α ⊗ id) = ker(β ⊗ id). The construction of an inverse
ϕ : C ⊗ G B ⊗ G/im(α ⊗ id) may be done as follows. Define

ϕ(c ⊗ g) := [b ⊗ g] ∈ B ⊗ G/im(α ⊗ id)

where β(b) = c. It is enough to check that this is in fact well–defined. If β(b ′) = β(b) = c, then
β(b ′ − b) = 0. Hence, b ′ − b = α(a) for some a ∈ A. But then (b− b ′) ⊗ g = α(a) ⊗ g ∈ im(α ⊗ id)
and [b ⊗ g] = [b ′ ⊗ g] ∈ B ⊗ G/im(α ⊗ id).
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Lemma 3.2. Split exact sequences are preserved by any additive functor, in particular they are preserved by

_ ⊗ G : Ab Ab.

Let C• denote a chain complex of free abelian groups. There are short exact sequences

0 Zn Cn
∂n

Bn−1 0

which induce a short exact sequence

0 Z• C• B•−1 0

where Z• and B•−1 carry the trivial differential. Note that the former sequence splits for all n since
Bn−1 is free (as a subgroup of a free abelian group). But the corresponding sequence of chain complexes
is not split in general.

Lemma 3.3. In the situation above,

0 Z• ⊗ G C• ⊗ G B•−1 ⊗ G 0

is a short exact sequence of chain complexes.

We obtain a long exact sequence

. . . Bn ⊗ G Zn ⊗ G Hn(C• ⊗ G) Bn−1 ⊗ G
∂n

Zn−1 ⊗ G . . .

in homology where the connecting homomorphism ∂n is just in−1 ⊗ id for the inclusion in−1 of Bn−1

into Zn−1. This long exact sequence may be broken up into short exact sequences

0 coker(in ⊗ id) Hn(C• ⊗ G) ker(in−1 ⊗ id) 0.

Look at the short exact sequence

0 Bn
in

Zn Hn(C•) 0. (∗)

Applying _ ⊗ G shows that

0 ker(in ⊗ id) Bn ⊗ G
in⊗id

Zn ⊗ G Hn(C•) ⊗ G 0

is exact. In particular, coker(in ⊗ id) = Hn(C•) ⊗ G. Hence, we have identified Hn(C• ⊗ G) as an
extension of ker(in−1 ⊗ id) by Hn(C•) ⊗ G. In particular, in the case ker(in−1 ⊗ id) = 0 we have
shown Hn(C• ⊗ G) = Hn(C•) ⊗ G. Our next goal will be to compute ker(in−1 ⊗ id) in terms of
Hn(C•) and G.
Since Bn and Zn are free abelian groups the short exact sequence (∗) is a free resolution of Hn(C•):

Definition 3.4. For an abelian group H an exact sequence

. . . F2
f2
F1

f1
F0

f0
H 0

with free abelian groups Fn is called a free resolution of H. We generally set F−1 = H and extend by 0 to
the right to obtain a chain complex F•.
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Remark 3.5. Any abelian group H has a free resolution of the form

0 F1 F0 H 0.

Tensoring any free resolution F• of H with G yields a chain complex

. . . F2 ⊗ G
f2⊗id

F1 ⊗ G
f1⊗id

F0 ⊗ G
f0⊗id

H ⊗ G 0.

Definition 3.6. We define
Torn(H,G) := Hn(F• ⊗ G).

Remark 3.7.

(i) With our definition, Tor0(H,G) = 0.
(ii) Under the assumption that Torn does not depend on the chosen free resolution, the previous

remark implies Torn(H,G) = 0 for n > 2. For this reason, we will often write Tor(H,G) instead
of Tor1(H,G).

Lemma 3.8. Let F• and F
′
• be free resolutions of abelian group H and H ′. Then any group homomorphism

ϕ : H H ′ extends to a chain map ϕ• : F• F ′• such that ϕ−1 = ϕ. Furthermore, any two such

extensions are chain homotopic.

Proof. It is clear how to define ϕ0 on a basis of F0 such that

F0 H 0

F ′0 H ′ 0

f0

ϕ0 ϕ=ϕ−1

f0′

is commutative. Similarly, if x ∈ F1 is an element of a basis of F1, choose some x ′ ∈ F ′1 such that
f ′1(x

′) = ϕ0(f1(x)) and set ϕ1(x) = x
′. This is possible, because f ′0ϕ0f1(x) = ϕf1f0(x) = 0. Inductively,

we obtain the required chain map ϕ•.
Now, suppose that ϕ ′

• is another extension of ϕ to a chain map F• F ′•. Then ψ• = ϕ• − ϕ ′
•

extends 0 : H H ′ and it is enough to show that ψ• is chain homotopic to 0. To define a chain
homotopy h : F• F ′•+1, first set hk = 0 for k 6 −1. If x ∈ F0 is an element of a basis of F0,
choose x ′ ∈ F ′1 such that f ′1(x

′) = ψ0(x) − h−1f0(x) and define h1(x) = x ′. This is possible, because
f ′0(ψ0(x) − h−1f0)(x) = (ψ−1f0 − h−1f0)(x) = h−2f−1f0(x) = 0. Inductively, we obtain the chain
homotopy h.

Lemma 3.9. Let F• and F
′
• be free resolutions of H. Then there are canonical isomorphism

Hn(F• ⊗ G) ∼ Hn(F
′
•
⊗ G)

induced by a chain homotopy equivalence F• F ′•.

Proof. By lemma 3.8 we may extend id : H H to chain maps F• F ′• and F
′
• F•. These maps

are chain homotopy equivalences because such extensions are unique up to chain homotopy and of
course remain chain homotopy equivalences upon applying any additive functor. Hence, after tensoring
with G, they induce inverse maps on homology.
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Remark 3.10. Lemma 3.8 also implies immediately that Tor(_, _) : Ab × Ab Ab is a covariant
functor in both arguments. The action on morphisms is given by extending over given free resolutions
and taking homology and does not depend on the choice of resolution.

This lemma implies that our definition of Torn(H,G) does not in fact depend on the choice of free
resolution of H. Because

0 Bn
in

Zn Hn(C•) 0

is a free resolution of Hn(C•), we see that ker(in ⊗ id) in

Bn ⊗ G
in⊗id

Zn ⊗ G Hn(C•) ⊗ G 0

is precisely Tor1(Hn(C•),G). We have thus proven the following theorem.

Theorem 3.11 (Universal coefficient theorem for homology). If C• is a chain complex of free abelian

groups and G an abelian group, then there are natural short exact sequences

0 Hn(C•) ⊗ G Hn(C• ⊗ G) Tor(Hn−1(C•),G) 0

which are split non–canonically.

Proof. It only remains to construct the splittings. The sequence

0 Zn Cn Bn−1 0

is split exact, i. e. the inclusion Zn Cn admits a retraction rn : Cn Zn. Hence, by precomposi-
tion with rn the quotient map qn : Zn Hn(C•) extends to Cn:

Cn Hn(C•)

Zn

ϕn

qn

Therefore, we obtain a chain map ϕ• : C• H•(C•) where the homology H•(C•) is considered as a
chain complex with Hn(C•) in degree n and with trivial boundary operator, and there is a chain map
ϕ• ⊗ idG : C• ⊗ G H•(C•) ⊗ G. Then the induced map ϕ∗ : Hn(C• ⊗ G) Hn(C•) ⊗ G on
homology is the required splitting for all n. To see that this is the case, observe that by construction we
have ϕn ⊗ idG|Zn⊗G = qn ⊗ idG. Passing to homology this map induces the identity.

Corollary 3.12. For any pair (X,A) there are natural short exact sequences

0 Hn(X,A) ⊗ G Hn(X,A;G) Tor(Hn−1(X,A),G) 0

which split non–canonically.

Proposition 3.13. The Tor–functor has the following properties:
(i) Tor(A,B) ∼= Tor(B,A).
(ii) Tor(

⊕
i∈IAi,B)

∼=
⊕
i∈I Tor(Ai,B).

(iii) Tor(A,B) = 0 if A or B is torsionfree.

(iv) Tor(A,B) ∼= Tor(Ator,B) where Ator denotes the torsion subgroup of A.

(v) Tor(Z/n,A) ∼= ker(A
n
A).
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(vi) If

0 B C D 0

is exact, then there is an exact sequence

0 Tor(A,B) Tor(A,C) Tor(A,D) A ⊗ B A ⊗ C A ⊗ D 0.

Proof.

