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1 From Classical Mechanics to Symplectic Topology
1.1 Introducing Symplectic Forms
Definition 1.1. A symplectic form is a non–degenerate and closed 2–form on a manifold.
Non–degeneracy means that if ωx(v, w) = 0 for all w ∈ TxM , then v = 0. Closed means
that dω = 0.

Reminder. A differential k–form on a manifold M is a family of skew–symmetric k–
linear maps

(ωx : TxM×k → R)x∈M ,

which depends smoothly on x.

Definition 1.2. We define the standard symplectic form ω0 on R2n as follows: We
identify the tangent space TxR2n with the vector space R2n. Given v, w ∈ TxR2n = R2n,
we denote by v1, v2, v

3, v4, . . . the standard coordinates of v. We define

ω0,x(v, w) = v2i−1w2i − v2iw
2i−1

Remark 1.3. For n = 1 this is the usual area form on R2.

Exercise 1.4. We denote by q1, p1, . . . , q
n, pn : R2n → R the standard coordinate maps.

Then the symplectic form ω0 is given by

ω0 = dqi ∧ dpi

Remark 1.5. On S2n there is no symplectic form if n ≥ 2.

1.2 Hamiltonian mechanics
Consider a non–relativistic particle in Euclidean space R2n. We use the following nota-
tions:

q position of the particle
t time

v := q̇ = dq
dt velocity

a := q̈ = d2q
dt2 = dv

dt acceleration
m mass

p := mv momentum of the particle
F force exerted on the particle

Newton’s second law states that F = ṗ. Consider the conservative case, i.e. there is a
potential for the force; there exists a map U : Rn → R such that F = −∇U . We obtain
the following equations of motion:

q̇ = p

m
(1)

ṗ = −∇U (2)
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These equations can again be rewritten by introducing the Hamiltonian function

H : R2n → R, H(q1, p1, . . . , q
n, pn) = ‖p‖

2

2m + U(q).

The equations (1.1) and (1.2) are equivalent to Hamilton’s equations:

q̇i = ∂H

∂pi

ṗi = −∂H
∂qi

These equations in ture are equivalent to

ω0(ẋ,_) = ( dH)x

for the path x = (q1, p1, . . . , q
n, pn) : R→ R2n.

Remark 1.6. The space Rn of positions is called configuration space and R2n is called
phase space.

Example 1.7 (Stone / rigid body). The state of a rigid body in R3 can be described
by the configuration space R3 × SO(3). Its phase space is the cotangent bundle of the
configuration space.

1.3 Overview over some topics of this course
Let X be a manifold. Then the cotangent bundle T ∗X carries a canonical symplectic
form ωcan.

In a classical mechanical system with symmetries, we can reduce the degrees of freedom,
i.e. the dimension of the configuration space. Consider for example a system of 2 point
particles in Rn. We assume that the two particles interact by a conservative central force
and that they have the same mass m. The potential then is of the form V (‖q1−q2‖). We
can instead view this as a particle with position q1−q2. This reduced system corresponds
to a single point particle in Rn subject to a central force.
More generally, consider k point particles in Rn, subject to conservative central forces

between each two particles. The reduced system corresponds to a system of k − 1
particles. The number of degrees of freedom is reduced from kn to (k−1)n. The motion
of the original system can be described by the motion of the reduced system and the
motion of the center of mass. The phase space of the reduced system is called the
symplectic quotient. In general, this is a symplectic manifold which is constructed from
a so called Hamiltonian action of a Lie group.

Example 1.8 (Lie groups). SO(3), SO(n), O(n), U(n), SU(n), GL(n,R), GL(n,C), ∗,
(Rn,+), S1, (S1)k, . . .

Locally all symplectic manifolds look the same (Darboux’ theorem), in contrast to
Riemannian geometry (this is because dω = 0, i.e. ‘the symplectic curvature vanishes’).
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Important objects in symplectic geometry are (co-)isotropic submanifolds. In classi-
cal mechanics certain energy level sets are coisotropic submanifolds. Extreme cases of
coisotropic submanifolds are Lagrangian submanifolds. These are submanifolds of half
the dimension of a symplectic manifold on which the symplectic form vanishes. (for
example 1–dimensional submanifolds of 2–manifolds). In mechanics configuration space
is a Lagrangian submanifold of phase space.
Weinstein’s theorem says that some neighbourhood of a given Lagrangian submanifold

is symplectomorphic to a neighbourhood of the 0–section of the cotangent bundle of L.

1.4 Overview over some current questions
Nowadays, symplectic geometers mostly look at global properties of symplectic mani-
folds. A natural question is: How many symplectic forms are there on a given manifold
(up to diffeomorphism)?
Moser’s theorem implies that the total area of a given symplectic form on a closed

surface is the only invariant.
One can ask if there is a symplectic form ω on R2n such that for every smooth em-

bedding ϕ : R2n → R2n the pulled back form ϕ∗ω0 is not equal to ω. A more obvious
questions would be: Is there a symplectic form on R2n which is not diffeomorphic (sym-
plectomorphic) to the standard form? Indeed, this is the case. Consider for example
ω := ϕ∗ω0 where ϕ : R2n → R2n is some embedding with image B2n

1 . A form as in the
first question is called exotic. Michael Gromov proved in 1985 that for n ≥ 2 there is an
exotic form on R2n. The proof involves a certain property of Lagrangian submanifolds
of R2n equipped with ω0, which is established using pseudoholomorphic curves.

Let (M,ω) be a symplectic manifold. A Hamiltonian diffeomorphism is a map ϕ : M →
M for which there is a smooth function [0, 1]×M → R whose Hamiltonian time–1–flow
equals ϕ.
More precisely, let H : M → R be a smooth function. The Hamiltonian vector field

H is defined to be the unique vector field XH on M such that ω(XH ,_) = dH. Let us
consider a smooth function H : [0, 1]×M → R. We define the Hamiltonian flow of H to
be the flow ϕH of the family of vector fields (XH(t,_))t∈[0,1].

Reminder. This flow is the unique smooth map

ϕH : [0, 1]×M →M

that solves the equations

ϕH(0,_) = id d
dtϕH(t, x0) = XH(t,_)(ϕH(t, x0)).

The map ϕH(1,_) is called the time–1–flow of H.

Hamiltonian diffeomorphisms describe the time–1–evolution of a mechanical system if
M = T ∗N .
In the 1960s V.Arnold formulated the folliwing conjecture:
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Conjecture. Every Hamiltonian diffeomorphism ϕ on a closed symplectic manifold has
at least as many fixed points as a smooth function on M has at least critical points, i.e.

|Fix(ϕ)| ≥ Crit(M) := min{|Crit(f)| : f ∈ C∞(M)}

Do we really need M to be closed? Yes, look at the cylinder R/Z×R with H(q, p) =
p/2.

Exercise 1.9. Crit(M) ≥ 2 if M is closed and dimM > 0.

Exercise 1.10. Crit(Sn) = 2.

For (S2, ωst) the conjecture was proven in 1974. The conjecture led Andreas Floer to
the definition of a homology whose generators are the fixed points of the Hamiltonian
diffeomorphism.

Exercise 1.11. Let (M,ω) be a symplectic manifold and H : R ×M → R a smooth
1–periodic function. Then the fixed points of the time–1–flow of H correspond to the
periodic orbits x : R → M which satisfy Hamilton’s equation ω(ẋ,_) = dH. Periodic
orbits are important in celestial mechanics.

Why did Arnold choose the lower bound Crit(M)? If x0 ∈ M is a critical point of a
function F : M → R, then ϕF (t, x0) = x0, so XF (x0) = 0.
Liouville’s Theorem says that every symplectic embedding of an open subset of R2n

into Rn is volume preserving. Hence we are led to the following question: How much do
symplectic embeddings and volume–preserving embeddings differ?
A famous result by Gromov shows that they differ a lot. It says that it is impossible to

embed the open ball of radius r > 1 into the standard symplectic cylinder symplectically,
although this is possible in a volume–preserving way.

Theorem 1.12 (Gromov). If r > 1 then there does not exist a symplectic embedding of
B2n
r into the standard symplectic cylinder Z2n = B2

1 × R2n−2.

Remark 1.13. There is an analogy to quantum mechancis: The statement of Gromov’s
theorem carries the spirit of Heisenberg’s uncertainty principle: One cannot simultane-
ously measure both position and momentum of a particle. More precisely, the product of
the standard deviations of position and momentum is bounded below by ~/2. Similarily,
Gromov’s non–squeezing theorem implies that we may not ‘determine both qi and pi in
a sharper way by changing coordinates in a canonical way.’
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2 Linear (pre-)symplectic geometry
In this chapter we will investigate symplectic vector spaces and associated notions such
as linear (pre-)symplectic maps and (co-)isotropic and Lagrangian subspaces.

These notions are linear analogues of notions associated with symplectic manifolds.
We will encounter linear versions of some important results and constructions involving
symplectic manifolds, e.g. Liouville’s, Darboux’ and Weinstein’s theorems, the contan-
gent bundle and symplectic reduction. The linear version of Liouville’s theorem states
that every linear symplectic map has determinant 1. The linear version of Darboux’
theorem says that two symplectic vector spaces are isomorphic if and only if their di-
mensions are the same. The linear version of Weinstein’s theorem says that, given two
Lagrangian subsapces of a given symplectic vector space, there exists an automorphism
of the symplectic vectorspace that carries one subspace to the other.
We will also see linear complex structures. Nonlinear versions of these structures play

an important role in modern symplectic geometry, wher they are used to define pseu-
doholomorphic curves. Such ‘curves’ are used in the proof of Gromov’s non–squeezing
theorem. They build a bridge between symplectic and Riemannian geometry. In this
chapter vector spaces will always be finite dimensional over R.

2.1 (Pre-)symplectic vector spaces and linear (pre-)symplectic maps
Definition 2.1. We call a bilinear form ω : V × V → R on a finite dimensional vector
space V

• skew–symmetric if ω(v, w) = −ω(w, v).

• non–degenerate if ω(v, w) = 0 for all w ∈ V implies v = 0.

• symplectic if it is skew–symmetric and non–degenerate.

If ω is skew–symmetric then (V, ω) is called a presymplectic vector space. If it is sym-
plectic, (V, ω) is called a symplectic vector space. We define the map

_[ω : V → V ∗ v 7→ v[ω := ω(v,_)

The rank and corank of ω are

rk(ω) = dim im [ω co rk(ω) = dim ker [ω.

Example 2.2. The zero form ω = 0 is skew–symmetric and rk(ω) = 0 and co rk(ω) =
dimV .

Definition 2.3. The standard linear symplectic form ω0 on R2n is given by

ω0(v, w) =
n∑
i=1

(v2i−1w2i − v2iw2i−1).
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Remark 2.4. The form ω0 agrees with the form
∑n
i=1Q

i∧Pi where Q1, P1, . . . , Q
n, Pn are

the canonical coordiante functions. The form ω0 is non–degenerate, hence rk(ω0) = 2n
and co rk(ω0) = 0.

Definition 2.5. Let W be a vector space. The canonical linear symplectic form on
W ⊕W ∗ is defined by

ωW

((
w
ϕ

)
,

(
w′

ϕ′

))
= ϕ′(w)− ϕ(w′).

Let V and V ′ be vector spaces, k ≥ 0 and ϕ : V k → R and ϕ′ : (V ′)k → R multilinear
maps. Define the direct sum of ϕ and ϕ′ to be the multilinear map

ϕ⊕ ϕ′ : (V × V ′)k → R, (v1, v
′
1, . . . , vk, v

′
k) 7→ ϕ(v1, . . . , vk) + ϕ′(v′1, . . . , v′k).

Remark 2.6. For every pair k, l ≥ 0 there exists a presymplectic vector space of rank 2k
and corank l. An example is (U × U∗ ×W,ωU ⊕ 0).

Definition 2.7. Let (V, ω) and (V ′, ω′) be presymplectic vector spaces. A linear map
Φ: V → V ′ is called linear presymplectic if it pulls back ω′ to ω, i.e.

Φ∗ω′ = ω′(Φ(_),Φ(_)) = ω.

Definition 2.8. If (V, ω) is presymplectic vector space then we call a linear presym-
plectic isomorphism V → V an automorphism of the presymplectic vector space (V, ω).
The set of all automorphisms of (V, ω) is called Aut(V, ω). We also write Sp(2n) :=
Aut(R2n, ω0). If (V, ω) and (V ′, ω′) are symplectic, we call a linear presymplectic map
V → V ′ simply symplectic map.

Exercise 2.9. If f : (V, ω) → (V ′, ω′) is a linear symplectic map between symplectic
vector spaces of the same dimension, then f is an isomorphism.

Exercise 2.10. A linear map Φ: R2 → R2 is symplectic if and only if det Φ = 1.

Exercise 2.11. Define

J0 =


0 −1
1 0

. . .
0 −1
1 0

 .

Then Φ: R2n → R2n is symplectic if and only if ΦTJ0Φ = J0.

Proposition 2.12. Aut(V, ω) is a group.

Symplectic vector spaces are classified by their dimension. Presymplectic vector spaces
(V, ω) are classified by dimV and rkω.

Theorem 2.13.

1. Every symplectic vector space has even dimension.

2. Two symplectic vector spaces of the same dimension are isomorphic.
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Corollary 2.14.

1. the rank of every presymplectic vector space is even.

2. Two presymplectic vector spaces of the same dimension and rank are isomorphic.

Remark 2.15. In contrast to Corollary 2.14, a symmetric bilinear form can have any
rank. Furthermore, if B and B′ are symmetric bilinear forms of different signature on a
vector sapce V , then (V,B) and (V,B′) are not isomorphic.

Corollary 2.16. For every n–dimensional presymplectic vector space (V, ω) there exists
an integer 0 ≤ k ≤ n/2 and a basis

u1, . . . , uk, v
1, . . . , vk, w1, . . . , wn−2k

such that ω(ui, vj) = δji and ω(a, b) = 0 for every other (unordered) pair of basis vectors
a, b.

Proof. Exercise 2 in Assignment 3.

For the proof of Theorem 2.13 we need the following:
Let (V, ω) be a presymplectic vector space with a subspace W ⊂ V .

Definition 2.17. We define the ω–complement Wω of W as the linear subspace

Wω = {v ∈ V : ∀w ∈W : ω(v, w) = 0}.

If ω is non–degenerate then Wω is called the symplectic complement of W .

Definition 2.18. The subspace W is called symplectic if the restriction of ω to W is
non–degenerate.

Remark 2.19. The subspace W is symplectic if and only if W ∩Wω = 0.

Example 2.20. If ω = 0 then Wω = V and (R× 0)ω0 = R× 0 ⊂ R2.

Remark 2.21. The orthogonal complement W⊥ of a linear subspace W of an inner
product space is always transverse to W , i.e. W ∩W⊥ = 0.

Lemma 2.22. For every symplectic vector space (V, ω) and every subspace W ⊂ V we
have

dimW + dimWω = dimV.

Furthermore, if W is symplectic then the same holds for its symplectic complement.

Proof of Theorem 2.13.

• Let (V, ω) be a symplectic vector space other than (0, 0). Then there exists a
pair of vectors u, v ∈ V such that ω(u, v) 6= 0. The set W = Ru + Rv is a 2–
dimensional symplectic subspace of V . Hence, Lemma 2.22 implies that Wω is a
symplectic subspace of dimensin dimV −2. By induction, dimWω is even, whence
dimV ∈ 2Z.
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• We call a basis u1, v
1, . . . , un, v

n of a symplectic vector space (V, ω) canonical or
symplectic basis if

ω(ui, vj) = δji ω(ui, uj) = ω(vi, vj) = 0.

It is enough to show that every symplectic vector space (V, ω) has a canonical
basis. This is trivial for dimV = 0 and easy for dimV = 2. So assume dimV ≥
4. Because ω is non–degenerate there are u, v such that ω(u, v) 6= 0. Define
u1 := ω(u, v)−1u and v1 := v. the subspace W = (u1, v

1) of V is symplectic and
of dimension dimW = 2. Lemma 2.22 implies that Wω is a linear symplectic
subspace with dimWω < dimV . By induction W and Wω have canonical bases
which together yield a canonical basis for V = W ⊕Wω.