(i) Apply (vi) to a free resolution 0 F1 F0 B 0 of B to obtain a long exact sequence

0 Tor(A,B) A ⊗ F1 A ⊗ F0 A ⊗ B 0

where the terms to the right vanish because Tor(X, Y) = 0 if X or Y is free. On the other by
definition there is an exact sequence

0 Tor(B,A) F1 ⊗ A F0 ⊗ A B ⊗ A 0

computing Tor(B,A). But the tensor product is naturally symmetric and the five lemma gives a
natural isomorphism Tor(A,B) ∼ Tor(B,A).

(ii) Choose a direct sum of free resolutions of the Ai as a free resolution of
⊕
i∈IAi.

(iii) IfA or B is free, then of course Tor(A,B) = 0. By (i) it is enough to check that for a free resolution

0 F1
f1
F0 A 0

and B torsion free the map F1 ⊗ B F0 ⊗ B is injective. Take
∑
xi ⊗ bi ∈ F1 ⊗ B such that

(f1 ⊗ id)(
∑
xi ⊗ bi) =

∑
f(xi) ⊗ bi = 0. Let B ′ = (b1, . . . ,bk) ⊂ B be the subgroup generated

by b1, . . . ,bk. Then B
′ is finitely generated and torsion free whence free. By the free case we have

∑
xi ⊗ bi = 0 ∈ F1 ⊗ B

′ which already implies
∑
xi ⊗ bi = 0 ∈ F1 ⊗ B.

(iv) Apply (vi) to the short exact sequence

0 Ator A A/Ator 0

to obtain an exact sequence

0 Tor(Ator,B) Tor(A,B) Tor(A/Ator,B).

But A/Ator is torsion free and hence there is an isomorphism Tor(Ator,B) ∼= Tor(A,B) by (iii).
(v) Tensor the free resolution

0 Z
n

Z Z/n 0

of Z/n with A to obtain the chain complex

0 A
n
A A ⊗ Z/n 0

whose homology computes Tor.
(vi) Truncate a free resolution

0 F1 F0 A 0
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of A to 0 F1 F0 0 and tensor with the given exact sequence:

0 0 0

0 F1 ⊗ B F1 ⊗ C F1 ⊗ D 0

0 F0 ⊗ B F1 ⊗ C F1 ⊗ D 0

0 0 0

This is an exact sequence of chain complexes and induces the required long exact sequence.

Remark 3.14. Proposition 3.13 implies that Tor(Z/n,Z/m) ∼= Z/d ∼= Z/n ⊗ Z/m with (d) = (n,m).
Furthermore, Tor(Z,Z) = Tor(Z/n,Z) = 0. Hence, for finitely generated abelian groups A and B there
is an isomorphism Tor(A,B) ∼= Ator ⊗ Btor. This justifies the term “torsion product” for Tor(A,B).

3.2 The Universal Coefficient Theorem for Cohomology

Consider a chain complex C• of free abelian groups and let G be an arbitrary abelian group. Similarly
to the previous section, we will now try to compute H•(Hom(C•,G)) from H•(C•) and G. The proof of
the following lemma is an easy exercise in diagram chasing.

Lemma 3.15. The functor Hom(_,G) is left exact, i. e. any exact sequence

A
α
B

β
C 0

induces an exact sequence

0 Hom(C,G)
β∗

Hom(B,G)
α∗

Hom(A,G).

Since by lemma 3.2 additive functors always preserve split exact sequences, in particular the functor
Hom(_,G) : Ab Ab does. We will proceed analogously to the homological case: Consider the short
exact sequence

0 Z• C• B•−1 0

of chain complexes where again Z• and B• carry the trivial differential. This sequence splits termwise,
hence

0 Hom(B•−1,G) Hom(C•,G) Hom(Z•,G) 0

is again exact. We obtain the long exact sequence

. . . Hom(Zn−1,G)
δn−1

Hom(Bn−1,G) Hn(Hom(C•,G)) Hom(Zn,G)
δn

. . .

in cohomology where δn is just given by the restriction map i∗n : Hom(Zn,G) Hom(Bn,G); here
in : Bn Zn denotes the inclusion. This long exact sequence gives rise to short exact sequences

0 coker(i∗n−1) Hn(Hom(C•,G)) ker(i∗n) 0
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for every n ∈ Z. Now it is clear that

ker i∗n = {ϕ ∈ Hom(Zn,G) : ϕ|Bn
= 0}

or, equivalently, ker(i∗n) consists of all homomorphismsϕ : Zn G that factor through the homology
Hn(C•). Hence, ker(i

∗
n) = Hom(Hn(C•),G). To determine coker(i∗n) consider the free resolution

0 Bn
in

Zn Hn(C•) 0

of Hn(C•). Applying Hom(_,G) gives an exact sequence

0 Hom(Hn(C•),G) Hom(Zn,G)
i∗n

Hom(Bn,G) coker(i∗n) 0.

Definition 3.16. For abelian groups H and G we define

Extn(H,G) = Hn(Hom(F•,G))

for a free resolution F• of H.

Just as in the case of Tor this is well–defined up to canonical isomorphism and defines a contravariant
functor Extn(_,G) and a covariant functor Extn(H, _). It is again clear that Extn(H,G) = 0 for n > 2
and n 6 0. Because of this vanishing we also write Ext(H,G) = Ext1(H,G). The proof of the following
theorem is now essentially the same as in the homological case.

Theorem 3.17 (Universal coefficient theorem for cohomology). Let C• be a chain complex of free abelian

groups and G an arbitrary abelian group. Then there are natural short exact sequences

0 Ext(Hn−1(C•),G) Hn(Hom(C•,G)) Hom(Hn(C•),G) 0

which split non–canonically.

Corollary 3.18. For any pair (X,A) of topological spaces, there are natural short exact sequences

0 Ext(Hn−1(X,A),G) Hn(X,A;G) Hom(Hn(X,A),G) 0

which split non–canonically.

Proposition 3.19. For abelian groups A, B and Ai, i ∈ I, one has:
(i) Ext(

⊕
i∈IAi,B)

∼=
∏
i∈I Ext(Ai,B).

(ii) Ext(A,B) = 0 if A is free.

(iii) Ext(Z/n,B) ∼= B/nB.

There also is a six term exact sequence for Ext analogous to the case of Tor.

Proof.

(i) Choose a direct sum of free resolutions of the Ai as a free resolution of
⊕
i∈IAi; therefore we

have an exact sequence

0
⊕

i∈I

F1,i
⊕

i∈I

F0,i
⊕

i∈I

Ai 0.

Applying Hom(_,B) yields a cochain complex

0
∏

i∈I

Hom(Ai,B)
∏

i∈I

Hom(F0,i,B)
∏

i∈I

Hom(F1,i,B) 0

whose only non–trivial homology in degree 1 is isomorphic to
∏
i∈I Ext(Ai,B) and computes

Ext(
⊕
i∈IAi,B).
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(ii) If A is free, then 0 A A 0 is a free resolution of A, whence Ext(A,B) = 0 for all B.
(iii) Apply Hom(_,B) to the free resolution

0 Z
n

Z Z/n 0

of Z/n to obtain a cochain complex

0 Hom(Z/n,B) Hom(Z,B)
n

Hom(Z,B) 0

whose homology computes Ext•(Z/n,B). Concretely, Ext(Z/n,B) is isomorphic to the cokernel

of B
n
B,i. e. to B/nB.

Corollary 3.20. If A is finitely generated, then Ext(A,Z) ∼= Ext(Ator,Z) ∼= Ator.

Corollary 3.21. If Hn(X,A) and Hn−1(X,A) are finitely generated, then there is a non–canonical de-

composition

Hn(X,A;Z) ∼= Hom(Hn(X,A),Z)⊕Hn−1(X,A)tor ∼=
Hn(X,A)

Hn(X,A)tor
⊕Hn−1(X,A)tor.
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4 The Axiomatic Point of View

The goal of this section is to sketch how the functor Hn : Top
2 Ab and Hn : Top2 Ab are

characterised by a set of axioms, known as the Eilenberg–Steenrod axioms. We will use the restriction
functor res : Top2 Top2 given on objects by res(X,A) = (A, ∅).

Definition 4.1. A homology theory h• consists of a sequence of functors hn : Top
2 Ab, n ∈ Z,

together with natural transformations ∂n : hn (hn−1 ◦ res) satisfying the following axioms:
(i) If f,g : (X,A) (Y,B) are homotopic as maps of pairs, then hn(f) = hn(g) for all n ∈ Z. This

is called homotopy invariance.
(ii) There is a long exact sequence

. . . hn(A, ∅)
hn(i)

hn(X, ∅)
hn(j)

hn(X,A)
∂n

hn−1(A, ∅) . . .

induced by the inclusions i : (A, ∅) (X, ∅) and j : (X, ∅) (X,A).
(iii) A version of excision is satisfied: For any pair (X,A) with B ⊂ A◦ the canonical inclusion map

i : (Xr B,Ar B) (X,A) induces isomorphisms

hn(i) : hn(Xr B,XrA) ∼ hn(X,A)

for all n ∈ Z.
A cohomology theory h• consists of a sequence of functors hn : Top2 Ab, n ∈ Z, together with

natural transformations δn : hn (hn−1 ◦ res) satisfying obvious dual versions of the Eilenberg–
Steenrod axioms.

Given a homology theory h• we write hn(X) = hn(X, ∅) and use f∗ instead of hn(f) for simplicity.
The sequence of groups hn(∗), n ∈ Z is called the coefficients of h•. Similar definitions are made for
cohomology theories.

Definition 4.2. A homology theory h• is called ordinary if hn(∗) = 0 for n 6= 0 and similarly for
cohomology.

Theorem 4.3. Singular (co–)homology is an ordinary (co–)homology theory.

Theorem 4.4. The values of an ordinary (co–)homology theory on the category of CW–complexes are

determined by the coefficients.

Proof. The construction of the cellular (co–)chain complex and the proof of the isomorphism of cellular
with singular (co–)homology only used the Eilenberg–Steenrod axioms.

Lemma 4.5. If (X1,A1), . . . , (Xk,Ak) are pairs of topological spaces, then the map

n⊕

i=1

hn(Xi,Ai) hn(X,A), where X =

k∐

i=1

Xi and A =

k∐

i=1

Ai,

induced by the inclusions ιi : (Xi,Ai) (X,A) is an isomorphism for all n ∈ Z. A dual version holds for

cohomology.
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Proof. Induction immediately reduces to the case k = 2 and the 5–lemma implies that it is enough to
consider the case A1 = A2 = ∅. There is a commutative diagram

hn(X1) hn(X,X2)

hn(X)

hn(X2) hn(X,X1)

∼=

∼=

where all maps are induced by the inclusions and the horizontal maps are isomorphisms by excision.
The long exact sequence implies that the two diagonal sequences are exact. This is enough to imply the
lemma. This proof obviously dualises to give the version for cohomology.

Definition 4.6. A homology theory h• is called additive, if for any pairs family (Xi,Ai), i ∈ I, of pairs,
indexed by an arbitrary set I, the map

⊕

i∈I

hn(Xi,Ai) hn(X,A), where X =
∐

i∈I

Xi and A =
∐

i∈I

Ai,

induced by the inclusions ιi : (Xi,Ai) (X,A), is an isomorphism for all n ∈ Z. Dually, a cohomology
theory is called additive if it satisfies the obvious dual version of this statement.

Proposition 4.7. Singular homology and cohomology are additive.

For any homology theory h• we define the reduced theory h̃n(X) = ker(hn(X) hn(∗)). Dually,
for any cohomology theory h• we define h̃n(X) = coker(hn(X) hn(∗)). Any choice of a base point
x0 : ∗ X induces splittings of the exact sequences

0 h̃n(X) hn(X) hn(∗) 0

and
0 hn(∗) hn(X) h̃n(X) 0.

A map f : X Y clearly defines induced maps f∗ : h̃n(X) h̃n(Y) and f
∗ : h̃n(Y) h̃n(X) which

make h̃n and h̃
n into functorsTop Ab. There is an axiomatic characterisation of reduced homology

theories h̃• and reduced cohomology theories h̃• as above, e. g. there is always a long exact sequence

. . . h̃n(A) h̃n(X) hn(X,A) h̃n−1(X,A) . . .

in reduced homology.
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5 Products and Duality

5.1 Cup Products

Let R be a commutative ring and consider singular cohomology H•(X;R) with coefficients in R. The
goal of this section is to construct the structure of a graded ring on H•(X;R).

Definition 5.1. For cochains ϕ ∈ Ck(X;R) and ψ ∈ Cℓ(X;R) the cup product ϕ ∪ ψ ∈ Ck+ℓ(X;R) is
defined via

(ϕ ∪ψ)(σ) = ϕ(σ ◦ [e0, . . . , ek]) ·ψ(σ ◦ [ek, . . . , ek+ℓ])

for all singular simplices σ : ∆k+ℓ X.

Lemma 5.2. For ϕ ∈ Ck(X;R) and ψ ∈ Cℓ(X;R) we have the graded Leibniz rule

δ(ϕ ∪ψ) = δϕ ∪ψ+ (−1)kϕ ∪ δψ.

Proof. For σ : ∆k+ℓ+1 X compute

(δϕ ∪ψ)(σ) = (δϕ)(σ ◦ [e0, . . . , ek+1]) ·ψ(σ ◦ [ek+1, . . . , ek+ℓ+1]) =

=

k+1∑

i=0

(−1)i ϕ(σ ◦ [e0, . . . , êi, . . . , ek+1]) ·ψ(σ ◦ [ek+1, . . . , ek+ℓ+1])

and

(−1)k(ϕ ∪ δψ)(σ) = (−1)k ϕ(σ ◦ [e0, . . . , ek]) · (δψ)(σ ◦ [ek, . . . , ek+ℓ+1]) =

=

k+ℓ+1∑

i=k

(−1)k (−1)i−k ϕ(σ ◦ [e0, . . . , ek]) ·ψ(σ ◦ [ek, . . . , êi, . . . , ek+ℓ+1]).

Combining, we see that

(δϕ ∪ψ)(σ) + (−1)k(ϕ ∪ δψ)(σ) =
k+ℓ+1∑

i=0

(−1)i (∂i(ϕ ∪ψ))(σ) = (δ(ϕ ∪ψ))(σ).

Corollary 5.3. The cup product descends to a pairing

∪ : Hk(X;R) ⊗ Hℓ(X;R) Hk+ℓ(X;R),

the cup product in singular cohomology. It is associative, distributive and unital if R is.

Definition 5.4. The abelian group

H∗(X;R) =
⊕

n∈Z

Hn(X;R)

becomes a graded ring with the cup product, the singular cohomology ring of X with coefficients in R.

There are relative versions of the cup product

Hk(X;R) ⊗ Hℓ(X,A;R)
∪
Hk+ℓ(X,A;R), Hk(X,A;R) ⊗ Hℓ(X;R)

∪
Hk+ℓ(X,A;R)

and
Hk(X,A;R) ⊗ Hℓ(X,A;R)

∪
Hk+ℓ(X,A;R)

since if ϕ or ψ vanishes on C•(A), then so does ϕ ∪ψ.
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Lemma 5.5. For a map f : X Y the induced map f∗ : H∗(X;R) H∗(X;R) is a homomorphism of

graded rings, i. e.

f∗(α ∪ β) = f∗α ∪ f∗β

for α,β ∈ H∗(X;R) and deg(f∗α) = degα.

Proof. It is enough to check this for homogeneous elements α and β. We may compute
(
f∗ϕ ∪ f∗ψ

)
= f∗ϕ(σ ◦ [e0, . . . , ek]) · f

∗ψ(σ ◦ [ek, . . . , ek+ℓ])

= (ϕ ∪ψ)(f ◦ σ) =
(
f∗(ϕ ∪ψ)

)
(σ)

for cochains ϕ ∈ Ck(X;R) and ψ ∈ Cℓ(X;R) and every simplex σ : ∆k+ℓ Y. The result follows.

Proposition 5.6. The cup product is graded commutative, i. e. α ∪ β = (−1)deg(α) deg(β)β ∪ α for homo-

geneous elements α,β ∈ H∗(X,A;R).

Proof. For cochains ϕ ∈ Ck(X;R) and ψ ∈ Cℓ(X;R) we have

(ϕ ∪ψ)(σ) = ϕ(σ ◦ [e0, . . . , ek]) ·ψ(σ ◦ [ek, . . . , ek+ℓ])

and
(ψ ∪ϕ)(σ) = ϕ(σ ◦ [eℓ, . . . , ek+ℓ]) ·ψ(σ ◦ [e0, . . . , eℓ]).