Lemma 2.22 is a consequence of the following:

Proposition 2.23. Let (V, ω) be a presymplectic vector space and W ⊂ V a lienar
subspace. The following equality holds:

dimW + dimWω = dimV + dim(W ∩ V ω)

Furthermore, if ω is non–degenerate and W is symplectic, Wω is symplectic.

The proof of Proposition 2.23 uses the following:
Let V be a vector space and W ⊂ V a subspace. We denote by

W 0 := {ϕ ∈ V ∗ : ϕ(w) = 0∀w ∈W}

the annihilator of W (in V ∗).

Lemma 2.24. We have dimW + dimW 0 = dimV .

Proof. Assignment 3, Exercise 1.

Remark 2.25. Let V and W be vector spaces and T : V → W a linear map. Then we
have kerT ∗ = (imT )0 ⊂W ∗. This follows immediately from the definitions.

Proof of Proposition 2.23. We prove the first assertion. By Lemma 2.24 we have the
formula dimWω + dim(Wω)0 = dimV . Recall [ω : V → V ∗, [ω(v) = ω(v,_). We
denote by ιW : W → V the inclusion map, T := [ωιW : W → V ∗, and by ι : V → V ∗∗,
ι(v)(ϕ) = ϕ(v) the canonical map.

We first claim that [ω = −[∗ωι. To prove this, let v, v′ ∈ V . Since ω is skew–symmetric,
we have

([∗ωι)(v)(v′) = [∗ω(ι(v))(v′) = ι(v)([ωv′) = ([ωv′)(v) = ω(v′, v) = −ω(v, v′) = −([ωv)(v′).

It follows from the claim that ι∗W [ω = −ι∗W [∗ωι = −T ∗ι and therefore Wω = ker(ι∗W [ω) =
ker(T ∗ι). Since dimV < ∞, the map ι is an isomorphism of vector spaces. Hence
Wω = ker(T ∗ι) and the equality kerT ∗ = (imT )0 imply that dimWω = dim kerT ∗ =
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dim(imT )0. The rank–nullity theorem for the map T states that dimW = dim imT +
dim kerT . Combining this and using Lemma 2.24 we obtain

dimW + dimWω = dim imT + dim(imT )0 + dim kerT
= dimV ∗ + dim kerT
= dimV + dim(W ∩ V ω).

This proves the first statement. To prove the second statement let W be a symplectic
subspace of a symplectic vector space V . Then we have V ω = 0 andW ∩Wω = 0. Using
the formula from the first statement it follows that W + Wω = V (∗). Let u ∈ Wω

be such that ω(u, u′) = 0 for all u′ ∈ Wω. We show that u = 0. Let v′ ∈ V . By
(∗) there exist vectors w′ ∈ W and u′ ∈ Wω such that v′ = w′ + u′. It follows that
ω(u, v′) = ω(u,w′) + ω(u, u′) = 0 + 0 = 0. Since ω is non–degenerate it follows that
u = 0. Hence ω|Wω is non–degenerate and therefore Wω is a symplectic subspace of
V .

For the proof of Corollary 2.14 (the classification of presymplectic vector spaces) the
key ingredient is:

Lemma 2.26 (Splitting Lemma). Let (V, ω) be a presymplectic vector space and W ⊂ V
a symplectic subspace. Then the map

W ×Wω → V, (w,w′) 7→ w + w′

is an isomorphism with respect to (ω|W )⊕ (ω|Wω) and ω.

Proof. The map W ×Wω → V is linear and by the definition of the (pre-)symplectic
forms ω|W and ω|Wω and of Wω, it pulls ω back to ω|W ⊕ω|Wω . Since W is symplectic,
we have W ∩Wω = 0. It follows that the map is injective. To see that it is surjective,
note that by Proposition 2.23 we have

dimW + dimWω = dimV + dim(W ∩ V ω).

Furthermore, we have V ω ⊂Wω and thus W ∩ V ω ⊂W ∩Wω = 0. so dim(W +Wω) =
dimV and the map W ×Wω → V is surjective by the rank–nullity theorem.

Remark 2.27. This lemma says that we may split off a symplectic subspace from a
presymplectic vector space. The statement is wrong if W is not sympletic. As an
example consider W = R×0 ⊂ R2 = V equipped with the standard symplectic form ω0.

Lemma 2.28. The ranks of two isomorphic presymplectic vector spaces are the same.

Proof. Assignment 3, Exercise 3.

Lemma 2.29. The rank of the direct sum of two presymplectic vector spaces equals the
sum of the ranks of the spaces.

Proof. Assignment 3, Exercise 3.
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Remark 2.30. the direct sum construction for multilinear forms is ‘associative’ in the
following sense: If ω, ω′, ω′′ are k–linear forms on vector space V, V ′, V ′′, then the forms
(ω⊕ω′)⊕ω′′ and ω⊕ (ω′⊕ω′′) agree under the canonical identification (V ×V ′)×V ′′ ∼=
V × (V ′ × V ′′). We write V × V ′ × V ′′ for either of these spaces and ω⊕ ω′ ⊕ ω′′ for the
corresponding iterated direct sum.

Exercise 2.31. Prove that all two–dimensional symplectic vector spaces are isomorphic
without using Theorem 2.13. (Assignment 3, Exercise 9)

Remark 2.32. Let (V, ω) be an n–dimensional presymplectic vector space and k ∈
{0, . . . , bn2 c} such that (V, ω) is isomorphic to (R2k × Rn−2k, ω0 ⊕ 0). Then rkω = 2k.
This is by Lemma 2.28 and Lemma 2.29 and the fact that

rk(R2k, ω0) = dim im [ω0 = dimR2k − dim ker [ω0 = 2k.

Proof of Corollary 2.14. Let (V, ω) be a presymplectic vector space of dimension n. We
claim that then there exists an integer k ∈ {0, . . . , bn/2c} such that (V, ω) is isomor-
phic to (R2k × Rn−2k, ω0 ⊕ 0). The above remark then proves the first statement of
Corollary 2.14. We postpone the proof of the claim.
To prove the ‘only if’ part of the second statement, let (V, ω) and (V ′, ω′) be isomorphic

presymplectic vector spaces. It follows from the definition of an isomorphism that the
dimensions of V and V ′ agree. Furthermore, by Lemma 2.28 the ranks of the spaces
agree. To prove the ‘if’ part let (V, ω) be a presymplectic vector space. By the above
claim and remark (V, ω) is isomorphic to (R2k × Rn−2k, ω0 ⊕ 0), where 2k := rkω.
The ‘if’ part is a consequence of this and the part that the inverse of an isomorphism
of presymplectic vector spaces is again an isomorphism and the same holds for the
composition of two isomorphisms.
Now we prove the above claim. If ω = 0 then the statement is true, hence assume

ω 6= 0. We choose vectors u, v ∈ V such that ω(u, v) 6= 0. Consider the subspaces
W1 = Ru + Rv and V1 = Wω

1 of V , which are equipped with the forms σ1 = ω|W1

and ω1 = ω|V1 . The subspace W1 is symplectic. Therefore by the Splitting Lemma
(Lemma 2.26), the pair (V, ω) is isomorphic to (W1 × V1, σ1 ⊕ ω1). Repeating this
we obtain presymplectic vector spaces (V0, ω0) = (V, ω), (W1, σ1), (V1, ω1), (W2, σ2),
(V2, ω2), . . . such that (Vi, ωi) ∼= (Wi+1×Vi+1, σi+1⊕ωi+1). Hence V0 ∼= W1×W2× · · · .
Since by hypothesis dimV <∞ the recursive construction has to stop, i.e. there exists
k ≥ 1 such that ωk = ωk−1|Vk = 0. It follows that

(V, ω) ∼= (W1 × · · · ×Wk × Vk, σ1 ⊕ · · · ⊕ σk ⊕ 0).

By the above exercise the (Wi, σi) are isomorphic to (R2, ω0).