Consider the affine singular simplex

τn = [en, . . . , e0] : ∆
n ∆n

and define a homomorphism ρn : Cn(X) Cn(X) via ρn(σ) = εn σ◦τn with εn = (−1)n(n+1)/2. We
claim that ρ• : C•(X) C•(X) is a chain map which is chain homotopic to the identity. Indeed,

∂ρn(σ) = εn ∂(σ ◦ τn) = εn

n∑

i=0

(−1)i σ ◦ [en, . . . , ên−i, . . . , e0]

and

ρn−1∂(σ) = ρn−1

n∑

i=0

(−1)i σ ◦ [e0, . . . , êi, . . . , en] = εn−1

n∑

i=0

(−1)i σ ◦ [en, . . . , êi, . . . , e0] =

= εn−1

n∑

i=0

(−1)n−i σ ◦ [en, . . . , ên−i, . . . , e0] = εn

n∑

i=0

(−1)i σ ◦ [en, . . . , ên−i, . . . , e0].

In the product ∆n× I ⊂ Rn+1× I identify ei with (ei, 0) and fi with (ei, 1). We define a homomorphism
hn : Cn(X) Cn+1(X) by the formula

hn(σ) =
∑

i

(−1)iεn−iσ ◦ π ◦ [e0, . . . , ei, fn, . . . , fi]

with the projection π : ∆n × I ∆n. It corresponds to the usual triangulation of ∆n × I with some
orientations reversed. Then

∂hn(σ) =
∑

i6j

(−1)j(−1)iεn−iσ ◦ π ◦ [e0, . . . , êj, . . . , ei, fn, . . . , fi] +

+
∑

j>i

(−1)i+1+n−j(−1)iεn−iσ ◦ π ◦ [e0, . . . , ei, fn, . . . , f̂j, . . . , fi].
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The j = i terms in this sum give

εnσ ◦ π ◦ [fn, . . . , f0] +
∑

i>0

εn−iσ ◦ π ◦ [e0, . . . , ei−1, fn, . . . , fi] +

+
∑

i<n

(−1)i(−1)1+nεn−iσ ◦ π ◦ [e0, . . . , ei, fn, . . . , fi+1] − σ ◦ π ◦ [e0, . . . , en].

The outer two term in this sum are

εnσ ◦ [en, . . . , e0] − σ ◦ [e0, . . . , en] = ρn(σ) − σ

and an index shift in the second sum in the middle terms reveals that the middle terms cancel. Now,

hn−1(∂σ) =
∑

j

(−1)j
∑

i6n−1

(−1)ien−1−iσ ◦ [e0, . . . , êj, . . . , en] ◦ π ◦ [e0, . . . , ei, fn, . . . , fi] =

=
∑

i<j

(−1)j(−1)iεn−1−iσ ◦ π ◦ [e0, . . . , ei, fn, . . . , f̂j, . . . , fi] +

+
∑

i>j

(−1)j(−1)i−1εn−iσ ◦ π ◦ [e0, . . . , êj, . . . , ei, fn, . . . , fi]

and comparing with the expression for ∂hn(σ) shows that h• is a chain homotopy from ρ• to id. To
finish the proof, observe that

(ρ∗kϕ ∪ ρ∗ℓψ)(σ) = (ρ∗kϕ)(σ ◦ [e0, . . . , ek]) · (ρ
∗
ℓψ)(σ ◦ [ek, . . . , ek+ℓ]) =

= εkεℓϕ(σ ◦ [ek, . . . , e0]) ·ψ(σ ◦ [ek+ℓ, . . . , ek])

and

ρ∗k+ℓ(ψ ∪ϕ)(σ) = εk+ℓψ(σ ◦ [ek+ℓ, . . . , ek]) ·ϕ(σ ◦ [ek, . . . , e0]).

Hence, on cohomology this implies that [ϕ] ∪ [ψ] = εkεℓεk+ℓ[ψ ∪ ϕ] = (−1)kℓ[ψ] ∪ [ϕ]. Since ρn and
hn take chains in A to chains in A, they act on relative cochains and the same argument works for
H∗(X,A;R).

Example 5.7. Consider the 2–torus T 2 given by its fundamental polygon with vertices A, B, C and D—
see Bildchen. The Hurewicz theorem implies that a = [A,B] and b = [A,D] give a basis forH1(T

2). The
homology H•(T

2;Z) is torsionfree and therefore H1(T 2;Z) = Hom(H1(T
2),Z). Let {α,β} be the basis

of H1(T 2;Z) dual to {a,b}. Write c = [A,B,D] − [B,D,C]. This singular 2–cycle generates H2(T
2). For

ξ = [ϕ] ∈ H1(T 2;Z) and η = [ψ] ∈ H1(T 2;Z) we have

(ξ ∪ η)([c]) = ϕ([A,B])ψ([B,D]) −ϕ([B,D])ψ([D,C]) = ξ(a)η(b− a) − ξ(b− a)η(a)

because [B,D] − (b− a) = ∂[A,B,D] ≡ 0 ∈ H1(T
2). Hence,

(ξ ∪ η)([c]) = ξ(a)η(b) − ξ(b)η(a)

and in particular α ∪ α = 0, β ∪ β = 0 and (α ∪ β)([c]) = 1. Therefore α ∪ β generates H2(T 2;Z) and
[c] generates H2(T

2). In summary, we have calculated H•(T 2;Z) ∼=
∧

Z
Z
2 =

∧
Z
〈α,β〉.
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Example 5.8. More generally, let Σg be the oriented surface of genus g, presented by its fundamen-
tal polygon—see Bildchen. As before, the homology classes a1,b1, . . . ,ag,bg of the singular 1–cycles
[A1,B1], [B1,C1], . . . , [Ag,Bg], [Bg,Cg] generate the first homology H1(Σg) ∼= Z

2g. In fact, they form a
basis. Let α1,β1, . . . ,αg,βg be the corresponding dual basis. Write

C =
∑

i+1∈Z/g

[0,Ai,Bi] + [0,Bi,Ci] − [0,Di,Ci] − [0,Ai+1,Di].

Then
∂C =

∑

i+1∈Z/g

[0,Ai] − [0,Ai+1] = 0.

As before,

(ξ ∪ η)([c]) =
∑

i+1∈Z/g

ϕ([0,Ai])ψ(ai) +ϕ([0,Bi])ψ(bi) −ϕ([0,Di])ψ(ai) −ϕ([0,Ai+1])ψ(bi) =

=
∑

i+1∈Z/g

ϕ([0,Ai] − [0,Di])η(ai) +ϕ([0,Bi] − [0,Ai+1])η(bi).

Now, we have

∂([0,Ai,Bi] + [0,Bi,Ci] + [0,Ci,Di]) − [Bi,Ci] = [0,Ai] − [0,Di]

and

∂([0,Bi,Ci] + [0,Ci,Di] + [0,Di,Ai+1]) + [Ai,Bi] = [0,Bi] − [0,Ai+1]

and therefore
(ξ ∪ η)([c]) =

∑

i+1∈Z/g

ξ(ai)η(bi) − ξ(bi)η(ai).

We obtain the relations αi ∪ αj = βi ∪ βj = 0 and (αi ∪ βj)([c]) = δij. In particular, the cohomology
class α1 ∪ β1 = · · · = αg ∪ βg generates H

2(Σg;Z) and [c] generates H2(Σg).

Our next goal will be to generalise this computation to H•(Tn;Z). Here Tn = S1 × · · · × S1 denotes
the n–torus. First, we need some preparation.

Definition 5.9. The cross product is the map

× : Hk(X;R) ⊗ Hℓ(X;R) Hk+ℓ(X× Y;R)

defined by α× β = π∗Xα ∪ π∗Yβ.

We would like to define a relative version of the cross product

× : Hk(X,A;R) ⊗ Hℓ(Y,B;R) Hk+ℓ(X× Y,X× B ∪A× Y;R).