Remark 2.33. There is a variant of the above proof which does not use Proposition 2.23
(the formula dimW + dimWω = dimV + dim(W ∩ V ω)). This result was used in
the proof of the Splitting Lemma (Lemma 2.26) which is a key ingredient of the poof
of Corollary 2.14. More precisely, it was used to show that W + Wω = V for every
symplectic subspace W ⊂ V . If W is 2–dimensional, then we may show the formula by
an easier argument, similar to Gram–Schmidt orthogonalisation.
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Every symplectic vector space carries a natural linear volume form. This form is
preserved unter linear symplectic maps. In the case of R2n equipped with the standard
symplectic form ω0, this is the content of a linear version of Liouville’s theorem.

Definition 2.34. Let (V, ω) be a presymplectic vector space of even dimension 2n. We
define the canonical 2n–linear form to be

Ω = 1
k!ω

∧k

Theorem 2.35. This form Ω does not vanish if and only if ω is non–degenerate.

Remark 2.36. A nonvanishing top–degree form on a vector space is called a linear volume
form.
Remark 2.37. Every volume form Ω on a vector space V induces a orientation O on V
by the formula O = [v1, . . . , vn] where v1, . . . , vn is a basis of V for which Ω(v1, . . . , vn) is
positive. We will call two ordered bases B and B′ equivalent if the linear transformation
V → V which carries B to B′ has positive determinant.

Theorem 2.35 has the following immediate consequence:

Corollary 2.38. Let (M,ω) be a 2n–dimensional symplectic manifold. Then the differ-
ential form 1

n! ω
∧n does not vanish anywhere.

Remark 2.39. This means that Ω is a volume form onM . Such a volume form determines
an orientation on M .
Theorem 2.35 implies the following linear version of Liouville’s theorem.

Corollary 2.40. Every automorphism of a symplectic vector space has determinant 1.

Proof. Let Φ: (V, ω)→ (V, ω) be an automorphism. Define Ω = 1
n!ω
∧n. We have

Φ∗Ω = 1
n! (Φ

∗ω)∧n = 1
n!ω

∧n = Ω

Since Ω 6= 0 it follows that det Φ = 1.

For the proof of Theorem 2.35 we need

Lemma 2.41. We have 1
n!ω
∧n
0 = Ω0.

Proof of Theorem 2.35. Theorem 2.13 implies that there is an isomorphism Φ: V → R2n

such that Φ∗ω0 = ω. It follows that Ω = 1
n!(Φ

∗ω0)∧n = Φ∗Ω0. Since Ω0 6= 0 and Φ is
an isomorphism, it follows that Ω 6= 0. Assume on the other hand that ω is degenerate.
Choose 0 6= v ∈ V ω and vectors v2, . . . , vn such that v, v2, . . . , v2n is a basis of V . It
follows that Ω(v, v2, . . . , v2n) = 0.
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Remark 2.42. By Assignment 2, Exercise 10, every Φ ∈ Sp(2n) satisfies J0 = ΦTJ0Φ
where

J0 =


0 −1
1 0

. . .
0 −1
1 0

 .

It follows that 1 = det J0 = det(ΦTJ0Φ) = det(Φ) det(J0) det(Φ), so det(Φ) ∈ Z×. To
exclude −1 requires much more work.

2.2 (Co-)isotropic and Lagrangian subspaces and the linear Weinstein
Theorem

There is an important class of submanifolds of symplectic manifolds, namely the class
of Lagrangia submanifolds. Such a submanifold is half–dimensional and the symplectic
form vanishes on it. As an example the configuration space of a mechanical system
naturally sits inside phase space as a Lagrangian submanifold. A more general class of
submanifolds consists of the coisotropic submanifolds. Examples are (real) hypersur-
faces. These occur in mechanics as level sets of Hamiltonian functions.

Let (V, ω) be a presymplectic vector space.

Definition 2.43. A subspace W ⊂ V is called

• isotropic if W ⊂Wω,

• coisotropic if Wω ⊂W ,

• Lagrangian if W = Wω.

Remark 2.44. W is isotropic if and only if ω|W = 0.

Example 2.45. Let U be a vector space. We denote by ω = ωU the canonical linear
symplectic form on U ×U∗ = V . Recall ωU ((u, ϕ), (u′, ϕ′)) = ϕ′(u)−ϕ(u′). Let U ′ ⊂ U
be a linear subspace. DefineW = U ′×0 ⊂ V . ThenW is an isotropic subspace: We have
Wω = U ×U ′0 (where U ′0 = {ϕ ∈ U∗ : ∀u ∈ U : ϕ(u) = 0}). Let now W = U ′×U∗ ⊂ V .
This is coisotropic: Wω = 0× U ′0. Lagrangian subspaces are U × 0 and 0× U∗.

Exercise 2.46. Let (V, ω) be a symplectic vector space with a hyperplane W ⊂ V .
Then W is coisotropic.

Examples of Lagrangian subspaces can be produced using the following exercise:

Exercise 2.47. Let (V, ω) be a symplectic vector space and Φ: V → V a linear map.
Show that Φ is symplectic if and only if its graph is a Lagrangian subspace of V × V
equipped with the symplectic form (−ω)⊕ ω.

Let (V, ω) be a presymplectic vector space with a linear subspace W ⊂ V .

13



Proposition 2.48.

• If W is isotropic then dimW ≤ 1
2(dimV + dimV ω).

• If W is coisotropic then dimW ≥ 1
2(dimV + dimV ω).

• If W is Lagrangian then dimW = 1
2(dimV + dimV ω).

Proof. By Proposition 2.23 we have dimW + dimWω = dimV + dim(W ∩ V ω). If
W ⊂ Wω then 2 dimW ≤ dimW + dimWω. If on the other hand Wω ⊂ W then
2 dimW ≥ dimW + dimWω and V ω ⊂Wω ⊂W , so W ∩ V ω = V ω.

Lagrangian subspaces are extreme examples of (co-)isotropic subspaces.

Proposition 2.49. The following statements are equivalent:

1. W ⊂ V is Lagrangian.

2. W is a maximal isotropic subspace.

3. W is a minimal coisotropic subspace.

Exercise 2.50. Prove 1⇔ 3.

Lemma 2.51. Let W ⊂ V be an isotropic subspace. Then W is contained in a La-
grangian subspace.

Proof. If W = Wω, there is nothing to prove. Hence assume that v ∈ Wω rW . Then
W1 = W + Rv ⊂ V has dimension dimW + 1 and is isotropic since W ⊂ Wω and
v ∈Wω. Induction over codimension yields an index k for which Wk = Wω

k .

Proof of Proposition 2.49. Let W be a Lagrangian and U ⊃ W an isotropic subspace.
Then

Uω ⊂Wω = W ⊂ U ⊂ Uω.

Hence W = U . If on the other hand W is maximal isotropic, W is Lagrangian by
Lemma 2.51.

Remark 2.52. Lemma 2.51 implies that Lagrangian subspaces always exist. In fact there
exist isotropic subspaces of dimensions 0, 1, . . . , 1

2(dimV + dimV ω).
The main result of this section is the following linear version of Weinstein’s theorem

It classifies Lagrangian subspaces of symplectic vector spaces.

Theorem 2.53 (Linear Weinstein). Let (V, ω) be a symplectic vector space with a La-
grangian subspace. Then there exists an isomorphism (W × W ∗, ωW ) → (V, ω) that
carries W × 0 to W .

Remark 2.54. (W ×W ∗, ωW ) is a linear version of the cotangent bundle. The subspace
W × 0 is a linear version of configuration space.
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Remark 2.55. Let W and W ′ be vector spaces with an isomorphism T : W →W ′. Then
the map

W ×W ∗ →W ′ ×W ′∗, (w,ϕ) 7→ (Tw,ϕ ◦ T−1)

is an isomorphism with respect to the canonical symplectic structures. In physical terms
a linear coordinate change in configuration space induces a canonical linear transforma-
tion on phase space.
Combining this remark with Theorem 2.53 and using the canonical isomorphism

(R2n, ω0)→ (Rn × (Rn)∗, ωRn) we obtain:

Corollary 2.56. Let (V, ω) be a 2n–dimensional symplectic vector space with a La-
grangian subspace W ⊂ V . The there exists an isomorphism

Φ: (R2n, ω0)→ (V, ω)

satisfying Φ(Rn × 0) = W .

As an application of Theorem 2.53 we may also classify general coisotropic subspaces
of symplectic vector spaces.

Corollary 2.57. Let (V, ω) be a symplectic vector space and W ⊂ V and W ′ ⊂ V be
coisotropic subspaces. Then there exists an automorphism Φ: (V, ω)→ (V, ω) satisfying
Φ(W ) = W ′ if and only if dimW = dimW ′.

Proof. The ‘only if’ part is clear. Let W ⊂ V be a coisotropic subspace. Choose a
linear complement U ⊂ W of Wω: U ⊕Wω = W . Then U is symplectic. Therefore,
by the Splitting Lemma, we have (V, ω) ∼= (U ⊕ Uω, ω|U ⊕ ω|Uω). Define k := dimWω

and 2m := dimU . Then dimW = 2m + k and using Lemma 2.22 we have dimUω =
dimV − 2m = dimV − dimW + k = 2k. It follows that Wω is Lagrangian in Uω, since

Wω = Wω ∩ Uω ⊂W ∩ Uω ⊂ (Wω)ω ∩ Uω = (Wω)ω|Uω ,

soWω is maximal isotropic in Uω (Lagrangian subspaces of symplectic vector spaces have
half dimension). Hence by Corollary 2.56, there exists an isomorphism ψ : (R2k, ω0) →
(Uω, ω|Uω) satisfying ψ(Rk×0) = Wω. On the other hand, by Theorem 2.13 there exists
an isomorphism

(R2m, ω0)→ (U, ω|U).

The cartesian product of this map and ψ is an isomorphism

Φ: (R2m+2k, ω0 ⊕ ω0)→ (U × Uω, ω|U ⊕ ω|Uω) ∼= (V, ω)

satisfying Φ(R2m+k × 0) = W . The statement follows.

Lemma 2.58 (Lagrangian complement). Let (V, ω) be a symplectic vector space and
W ⊂ V a Lagrangian subspace. Then there exists a Lagrangian subspace W ′ ⊂ V that
is complementary to W , i.e. that satisfies V = W ⊕W ′.
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Exercise 2.59 (Assignment 4, Exercise 5). Let (V, ω) be a symplectic vector space,
W ⊂ V a Lagrangian subspace and U ⊂ V a subspace that is complementary to W , i.e.
satisfies V = W ⊕ U . Then the map

W → U∗, w 7→ ω(w,_)|U

is an isomorphism of vector spaces.

The idea of the proof of Lemma 2.58 is to choose any complement U ⊂ V of W and
then correct it so that it becomes Lagrangian.

Proof of Lemma 2.58. We choose a subspace U ⊂ V complementary to W . By the
above exercise the map T : W → U∗, Tw := ω(w,_)|U is an isomorphism. We also
define T ′ : U → U∗, T ′u := −1

2ω(u,_)|U . The subspace W ′ := {u+T−1T ′u | u ∈ U} has
dimension equal to dimW ′ = dimU = dimV − dimW = 1

2 dimV .
We now prove that W ′ is isotropic. For every pair of vectors u, u′ ∈ U , we have

ω(u+ T−1T ′u, u′ + T−1T ′u′) = ω(u, u′) + ω(u, T−1T ′u′) + ω(T−1T ′u, u′) + 0
= ω(u, u′)− (T ′u′)(u) + (T ′u)(u′)

= ω(u, u′)− 1
2ω(u, u′)− 1

2ω(u, u′) = 0,

so W ′ is isotropic and thus Lagrangian. Since U intersects W trivially, the same holds
for W ′, so W ′ has the required properties.

Remark 2.60. Alternatively, this lemma may be proven by using a linear complex struc-
ture J compatible with ω and setting W ′ = JW .

Proof of Theorem 2.53. We choose a Lagrangian subspace W ′ ⊂ W as in Lemma 2.58.
We have dimV = dimW + dimW ′. We define the map

Φ: V →W ×W ∗, v 7→ (w,ω(_, w′)|W ),

where (w,w′) is the unique pair satisfying v = w + w′. Since V = W ⊕W ′, this map
is well–defined. It is linear and satisfies Φ∗ωW = ω. It is injective, since W ∩W ′ = 0.
Since dimV = dim(W ×W ∗), the map is also surjective. Hence it is an isomorphism
of symlectic vector spaces. Furthermore, we have Φ(W ) = W × 0. This proves the
theorem.

2.3 Linear symplectic reduction
Symplectci reduction corresponds to the reduction of degrees of freedom in classical
mechanics. The symplectic quotient is the quotient of a certain coisotropic submanifold
of a given symplectic manifold (corresponding to phase space) by the action of a Lie
group.

A submanifold N of a symplectic manifold (M,ω) is called coisotropic if its tangent
space at x is a coisotropic subspace of the tangent space to M and x, for every point
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x ∈ N . The above group action corresponds to the symmetries of the mechanical system
and the symplectic quotient corresponds to the reduced phase space.

In this section we consider a linear version of this quotient: The quotient of a given
coisotropic subspace of a symplectic vector space by its symplectic complement. More
generally, let (V, ω) be a presymplectic vector space. We denote the quotient space

V := Vω := V/V ω

We define
ω := ωV : V × V → R, ω(v + V ω, w + V ω) := ω(v, w).

Exercise 2.61 (Assignment 4). Prove that this map is well–defined, i.e. the right hand
side does not depend on the choice of representatives v and w. Also show that it is a
linear symplectic form.

Definition 2.62. The pair (V , ω) is called the (linear) symplectic quotient of (V, ω).

Remark 2.63. This construction justifies the terminology ‘presymplectic vector space’
since it shows how to get a symplectic vector space out of such a space.

Example 2.64. Let (V, ω) be a symplectic vector space and V ′ a vector space. What
is the symplectic quotient of (V × V ′, ω ⊕ 0)? It is (V, ω).

Exercise 2.65. Find an isomorphism between (V, ω) and (V × V ′, ω ⊕ 0).

Remark 2.66. Let (V, ω) be a presymplectic vector space and W ⊂ V a linear subspace.
The restriction of ω to W is again a presymplectic vector space. Hence the symplectic
quotient of (W,ω|W ) is well–defined. It is given by (W/(W ∩Wω), ω|W ), since Wω|W =
W ∩Wω. Assume that ω is in fact coisotropic. Then Wω|W = Wω. Hence in this case
the quotient above equals (W/Wω, ω|W ). Its dimension equals

dimW − dimWω = 2 dimW − dimV = dimV − codimW.

Example 2.67. The symplectic quotient of a hyperplane W in (V, ω) has dimension
dimV − 2.

2.4 Linear complex structures and the symplectic linear group
Let V be a (finite dimensional real) vector space.

Definition 2.68. A (linear) complex structure on V is an endomorphism of V , i.e. a
linear map J : V → V such that J2 = − idV .

Remark 2.69. If J is a complex structure on V , then V is a complex vector space via
the scalar product

C× V → V, (a+ ib, v) 7→ (a+ ib)v := av + bJv.

Hence the real dimension of V is twice the complex dimension of V . This is an even
integer.
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Complex structures are classified as follows:

Proposition 2.70 (Classification of linear complex structures). Let V be a vector space.
Then for any pair of complex structures J and J ′ on V there exists an automorphism Φ
of V satisfying J ′ = Φ−1JΦ.

Proof. We define complex scalar multiplications

m : C× V → V, m(a+ ib, v) := a+ bJv

m′ : C× V → V, m′(a+ ib, v) := a+ bJ ′v

Denoting by · : R× V → V the real scalar product of V . We have

2 dimC(V,+,m) = dimR(V,+, ·) = 2 dimC(V,+,m′).

Therefore, there exists an isomorphism of complex vector spaces

Φ: (V,+,m)→ (V,+,m′)

It satisfies ΦJv = Φm(i, v) = m′(i,Φv) = J ′Φv for all v ∈ V . This implies J ′ =
Φ−1JΦ.

In the following definition ω denotes a linear symplectic form, J a linear complex
structure and g an inner product. (By definition, g is positive definite).