The naive version does not quite work: For cochains ϕ ∈ Ck(X,A;R) and ψ ∈ Cℓ(Y,B;R) we only have
π∗Xϕ∪π

∗
Yψ ∈ Ck+ℓ(X×Y,A×Y+X×B;R), i. e. the cup product lands in the space of all ξ ∈ Ck+ℓ(X×Y;R)

such that ξ|C•(A×Y) = ξ|C•(X×B) which is bigger than Ck+ℓ(X × Y,A × Y ∪ X × B;R). So we need a
more general version of the cup product. Ideally, it should be a pairing

∪ : Hk(X,A;R) ⊗ Hℓ(X,B;R) Hk+ℓ(X,A ∪ B;R).
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For this we need to understand the subcomplexes C•(A∪B) and C•(A)+C•(B) of C•(X). CallA,B ⊂ X
an excisive couple if the inclusion C•(A) +C•(B) C•(A ∪ B) induces an isomorphism in homology.
In this casȩ the universal coefficient theorem implies that also the dualHn(A∪B;R) Hn(A+B;R)
is an isomorphism for all n. Here, Hn(A + B;R) denotes HnHom(C•(A) + C•(B),R). Consider the
commutative diagram

0 C•(X,A+ B;R) C∗(X;R) C∗(A+ B;R) 0

0 C•(X,A ∪ B;R) C∗(X;R) C∗(A ∪ B;R) 0

of cochain complexes with exact rows. We obtain a diagram

Hn(X,A+ B;R) Hn(X;R) Hn(A+ B;R) Hn+1(X,A+ B;R)

Hn(X,A ∪ B;R) Hn(X;R) Hn(A ∪ B;R) Hn+1(X,A ∪ B;R)

with exact rows in which every map Hn(A∪B;R) Hn(A+B;R) is an isomorphism by assumption.
Therefore, the five lemma implies that Hn(X,A ∪ B;R) Hn(X,A+ B;R) is an isomorphism as well.
This isomorphism now gives a definition of the relative cup product, at least for excisive couples; it is
the composition

Hk(X,A;R) ⊗ Hℓ(X,B;R)
∪
Hk+ℓ(X,A+ B;R) ∼ Hk+ℓ(X,A ∪ B;R).

Of course, we need to determine which couples are excisive. By the excision theorem, this is the case if
A ∪ B = A◦ ∪ B◦, where the interiors are understood with respect to the subspace topology on A ∪ B.
This holds for example if A,B ⊂ X are both open.

Returning to our original setting, we have a relative cross product

Hk(X,A;R) ⊗ Hℓ(Y,B;R) Hk+ℓ(X× Y,A× Y ∪ X× B;R)

if the subspaces A×Y and X×B of X×Y form an excisive couple. For instance, this is the case if A ⊂ X
and B ⊂ Y are both open.
Our next goal will be computing the ring structure on H•(Tn;Z), the cohomology of the n–torus

Tn = S1 × · · · × S1.

Lemma 5.10. For any pair (X,A) and any space Y the diagram

Hk(A;R) ⊗ Hℓ(Y;R) Hk+1(X,A;R) ⊗ Hℓ(Y;R)

Hk+ℓ(A× Y;R) Hk+ℓ+1(X× Y,A× Y;R)

×

δ⊗id

×

δ

is commutative.

Proof. Take [ϕ] ⊗ [ψ] ∈ Hk(A;R) ⊗ Hℓ(Y;R). Then, we get a diagram

[ϕ] ⊗ [ψ] [δϕ] ⊗ [ψ]

π∗X[δϕ] ∪ π
∗
Y [ψ]
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where ϕ denotes some lift of ϕ to Ck(X;R). The other way of chasing the diagram maps [ϕ] ⊗ [ψ] to
[δ(ϕ×ψ)] = [δ(π∗Xϕ ∪ π∗Yψ)], and indeed by naturality of δ this equals π∗Xδ[ϕ] ∪ π

∗
Y [ψ].

Proposition 5.11. Let Y be a topological space and I = [0, 1] the unit interval. Assume additionally that

R is unital. If α is such that 〈α〉R = H1(I,∂I;R) ∼= R, then the relative cross product

Hn(Y;R)
α×_

Hn+1(I× Y,∂I× Y;R)

with α is an isomorphism.

Proof. Consider the long exact sequence

Hn(I× Y,∂I× Y;R) Hn(I× Y;R) Hn(∂I× Y;R) Hn+1(I× Y,∂I× Y;R)

of (I× Y,∂I× Y) in cohomology. We claim that all maps Hn(I× Y,∂I× Y;R) Hn(I× Y;R) are 0. In
fact, this map is induced by the inclusion (I× Y, ∅) (I× Y,∂I× Y). But this map is homotopic to a
map with values in ∂I× Y which implies the claim.
Hence, we obtain short exact sequences

0 Hn(I× Y;R) Hn(∂I× Y;R)
δ
Hn+1(I× Y;∂I× Y;R) 0

for all n. By additivity, Hn(∂I × Y;R) ∼= Hn({0} × Y;R) ⊕ Hn({1} × Y;R). We now claim that for all
i ∈ {0, 1} the restriction δ|Hn({i}×Y;R) is an isomorphism: We can describe the submodule Hn({i}× Y;R)
of Hn(∂I × Y;R) as follows. A basis of H0(∂I;R) is given by cocyles 10 and 11 such that 1i(j) = δij for
i, j ∈ {0, 1}. Hence, Hn({i}× Y;R) = im(1i × _) ⊂ Hn(∂I× Y;R). On the other hand,

im(Hn(I× Y;R) Hn(∂I× Y;R)) = im(Hn(Y;R)
π∗

Y
Hn(∂I× Y;R)).

Thus, the image ofHn(I×Y;R) inHn(∂I×Y;R) is generated by (10+11)×Hn(Y;R) and theHn({i}×Y;R)
are complementary to ker δ. This yields the claim. To finish the proof, use lemma 5.10 to deduce that
δ◦ (1i×_) = δ(1i)×_. The second δ denotes the connecting homomorphismH0(∂I;R) H1(I,∂I;R).
Then observe that δ(10) = −δ(11) is a generator of H

1(I,∂I;R) as before.

Corollary 5.12. If α ′ is a generator of H1(S1, {s0};R), then

Hn(Y;R)
α′×_

Hn+1(S1 × Y, {s0}× Y;R)

is an isomorphism for all n.

Corollary 5.13. The homomorphism Hn(Y;R)×Hn+1(Y;R) Hn+1(S1 × Y;R) mapping (β1,β2) to

α ′′ × β1 + 1H0(S1 ;R) × β2 for some generator α ′′ of H1(S1;R) is an isomorphism.

Proposition 5.14. There is an isomorphism H•(Tn;Z) ∼=
∧
Z
n =

∧
Z
〈α1, . . . ,αn〉 where αi = π

∗
iα

′′ for

a generator α ′′ of H1(S1;Z).
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6 Orientations and Homology

Definition 6.1. A topological space X is called locally Euclidean if there is some n > 0 such that every
x ∈ X admits an open neighbourhood U ⊂ X of x and a homeomorphism φ : U V onto some open
subset V ⊂ R

n.

Definition 6.2. A topological manifold M is a locally Euclidean Hausdorff space. It is called closed if it
is compact. IfM is locally homeomorphic to R

n, then n > 0 is called the dimension ofM.

Example 6.3. The n–sphere Sn is a closed topological manifold by stereographic projection. Similarly,
RP

n, Σg and K
2 are examples of topological manifolds.

LetM be a topological manifold and fix x ∈ M. Choose some chart φ : U V ⊂ R
n centred at x,

i. e. φ(x) = 0. We may assume without loss of generality that V = R
n. Then there are isomorphisms

Hk(M,M r {x};G) ∼= Hk(U,U r {x};G) ∼= H̃k−1(S
n−1;G) = δknG. Hence, the dimension of M is

detected by H∗(M,Mr {x};G).

Definition 6.4. Let R be a commutative ring with unity. IfM is an n–dimensional topological manifold,
then a generator µx ∈ Hn(M,Mr {x};R) ∼= R is called a local orientation at x.

Remark 6.5. In the case R = Z andA ∈ O(n)we have degA|Sn−1 = detA; in particular degA|Sn−1 = 1 if
A is orientation preserving and degA|Sn−1 = −1 ifA reverses orientation. Hence, for a local orientation
µ ∈ Hn(R

n,Rn r {0}) ∼= H̃n−1(S
n−1) we have A∗µ = µ if A preserves orientation and A∗µ = −µ

otherwise.

For x ∈M and a chart φ : U Rn centred at x let Bn = Bn1 (0) be the open unit ball and consider
B = φ−1(Bn) ⊂ U.

Lemma 6.6. The inclusion (M,M r B) (M,M r {x}) of pairs induces a canonical isomorphism

ρx : Hn(M,Mr B;R) Hn(M,Mr {x};R).

Proof. By excision, we have Hn(M,Mr B;R) ∼= Hn(U,Ur B;R) ∼= Hn(R
n,Rn r Bn;R). On the other

hand,Hn(M,Mr{x};R) ∼= Hn(U,Ur{x};R) ∼= Hn(R
n;Rnr{0};R). By homotopy invariance, it follows

that Hn(Rn,Rn r {0};R) ∼= Hn(R
n,Rn r B;R).

This lemma implies that local orientations may be extended locally: Via the isomorphism ρx we get
canonical identifications Hn(M,M r B;R) = Hn(M,M r {x};R) for all x ∈ B and a local orientation
µx0 at some x0 ∈ B extends to a map µB : B

∐
x∈BHn(M,Mr {x};R).

Remark 6.7. Let U ′ and U ′′ be open neighbourhoods of x0 with open balls B ′ ⊂ U ′ and B ′′ ⊂ U ′′

around x0. Let B ⊂ U be some ball around x0 such that B ⊂ B ′ ∩ B ′′. Then there is a commutative
diagram

Hn(M,Mr B ′;R)

Hn(M,Mr B;R) Hn(M,Mr {x0};R)

Hn(M,Mr B ′′;R)

∼=

∼=

∼=
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which implies that two leftmost maps are isomorphisms as well. This shows that µB′ |B = µB′′ |B = µB.

LetMR be the disjoint unions
∐
x∈MHn(M,M r {x};R) and denote by π : MR M the obvious

projection. We define a topology onMR as follows. If φ : U R
n is a chart and B is some ball in U,

write
UαB

= {ρx(αB) ∈ Hn(M,Mr {x};R) : x ∈ B}

for every αB ∈ Hn(M,M r B;R). Remark 6.7 shows that if ρx0(α
′
B′) = ρx0(α

′′
B′′) then α ′

B′ |B = α ′′
B′′ |B

for some ball B ⊂ B ′ ∩B ′′, i. e. the sets UαB
form a basis for some topology onMR. With this topology,

the projection π becomes continuous and so do the local sections αB as above. Moreover, the maps
B×Hn(M,MrB;R) π−1(B) such that (x,αB) ρx(αB) are local trivialisations of π. Therefore,
we obtain a covering space π : MR M. This covering is called the R–orientation bundle.

Definition 6.8. A (global) R–orientation of M is a global section µ of MR M such that every
µ(x) ∈ Hn(M,Mr {x};R) is a local orientation around x ∈M. IfM admits a global R–orientation, we
say it is R–orientable. In the case R = Zwe simply speak of global orientations and orientable manifolds
respectively.

Remark 6.9.

(i) IfM is R–orientable, thenMR
∼=M×R is trivial. In fact, if µ : M MR is a global R–orientation,

then the mapM× R MR mapping (x, r) to rµ(x) is a trivialisation ofMR.
(ii) Any topological manifold admits a unique Z/2–orientation.
(iii) If a manifoldM is not orientable, then the subspace

M̃ =
∐

x∈M

{µx ∈ Hn(M,Mr {x}) : µx is a generator} ⊂MZ

is a nontrivial 2–sheeted covering ofM—the orientation covering. The topological manifold M̃ is
canonically oriented: A local orientation µ̃x ∈ Hn(M̃, M̃ r {µx}) is given by the element corre-
sponding to µx via canonical the isomorphism Hn(M̃, M̃r {µx}) ∼= Hn(M,Mr {x}).

Proposition 6.10. If M is connected and π1(M) does not contain a subgroup of index 2, thenM is ori-

entable. In particular, this is the case if M is simply connected.

Proof. This follows from remark 6.9 and the classification of covering spaces.

Definition 6.11. A class µM ∈ Hn(M;R) is an R–orientation class if µx = ρx(µM) is a local R–
orientation for all x ∈M. An orientation class is by definition a Z–orientation class.

Remark 6.12. Clearly, ifM admits an R–orientation class, thenM is R–orientable.

We will study the converse of remark 6.12. For this we need a relative Mayer–Vietoris sequence.
Assume that X = A◦ ∪B◦ and Y ⊂ X is a subspace such that Y = C◦ ∪D◦ in the subspace topology and
C ⊂ A, D ⊂ B. Then there is a long exact sequence

. . . Hn(A ∩ B,C ∩D) Hn(A,C)⊕Hn(B,D) Hn(X, Y) Hn−1(A ∩ B,C ∩D) . . .
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induced by the diagram

0 0 0

0 C•(C ∩D) C•(C)⊕ C•(D) C•(C+D) 0

0 C•(A ∩ B) C•(A)⊕ C•(B) C•(A+ B) 0

0 C•(A ∩ B,C ∩D) C•(A,C)⊕ C•(B,D) C•(A+ B,C+D) 0

0 0 0

in which all three rows are exact; note that the homology ofC•(A+B,C+D) computesH∗(A∪B,C∪D)

because of excision and our assumptions on the covers X = A◦ ∪ B◦ and Y = C◦ ∪D◦.

Proposition 6.13. Let M be a topological manifold of dimension n with a compact subset A ⊂ X.
(i) If α is a global section of π : MR M, then there exists a unique αA ∈ Hn(M,M r A;R) such

that ρx(αA) = α(x) for all x ∈ A.
(ii) For k > dimM the homology Hk(M,MrA;R) vanishes.

Proof. First we will show that if the proposition is true for A, B and A∩B, then it is also true for A∪B,
where A and B are compact subsets of X. For this, we use the relative Mayer–Vietoris sequence for
Mr (A ∪ B) = (MrA) ∩ (Mr B) and (MrA) ∪ (Mr B) =Mr (A ∩ B) to obtain

. . . Hloc
k (A ∪ B) Hloc

k (A)⊕Hloc
k (B) Hloc

k (A ∩ B) . . .

where Hloc
∗ (Y) := H∗(M,Mr Y;R). For k > n we obtain Hloc

k (A ∪ B) = 0. For k = n we have an exact
sequence

0 Hloc
n (A ∪ B) Hloc

n (A)⊕Hloc
n (B) Hloc

n (A ∩ B) . . . (∗)

and by assumption there are unique classes αA ∈ Hloc
n (A), αB ∈ Hloc

n (B) and αA∩B ∈ Hloc
n (A∩B)which

restrict to α(x) ∈ Hloc
n ({x}) for x ∈ A, x ∈ B and x ∈ A ∩ B respectively. By uniqueness αA and αB

restrict to αA∩B. Hence, the exact sequence (∗) implies that there is a unique class αA∪B ∈ Hloc
n (A ∪ B)

which restricts to α(x) in all points x ∈ A ∪ B.
Now, observe that it is enough to prove statements (i) and (ii) forM = R

n: IfA ⊂M is compact, then
A = A1 ∪ · · · ∪ Am for Ai compact and contained in some coordinate chart ofM. So we may assume
that M = Rn and that A ⊂ Rn is some compact subset. If additionally A is convex, then for x ∈ A

both R
n
r {x} and R

n
rA are both deformation retracts of an (n− 1)–dimensional sphere centered at

x. Therefore, the restriction Hloc
k (A) Hloc

k ({x}) is an isomorphism which implies (i) and (ii).
For general compact subsets A ⊂ Rn, let a class αA ∈ Hloc

k (A) be represented by a relative cycle
z ∈ Ck(M;R). Let C be the union of the images of the singular simplices contained in ∂z. Then C
is compact and contained inM r A. Since A and C are compact and disjoint, they are separated by a
positive distance δ. Hence, we can coverA by finitely many closed balls of radius δ/2; denote their union
by K. Because K∩C = ∅ the chain z defines a class αk ∈ Hloc

k (K)which restricts to αA ∈ Hloc
k (A). By (ii)

for convex subsets we have Hloc
k (K) = 0 for k > n and then also αA = 0 ∈ Hloc

k (A). If k = n, then there
is some βK ∈ Hloc

n (K) restricting to α(x) at all x ∈ K by statement (i) for compact subsets; restricting
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βK to A yields the existence part in (i) for general A. To prove uniqueness, assume that αA ∈ Hloc
n (A)

restricts to 0 in all points x ∈ A. By the previous construction, we obtain a class αK ∈ Hloc
n (K) restricting

to 0 in all points x ∈ K—because Hloc
n (B) ∼= Hloc

n ({x}) for all closed balls B—and we may conclude by the
case for convex subsets.