Definition 2.71.

1. We call the pair (ω, J) compatible if the bilinear form ω(_, J_) is an inner product.

2. We call the pair (J, g) compatible if the bilinear form −g(_, J_) is symplectic.

3. We call the pair (g, ω) compatible if −[−1
ω [g : V → V is a complex structure.

4. We call the triple (ω, J, g) compatible if g = ω(_, J_).

Remark 2.72. A short form fo the above definition is the following: Consider a pair
consisting of two objcts of the following types:

{symplectic form, complex structure, inner product}

such that the two objects have different type. Such a pair is called compatible if and
only if the third object defined by the condition g = ω(_, J_) is an object of the third
type.

Example 2.73. The standard triple on V = R2n is given by (ω0, J0, g0) where g0 denotes
the standard inner product on R2n. This is a compatible triple.

Exercise 2.74. Let V be a real vector space, ω a symplectic form on V and J a complex
structure on V . The following are equivalent:

1. The bilinear form gJ := ω(_, J_) on V is symmetric.
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2. The form ω is invariant under J , i.e. J∗ω = ω.

3. The form gJ is invariant under J , i.e. J∗gJ = gJ .

It follows that the pair (ω, J) is compatible if and only if ω is invariant under J and
the inequality ω(v, Jv) > 0 holds for every v 6= 0.

Exercise 2.75. Compatible complex structures exist on every symplectic vector space.

Theorem 2.76. Let V be a vector space and (ω, J, g) and (ω′, J ′, g′) compatible triples
on V . Then there exists an automorphism Φ: V → V which intertwines the two triples,
i.e. it satisfies Φ∗ω′ = ω, Φ∗J ′ = J and Φ∗g′ = g.

The proof of this result is based on the following:

Lemma 2.77. Let V be a vector space, and ω and J symplectic and complex structures
on V . Then (ω, J) is compatible if and only if the map

h : V × V → C, (v, w) 7→ ω(v, Jw) + iω(v, w)

is a Hermitian inner product on V with respect to complex scalar multiplication

C× V → V, (a+ ib, v) 7→ (a+ bJ)v.

Proof. Let (ω, J, g) be a compatible triple on V . We denote by m the complex scalar
multiplication as above ad define h as above. We denote by 2n the real dimension of
V . By Lemma 2.77, h is a Hermitian inner product on V . Hence by Gram–Schmidt
orthonormalisation there exists a basis v1, . . . , vn of V that is unitary with respect to h.
Define

Φ: R2n → V, (q1, p1, . . . , q
n, pn) 7→

n∑
j=1

(qjvj + pjJvj).

The identities h(vj , vk) = δjk and h(vj , Jvk) = ih(vj , vk) imply that Φ∗ω = ω0 and
Φ∗J = J0. Hence the claim follows.

Compatible complex structures help understand the group of automorphisms of a
symplectic vector space.

Definition 2.78. Let V be a vector space and (ω, J, g) a compatible triple on V . We de-
note by Aut(V,A1, . . . , Ak) = Aut(A1, . . . , Ak) teh set of all vector space automorphisms
preserving A1, . . . , Ak. In particular

• The linear symplectic automorphisms Aut(ω) = Sp(V, ω)

• The general linear group Aut(J) = GLC(V ) of the complex space V .

• The orthogonal group Aut(g) = O(V, g) of (V, g).

• The unitary group Aut(ω, J, g) of (V, ω, J, g).
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Proposition 2.79 (Trefoil decomposition). Let V be a vector space and (ω, J, g) a
compatible triple. Then the following identites hold:

Aut(ω, J, g) = Aut(ω, J) = Aut(J, g) = Aut(g, ω)

Aut(ω, J, g)

Aut(ω)Aut(g)

Aut(J)

Remark 2.80. In this result the structures ω, J, g play symmetric roles. However, as we
say earlier, they differ a lot.

Proof of Proposition 2.79. It suffices to prove that Aut(ω, J) ⊂ Aut(g) and the analo-
gous two other includsions hold. Observe that for Φ ∈ Aut(ω, J) we have

Φ∗g = ω(Φ_, JΦ_) = ω(Φ_,ΦJ_) = ω(_,K_) = g,

i.e. Φ ∈ Aut(g).

Proposition 2.79 has the following application: We denote by U(n) the unitary group
in (complex) dimension n, by Sp(2n) the group of symplectic 2n × 2n–matrices and
by GL(n,C) the complex general linear group in dimension n, by O(2n) the group of
orthogonal 2n× 2n–matrices. We define

Φ: Cn×n → R2n×2n, A+ iB 7→
(
A −B
B A

)
.

Corollary 2.81. The equalities

Φ(U(n)) = Sp(2n) ∩ Φ(GL(n,C)) = Φ(GL(n,C)) ∩O(2n) = O(2n) ∩ Sp(2n)

hold.

Here in the definition of Sp(2n) we reorder the canonical coordinates as Q1, . . . , Qn,
P1, . . . , Pn. This enables us to define Φ by the above formula simplifying notation. Note
that Sp(2n)∩Φ(GL(n,C)) = Sp(2n)∩Φ(Cn×n) and Φ(GL(n,C))∩O(2n) = Φ(Cn×n)∩
O(2n).
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Remark 2.82. Identifying a matrix M ′ ∈ Cn×n with its image under Φ, we may rewrite
the above equality as

U(n) = Sp(2n) ∩GL(n,C) = GL(n,C) ∩O(2n) = O(2n) ∩ Sp(2n).

Note that Φ is an injective real linear map, hence this identification makes sense.

Definition 2.83. A Lie group is a group G with the structure of a smooth manifold
such that inversion and multiplication are smooth maps.

Example 2.84 (Assignment 5).

• (R,+) together with the standard manifold structure on R.

• The circle S1 ⊂ C together with the complex multiplication and the structure of
a submanifold of C = R2.

• The general linear group GL(V ) of a real vector space V . GL(V ) is open in End(V ),
hence it is a submanifold.

Remark 2.85. If G and G′ are Lie groups then the product group G×G′ with the product
manifold structure is again a Lie group. Let n ∈ N. It follows that (Rn,+) with the
standard manifold structure on Rn is a Lie group.
Furthermore, the torus (S1)n together with the product manifold structure is a Lie

group.

Example 2.86. Consider G = R together with the standard manifold structure, the
identity 0 and the composition x ◦ y = 3

√
x3 + y3. The map x 7→ 1 ◦ x is not smooth,

hence ◦ is not smooth. So (R, ◦, standard manifold structure) is not a Lie group.

Theorem 2.87 (Cartan). Let G be a Lie group and H ⊂ G a subgroup that is closed as
a subset. Then H is an embedded submanifold of G.

Proof. See Theorem 3.6, p. 47, Lie groups and Lie Algebras I, Encyclopaedia of Math.
Sciences, Vol. 20, Springer 1993.

Definition 2.88. We call a subgroup of a Lie group that is an embedded submanifold
an embedded Lie subgroup.

Remark 2.89. Let H ⊂ G be an embedded Lie subgroup. eThen H together with the
submanifold structure is a Lie group. This follows from the fact that the restrictions of
the composition and inverse maps to H are smooth.

Example 2.90. Let V be a real vector space. It follows from Theorem 2.87 that every
closed subgroup of GL(V ) is an embedded Lie subgroup. In particular, let V be a real
vector space and (ω, J, g) a compatible triple on V . Then for A ∈ {ω, J, g} the group
Aut(V,A) is a closed subset of GL(V ) (Check this!). Hence it is a submanifold of GL(V )
and a Lie group, when endowed with the submanifold structure. Similarly, Aut(ω, J, g)
is a Lie group.
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Let (ω, J, g) be a compatible triple on a vector space V .

Theorem 2.91. The following holds:

• Aut(ω, J, g) is a smooth strong deformation retract of Aut(ω), i.e. there exists a
smooth map h : [0, 1]×Aut(ω)→ Aut(ω) such that

h0 = idAut(ω), ht|Aut(ω,J,g) = idAut(ω,J,g), im h1 ⊂ Aut(ω, J, g)

for all t ∈ [0, 1], where hs(x) := h(s, x).

• Every compact subgroup of Aut(ω) is contained in a subgroup which is conjugate
to Aut(ω, J, g).

Remark 2.92. Theorem 2.91 says that the ‘main’ topological information about Aut(ω)
is contained in the subgroup Aut(ω, J, g). The second part of the theorem implies that
Aut(ω, J, g) is a maximal compact subgroup of Aut(ω), i.e. it is not contained in a bigger
compact subgroup.

Example 2.93. In the symplectic vector space (R2, ω0), we have Aut(ω0) = SL(2,R) ⊃
Aut(ω0, J0, g0) = S1.

By a g–positive linear map we mean a linear map Φ: V → V that is self–adjoint and
positive definite with respect to g. This means that g(v,Φv) > 0 for all v ∈ V r 0. We
denote n := dimV . Let Φ: V → V be a g–positive map. For a ∈ R we define the ath

power of Φ to be the linear map

Φa := T

λ
a
1

. . .
λan

T−1

where λ1, . . . , λn are the eigenvalues of Φ (with multiplicities) and T : Rn → V is any
isomorphism such that Φ = T diag(λ1, . . . , λn)T−1.
We may define Tei := vi where v1, . . . , vn are the eigenvectors. To see that the map

Φa is well–defined, observe that λi > 0, since Φ is positive, hence λai makes sense.
Furthermore, the definition does not depend on the choice of T (Check this!). The map
Φa itself is g–positive. Furthermore, if Φ ∈ Aut(V ), we denote by Φ∗g = Φ∗ the g–adjoint
map of Φ (g(v,Φw) = g(Φ∗gv, w) for all v, w ∈ V ).

Exercise 2.94. Let Φ ∈ Aut(V ). Then the map ΦΦ∗ is g–positive and the map
(ΦΦ∗)−1/2Φ is orthogonal.

Let ω be a symplectic structure on V and g a compatible inner product.

Lemma 2.95. The g–adjoint of a symplectic automorphism of V is a symplectic auto-
morphism of V .

Proof. Assignment 5, Exercise 14.
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Lemma 2.96. Let Φ be a linear symplectic g–positive automorphism on V . Then for
every number a ∈ R the linear transformation Φa : V → V is symplectic.

For the proof of Lemma 2.96 we need the following: Let (V, ω) be a symplectic vector
space. We write V C := V ⊗R C and ωC for the complex bilinear form on V C induced by
ω.

Lemma 2.97. Let Φ ∈ Aut(V,W ), λ, λ′ ∈ C and v, v′ ∈ V C such that Φv = λv,
Φv′ = λ′v′ and λλ′ 6= 1. Then ωC(v, v′) = 0.

Proof of Lemma 2.96. Let λ, λ′ ∈ (0,∞) and v, v′ ∈ V be such that Φv = λv, Φv′ = λ′v′.
Then ω(Φav,Φav′) = (λλ′)aω(v, v′) = ω(v, v′). In the case λλ′ 6= 1 the last equality
follows from Lemma 2.97. Since Φ is g–self–adjoint, the space V is the direct sum of the
eigenspaces of Φ. Therefore this implies that Φa is symplectic.

Proof of Lemma 2.97. λλ′ωC(v, v′) = ωC(Φv,Φv′) = ωC(v, v′).

Proposition 2.98. Let V be a vector space and G a compact subgroup of Aut(V ). Then
there exists a G–invariant inner product on V , i.e. an inner product g such that Φ∗g = g
for all Φ ∈ G.

For a vector space V we denote by Met(V ) the set of all inner products on V . Let (V, ω)
be a symplectic vector space. We denote J(V, ω) the ω–compatible complex structures
on V .

Proposition 2.99. There exists a continuous map r : Met(V )→ J(V, ω) such that

r(ω(_, J_)) = J, r(Φ∗g) = Φ∗r(g) ∀J ∈ J(V, ω), g ∈ Met(V ),Φ ∈ Aut(V, ω).

Proof of Theorem 2.91. We define the map

h : [0, 1]×Aut(ω)→ Aut(ω), Φ 7→ (ΦΦ∗)−t/2Φ.

We show that h is well–defined. Let t ∈ [0, 1] and Φ ∈ Aut(ω). By Exercise 2.94 the
map ΦΦ∗ is positive and hence (ΦΦ∗)−t/2 makes sense. By Lemma 2.95 and Lemma 2.96
this map and hence h(t,Φ) is symplectic. Hence h is well–defined. The condition h0 =
idAut(ω) is clearly satisfied. By Exercise 2.94 we have h(1,Φ) ∈ Aut(g), i.e. h1(Aut(ω)) ⊂
Aut(ω, J, g) by the Trefoil Proposition. The condition h(t,Φ) = Φ for t ∈ [0, 1] and
Φ ∈ Aut(ω, J, g) follows from the fact ΦΦ∗ = idV for Φ ∈ Aut(g) = O(V, g). This proves
the first part of Theorem 2.91.
Now let G ⊂ Aut(V, ω) be a compact subgroup. By Proposition 2.98 there exists a

G–invariant inner product g′ on V . We choose a map r as in Proposition 2.99 and define
J ′ = r(g′) ∈ J(V, ω). By Theorem 2.76 there exists an automorphism ψ ∈ Aut(V, ω)
satisfying ψ∗J = J ′. Since g′ is G–invariant and r satisfies r(Φ∗g) = Φ∗r(g) we have
Φ∗J ′ = r(Φ∗g′) = J ′ for every Φ ∈ G. Hence G ⊂ Aut(V, ω, J ′). It follows that
ψGψ−1 ⊂ Aut(V, ω, J).
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Let V be a 2–dimensional vector space. We denote by J(V ) the set of complex
structures on V , by Ω(V ) the set of linear symplectic forms on V and for ω ∈ Ω(V ) by
J(V, ω) the complex structures on V compatible with ω.

We choose a vector v ∈ V r 0. Then the map

J : V rRv → J(V ), J(w)(av + bw) := aw − bv

is a bijection. We now fix a symplectic form ω on V . Then the symplectic forms on V
correspond to R× via the bijection

R× → Ω(V ), a 7→ aω.

The ω–compatible linear complex structures correspond to the vectors in the ‘positive
half–plane’: We fix v ∈ V r 0 and denote by H ⊂ V the open half–plane with boundary
Rv such that ω(v, w) > 0 for all w ∈ H. The map J as above restricts to a bijection
between H and J(V, ω). Hence in two dimensions compatibility only means that ω and
J induce the same orientation of V .

Exercise 2.100. Characterise compatibility of (J, g) and (g, ω) in two dimensions.

Theorem 2.101. For every compact Lie gorup G there exists a unique left–invariant
measure µ = µG on the Borel σ–algebra of G which satisfies µ(G) = 1.

Proof of Proposition 2.98. Since G is a closed subgroup of Aut(V ), by Theorem 2.87 G
is an embedded Lie subgroup. Hence it is a compact Lie group. Denote by µ the Haar
measure on G. WE choose an inner product G0 on V and define

g :=
∫

Φ∈G
Φ∗g0 dµ

This is a G–invariant inner product.

Proof of Proposition 2.99. We define the map r : Met(V ) → J(V, ω) as follows. Let
g ∈ Met(V ). We define Φ: V → V to be the unique map satisfying ω = g(Φ_,_). Since
g is non–degenerate, this map is well–defined. We denote by Φ∗ the g–adjoint of Φ.
Since ω is skew–symmetric, the map Φ is g–skew–adjoint, i.e. Φ∗ = −Φ. It follows that
P = Φ∗Φ = −Φ2. This map is g–positive. We define r(g) := Φ−1/2Φ.
We show that this map lies in J(V, ω). To see that it is a complex structure, we write

2n = dimV . Since iΦ is self–adjoint with respect to the Hermitian inner product on V C

induced by g, there exists an (orthonormal) complex linear transformation T : C2n → V C

such that T−1iΦT is diagonal. Since P = −Φ2, it follows that Φ commutes with P−1/2

and therefore r(g)2 = P−1Φ2 = id.
To see that r(g) is ω–compatible note that

ω(_, r(g)_) = g(Φ_, P−1/2Φ_) = ψ∗g

where psi = P−1/2Φ. Since ψ is invertible, it follows that ω(_, r(g)_) is an inner product
on V .