Remark 6.14. Let Γ(MR) be the R–module of global sections of the covering MR M. There is a
map Hn(M;R) Γ(MR) which associates to each class αn the section mapping x to ρx(αn).

IfM is connected and R–orientable, then the map Γ(MR) Hn(M,M r {x};R) ∼= R evaluating a
global section at x is an isomorphism.

Theorem 6.15. Let M be a closed topological manifold of dimension n. Then

(i) the map Hn(M;R) Γ(MR) is an isomorphism.

(ii) Hk(M;R) = 0 for k > n.

Corollary 6.16. Let M be a closed topological manifold of dimension n. If M is R–orientable, then

there exists an R–orientation class µM ∈ Hn(M;R). If moreover M is connected, then the restriction map

ρx : Hn(M;R) Hn(M,Mr {x};R) is an isomorphism for all x ∈M.

Corollary 6.17. Let M be a closed, connected topological manifold of dimension n. Then there is an

isomorphism Hn(M,Z/2) ∼= Z/2 and

Hn(M;Z) ∼=

{
Z if M is orientable

0 otherwise.

Proof. If M is not orientable, then Γ(MZ) = 0, for suppose 0 6= α ∈ Γ(MZ) were some nontrivial
section. Then α(x) 6= 0 for all x ∈ M becauseM is connected. Hence, for all x ∈ M there is a unique
µx ∈ Hn(M,M r {x};Z) such that α(x) = mµx for some m > 1. This would provide M with an
orientation.

Example 6.18. The manifolds Sn, Σg, CP
n are orientable. The manifolds RP2 and K2 are not. More

generally, RPn is orientable precisely for odd n.
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7 Poincaré Duality

IfM is a closed R–orientable manifold, then there is an isomorphism Hk(M;R) ∼= Hn−k(M;R). This
section will be devoted to a discussion of this fact.

Definition 7.1. The cap product is a bilinear pairing

∩ : Ck(X;R) ⊗ C
ℓ(X;R) Ck−ℓ(X;R)

satisfying
σ ∩ϕ = ϕ(σ ◦ [e0, . . . , eℓ]) · σ ◦ [eℓ, . . . , ek]

for simplices σ : ∆k X and cochains ϕ ∈ Cℓ(X;R).

Lemma 7.2. The cap product satisfies

∂(σ ∩ϕ) = (−1)ℓ(∂σ ∩ϕ− σ ∩ δϕ).

Proof. We compute

∂σ ∩ϕ =

ℓ∑

i=0

(−1)iϕ(σ ◦ [e0, . . . , êi, . . . , eℓ+1]) · σ ◦ [eℓ+1, . . . , ek] +

+

k∑

i=ℓ+1

(−1)iϕ(σ ◦ [e0, . . . , eℓ]) · σ ◦ [eℓ, . . . , êi, . . . , ek]

and

σ ∩ δϕ =

ℓ+1∑

i=0

(−1)iϕ(σ ◦ [e0, . . . , êi, . . . , eℓ+1]) · σ ◦ [eℓ+1, . . . , ek].

On the left hand side we have

∂(σ ∩ϕ) =
k∑

i=ℓ

(−1)i−ℓσ ◦ [e0, . . . , eℓ] · σ ◦ [eℓ, . . . , êi, . . . , ek].

Summing all terms yields the claimed equality.

Corollary 7.3. The cap product descends to a pairing

∩ : Hk(X;R) ⊗ H
ℓ(X;R) Hk−ℓ(X;R).

Remark 7.4.

(i) There are relative versions

∩ : Hk(X,A;R) ⊗ H
ℓ(X;R) Hk−ℓ(X,A;R)

and
∩ : Hk(X,A;R) ⊗ H

ℓ(X,A;R) Hk−ℓ(X;R)

of the cap product.
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(ii) For f : X Y one has the naturality

f∗α ∩ϕ = f∗(α ∩ f∗ϕ)

for α ∈ Hk(X;R) and ϕ ∈ Hℓ(X;R).

Theorem 7.5 (Poincaré duality). Let M be a closed, R–orientable manifold of dimension n. Fix an orien-

tation class µM ∈ Hn(M;R). Then the map

D : Hk(M;R)
µM∩_

Hn−k(M;R)

is an isomorphism of R–modules.

For the proof of this result we need an additional tool. Let G be an abelian group and denote by
Ckc(X;R) ⊂ Ck(X;R) the subgroup of cochains ϕ which admit a compact subset K ⊂ X such that ϕ
vanishes on chains in X r K, i. e. such that ϕ ∈ Ck(X,X r K;R). Clearly, the boundary operator δ
descends to C•

c(X;R).

Definition 7.6. The cohomology Hkc(X;R) = Hk(C•
c(X;G)) is called the kth singular cohomology with

compact support.

Remark 7.7. Singular cohomology with compact support defines a contravariant functor with respect
to proper maps f : X Y, i. e. continuous maps f such that f−1(K) ⊂ X is compact for every compact
subset K ⊂ Y.

There is an alternative characterisation of compactly supported cohomology.

Definition 7.8. A directed set is a partially ordered set I such that for any i, j ∈ I there is some k ∈ I
such that i, j 6 k.

Definition 7.9. A directed system of abelian groups is a functor I Ab for some directed set I. More
explicitly, it is a family (Ai)i∈I of abelian groups together with homomorphisms ϕij : Ai Aj for
i 6 j such that ϕjk ◦ϕij = ϕik for i 6 j 6 k and ϕii = id.

Definition 7.10. Given a directed system (Ai)i∈I, its direct limit colimi∈IAi is given by the quotient

colim
i∈I

Ai =
∐

i∈I

Ai

/
∼

by the equivalence relation such that gi ∼ gj if and only if there exists some k ∈ I with k > i, j and
ϕik(gi) = ϕjk(gj). Any two equivalence classes [gi] and [gj] have representatives ϕik(gi) and ϕjk(gj)
respectively in a common group Ak. We set [gi] + [gj] = [ϕik(gi) +ϕjk(gj)].

There is a natural system of homomorphisms Ai colimiAi and the direct limit satisfies the
following universal property: For any other system of homomorphisms ψi : Ai H such that every
diagram

Ai Aj

H

ψi ψj
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commutes, there exists a unique homomorphism ψ : colimiAi H such that every diagram

Ai colimiAi

H

ψi ψ

commutes.
For a topological space X consider the directed set of all compact subsets K ⊂ X. For compact subsets

K ⊂ L there is a natural homomorphism Hk(X,XrK;G) Hk(X,Xr L;G) induced by the inclusion.
The inclusions (X, ∅) ⊂ (X,K) for all compact K ⊂ X induce a compatible system of homomorphisms
Hk(X,XrK;G) Hkc(X;G). The universal property now supplies us with a natural homomorphism

colim
K ⊂ X compact

Hk(X,Xr K;G) Hkc(X;G).

Lemma 7.11. This map is an isomorphism.

Similarly, if X =
⋃
i∈I Xi is the union of a directed system (Xi)i∈I of subspaces, then there is a natural

homomorphism colimiHk(Xi;R) Hk(X;G) induced by the inclusions Xi X.

Lemma 7.12. If every compact subset K ⊂ X is contained in some Xi, then the natural homomorphism

colimiHk(Xi;R) Hk(X;R) is an isomorphism for all k.

If M is R–oriented—with a global R–orientation µ—but possibly not compact, we can still define a
duality map

DM : Hkc(M;R) Hn−k(M;R)

as follows. For a compact subset K ⊂ M there exists a unique class µK ∈ Hn(M,M r K;R) restrict-
ing to µ(x) in all points x ∈ M by proposition 6.13. For K ⊂ M define a natural homomorphism
Hk(M,MrK;R) Hn−k(M;R) by mapping α to µK ∩α. In this way we obtain a compatible system
of homomorphisms and consequently a unique homomorphism DM : Hkc(M;R) Hn−k(M;R). For
simplicity of notation we will drop the coefficient ring from the notation.

Theorem 7.13. The duality map DM : Hkc(M) Hn−k(M) is an isomorphism for all k ∈ Z.

Lemma 7.14. Let (X, Y) = (A ∪ B,C ∪D) be a pair of spaces such that X = A◦ ∪ B◦, Y = C◦ ∪D◦ ⊂ Y

and C ⊂ A, D ⊂ B. Then there is a long exact sequence

. . . Hn(X, Y) Hn(A,C)⊕Hn(B,D) Hn(A ∩ B,C ∩D) Hn−1(X, Y) . . .δ

which arising as the long exact sequence associated to the short exact sequence

0 Cn(A+ B,C+D) Cn(A,C)⊕ Cn(B,D) Cn(A ∩ B,C ∩D) 0

Lemma 7.15. If M = U ∪ V with U,V ⊂M open, then there is a diagram

Hkc(U ∩ V) Hkc(U)⊕H
k
c(V) Hkc(M) Hk+1

c (U ∩ V)

Hn−k(U ∩ V) Hn−k(U)⊕Hn−k(V) Hn−k(M) Hn−k−1(U ∩ V)

DU∩V DU−DV DM DU∩V

with exact rows which commutes up to sign.
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Proof. Let K ⊂ U and L ⊂ V be compact subsets and writeM r K = A andM r L = B. Then there is
an exact sequence

. . . Hk(M,A ∪ B) Hk(M,A)⊕Hk(M,B) Hk(M,A ∩ B) Hk+1(M,A ∪ B) . . .

and the composition of the excision isomorphism and the duality maps yields the diagram

Hk(M,A ∪ B) Hk(M,A)⊕Hk(M,B) Hk(M,A ∩ B) Hk+1(M,A ∪ B)

Hn−k(U ∩ V) Hn−k(U)⊕Hn−k(V) Hn−k(M) Hn−k−1(U ∩ V)

DU∩V DU−DV

δ

DM DU∩V

∂

with exact rows. Taking the direct limit, we obtain the result, once we have established that the diagram
is commutative up to sign. The only hard part in checking this is the square containing the boundary
homomorphisms. So take [ϕ] ∈ Hk(M,M r (K ∪ L)) and some ϕA + ϕB ∈ Ck(M,A) ⊕ Ck(M,B)
such that ϕA − ϕB = ϕ. Then δϕA = δϕB and δ[ϕ] = [δϕA] ∈ H

k+1(M,M r (K ∩ L)). It remains to
compute µK∩L∩[δϕA]. Via barycentric subdivision we have µK∩L = [α]with α = αUrL+αU∩V+αVrK

where α• ∈ Cn(•). Additionally, αU∩V represents µK∩L and αUrL + αU∩V represents µK, because for
example after restriction of µK∪L the chains αUrL and αVrK become trivial and this restriction is µK∩L
by definition.
Therefore, µK∩L∩ [δϕA] is represented by αU∩V ∩δϕA which is homologous to ∂αU∩V ∩ϕA. Going

the other way, the class µK∪L ∩ [ϕ] is represented by α ∩ϕ and

∂(µK∪L ∩ϕ) = [∂(αUrL ∩ϕ)] = ±(∂αUrL ∩ϕ− αUrL ∩ δϕ) = ±∂αUrL ∩ϕA

because ∂αUrL ∩ ϕB = 0 since ϕB vanishes on chains in B. Now, ±∂αUrL ∩ ϕA = ∓∂αU∩V ∩ ϕA
since ∂(αUrL + αU∩V ) ∩ ϕA = 0, for αUrL + αU∩V represents µK and therefore is a relative cycle in
(M,Mr K).

Proof of theorem 7.13. Firstly, ifM = U ∪ V with U,V ⊂ M open and DU, DV and DU∩V are isomor-
phisms, then DU is an isomorphism as well by the previous lemma.
Secondly, if M =

⋃
i>1Ui is a union of an increasing chain U1 ⊂ U2 ⊂ . . . of open subsets and

DUi
is an isomorphism for all i, then DM is an isomorphism, too: There are natural isomorphisms

Hkc(Ui)
∼= colimKH

k(Ui,Ui r K) and an isomorphism colimiH
k
c(Ui)

∼= Hkc(M).
The theorem can now be proved by first showing the caseM = R

n, then forM an open subset of Rn

and then ifM is a finite, then countable, then arbitrary union of open subsets, each isomorphic to R
n.

We have Hkc(R
n) = Hk(Dn,∂Dn) = Hk(Sn) and in this case the result is easy to see.

LetM be a closed topological manifold of dimension nwith a fixed orientation class µM ∈ Hn(M;R).

Theorem 7.16. Every closed topological manifold is homotopy equivalent to a finite CW–complex.

Corollary 7.17. The homology H∗(M) of a closed topological manifold M is finitely generated.

Hence, we may define the Betti numbers bi(M) = rkHi(M) and the Euler characteristic χ(M) =
∑

(−1)ibi(M).

Theorem 7.18. If M is a closed manifold of odd dimension n, then χ(M) = 0.
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Proof. First, letM be oriented. By the universal coefficients theorem we have a non–canonical isomor-
phismHk(M;Z) ∼= Hk(M)/Hk(M)tor⊕Hk−1(M)tor and Poincaré duality yieldsHn−k(M) ∼= Hk(M;Z).
Hence, bn−k(M) = bk(M). This implies the claim for orientedM.

IfM is not oriented, we still haveHn−k(M;Z/2) ∼= Hk(M;Z/2) ∼= Hk(M;Z/2) and wemay conclude
as above, if we prove

χ(M) =

n∑

i=0

(−1)i dimZ/2Hi(M;Z/2).

Indeed, universal coefficients implies thatHk(M;Z/2) ∼= Hk(M) ⊗ Z/2⊕Tor1
Z
(Hk−1(M),Z/2) and the

classification of finitely generated abelian groups allows us to conclude.

For closed manifolds M of dimension n with a chosen orientation class µM we may consider the
∪–product pairing

Hk(M;R) ⊗ Hn−k(M;R) R

given by the ϕ ·ψ = (ϕ ∪ψ)(µM).

Theorem 7.19.

(i) If R is a field, then this pairing is non–degenerate.

(ii) If R = Z, then the induced pairing

Hk(M;Z)/Hk(M;Z)tor ⊗ H
n−k(M;Z)/Hn−k(M;Z)tor Z

is non–degenerate.

Lemma 7.20. We have (ϕ ∪ψ)(α) = ψ(α ∩ϕ) ∈ R.

Proof. For ψ ∈ Ck(M;R), ϕ ∈ Cℓ(M;R) and σ : ∆k+ℓ X we have

ψ(σ ∩ϕ) = ψ(ϕ(σ ◦ [e0, . . . , eℓ]) · σ ◦ [eℓ, . . . , ek])

= ϕ(σ ◦ [e0, . . . , eℓ]) ·ψ(σ ◦ [eℓ, . . . , ek]) = (ϕ ∪ψ)(σ).

Proof of theorem 7.19. By the previous lemmawe have (ϕ∪ψ)(µM) = ψ(µM∩ϕ) = ψ(D(ϕ)). Consider
the composition

Hn−k(M;R)
h

HomR(Hn−k(M),R)
D∗

HomR(H
k(M;R),R).

Here, D∗ is an isomorphism by Poincaré duality and if R is a field, then h is an isomorphism. For R = Z

the map h is an isomorphism up to torsion.

As an application of theorem 7.19 we can compute H∗(CPn;Z) ∼= Z[α]/αn+1 with α in degree 2 and
H∗(RPn;Z/2) ∼= Z/2[α]/αn+1 with α in degree 1. For example, assume inductively that αi generates
H2i(CPn−1;Z) for i 6 n − 1. On cohomology, the inclusion CP

n−1
CP

n induces isomorphisms
Hk(CPn−1,Z) ∼= Hk(CPn;Z) for k 6 2n− 2. Now, consider the ∪–product pairing

H2n−2(CPn;Z) ⊗ H2(CPn;Z) Z.

It is non-degenerate by theorem 7.19. Therefore αn−1 ·α = ±1 which implies that the class αn generates
H2n(CPn;Z). The other calculation is similar.
IfM has even dimension 2m, then the ∪–product pairing

q : Hm(M;Z)/Hm(M;Z)tor ⊗ H
m(M;Z)/Hm(M;Z)tor Z

is called the intersection form. Ifm is odd, thenϕ∪ψ = (−1)m
2

ψ∪ϕ = −ψ∪ϕ, i. e. q is skew–symmetric.
If m is even, then q is symmetric. In the latter case, we get another invariant σ(M) = sgn(q)—the
signature ofM.
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