Hence the map r : Met(V )→ J(V, ω) is well–defined. The proof of continuity can be
found in MacDuff–Sullivan, Exercise 2.52, p. 67. The properties r(ω(_, J_)) = J and
r(ψ∗g) = ψ∗r(g) follow from the defining equation of r(g).
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Remark 2.102. The Haar measure always exists, but sometimes it is not right–invariant.
For Lie groups this happens precisely if there exists g ∈ G such that det Adg 6= 1.

Example 2.103. Consider the Lie group{(
a b
0 1

)
: a, b ∈ R, a 6= 0

}
⊂ GL2(R).

The left Haar measure is not right–invariant.

Let V be a real vector space, Φ: V → V a linear map and λ ∈ C. We define m(λ) =
m(λ,Φ) to be the algebraic multiplicity of λ as an eigenvalue of Φ. Note that λ is an
eigenvanlue of Φ if and only if m(λ) > 0.

Proposition 2.104. Let (V, ω) be a symplectic vector space, Φ ∈ Aut(V, ω) and λ ∈ C.
Then

m(λ) = m(λ) = m(λ−1) = m(λ−1).

Furthermore m(±1) is even.

Remark 2.105. In the case |λ| = 1 we have λ−1 = λ.
Remark 2.106. Not every symplectic matrix is diagonalisable over C. Take a non–
diagonalisable automorphism T of a vector spaceW and define Φ = (T, T ∗) : W ×W ∗ →
W ×W ∗. This gives examples of non–diagonalisable symplectic transformations with
eigenvalues on S1 r {±1}.

Proof of Proposition 2.104. Since Φ is a real endomorphism of a real vector space V , we
have m(λ) = m(λ). We choose an ω–compatible complex structure J on V and denote
g = ω(_, J_) and by Φ∗ the g–adjoint of Φ. A straightforward computation shows that
Φ∗ = J−1Φ−1J . It follows that

m(λ,Φ) = m(λ,Φ∗) = m(λ,Φ−1) = m(λ−1,Φ)

Hence
∑
λ∈Cr±1m(λ) ∈ 2Z. By Corollary 2.40 the determinant of Φ is 1. It follows that

m(−1,Φ) is even and therefore also m(1,Φ).
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3 Symplectic Manifolds
After building some intuition about linear symplectic geometry we will now embark
into the study of symplectic manifolds. An important example is the cotangent bundle
equipped with the canonical symplectic form. We will encounter important classes of
submanifolds, namely symplectic, (co-)isotropic and Lagrangian submanifolds. Some
hightlights include Darboux’ and Weinstein’s theorems and the classification of closed
symplectic manifolds.

The first result states that every point in a symplectic manifold has an open neighbour-
hood symplectomorphic to a ball in R2n. This implies that there are no local symplectic
invariants in contrast to Riemannian geometry.
Weinstein’s theorem says that for every closed Lagrangian submanifold L of a sym-

plectic manifold there exist open neighbourhoods U of L and V of the zero section of
T ∗L and a symplectomorphism between U and V that fixes L pointwise. This means
that locally all Lagrangian submanifolds look the same.
The proofs of these results are based on Moser isotopy. This technique produces a

time–dependent flow that pulls back a given time dependent symplectic form ωt to the
form at time 0. This works on closed symplectic manifolds if the de Rham cohomology
class of ωt is constant in t.

Regular coisotropic submanifolds give rise to symplectic quotients. Such quotients
correspond to reduced Hamiltonian systems in physics. A large class of examples arises
from Hamiltonian Lie group actions. These include the complex Grassmannians, in
particular complex projective space CPn together with the Fubini–Studi form.

Hamilton’s variational principle says that the time–evolution of a mechanical system
is a path in phase space that is a critical point with fixed endpoints of the action. Via
the Legendre transformation, such a critical path corresponds to a solution of Hamilton’s
equations on the cotangent bundle of configuration space.

3.1 Definition, Examples, Contangent bundle
Definition 3.1. Let M be a manifold. A symplectic form on M is a closed and non–
degenerate 2–form on M .

Remark 3.2. IfM carries a symplectic form, then it has even dimension and is orientable.
The first statement follows from the classification of symplectic vector spaces, the second
from Linear Liouville.

Example 3.3.

• Coordinate space R2n together with the standard form ω0 = dqi ∧ dpi where
q1, p1, . . . , q

n, pn are the canonical coordinates.

• Let Σ ⊂ R3 be an oriented surface. The given orientation on Σ is described
by a unit normal vector field ν : Σ → R3. We define the 2–form ω on Σ by
ωx(v, w) = 〈νx, v × w〉 for all x ∈ Σ, v, w ∈ TxΣ.
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Remark 3.4. Let (M,ω) and (M ′, ω′) be symplectic manifolds. We denote by π : M ×
M ′ →M and π′ : M ×M ′ →M ′ the projections. Then ω̃ = π∗ω + π′∗ω′ is a symplectic
form on M ×M ′.
The cotangent bundle of a manifold is equipped with a canonical symplectic form. It

is given as follows:

Definition 3.5. LetX be a manifold. Denote by π : T ∗X → X the canonical projection.
The tautological 1–form or canonical 1–form or Liouville 1–form λcan on T ∗X is the
smooth 1–form defined by

λcan
x = x ◦ dxπ ∈ T ∗x (T ∗X) ∀x ∈ T ∗π(x)X,

where one regards x and λcan
x as linear functionals on Tπ(x)X → R and Tx(T ∗X) → R,

respectively.
The canonical 2–form is defined to be

ωcan = −dλcan.

The canonical 1–form is characterized by α∗λcan = α for all α ∈ Ω1(X).

Example 3.6. Let W be a vector space. We canonically identify T ∗W with W ×W ∗.
We denote by pr: W ×W ∗ → W and pr′ : W ×W ∗ → W ∗ the projections. Let x =
(q, p) ∈ T ∗W = W ×W ∗. The canonical projection π : T ∗W →W agrees with pr. This
map is linear and therefore coincides with its differential at x,

pr = dxπ : Tx(W ×W ∗) = W ×W ∗ → TqW = W.

Hence, the canonical 1–form is given by λcan
x = x ◦ ({q} × pr) = p ◦ pr = pr′(x) ◦ pr.

To describe the canonical 2–form, we fix vectors vi = (wi, ϕi) ∈ W ×W ∗. It follows
from the definition of the exterior derivative that

ωcan
x (v1, v2) = −( dλcan)x(v1, v2) = d(λcanv1)(x)v2 − d(λcanv2)(x)v1

= ( d pr′(x)v2)v1 − ( d pr′(x)v1)v2 = ϕ2(w1)− ϕ1(w2) = ωW (v1, v2).

Here ωW denotes the canonical linear symplectic form on W ×W ∗. Consider the case
W = Rn. We denote by q1, . . . , qn, p1, . . . , pn : Rn × (Rn)∗ = R2n → R the coordinates.
We have λcan =

∑
pi dqi, ωcan =

∑
dqi ∧ dpi. The description of the canonical 1–form

and 2–form in the example carries over to local formulas for these forms on a general
cotangent bundle: Let X and X ′ be manifolds and ϕ : X → X ′ a diffeomorphism. Define
the pushforward map

Φ = ϕ∗ : T ∗X → T ∗X ϕ∗(q, p) = (ϕ(q), p ◦ dxϕ−1).

Proposition 3.7. This map satisfies Φ∗λcan
X′ = λcan

X

Proof. Fix a point (q, p) ∈ T ∗X. We write x′ = (q′, p′) = Φ(x) and compute (Φ∗λcan
X′ )x =

(λcan
X′ )x′ dΦ(x) = p′ dπ′(x′) dΦ(x) = pdqϕ−1 dqϕdqπ = (λcan

X )x.
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It follows from this result that Φ∗ωcan
X′ = −d(Φ∗λcan

X′ ) = −dλcan
X = ωcan

X . This means
that Φ is a symplectomorphism (T ∗X,ωcan

X )→ (T ∗X ′, ωcan
X′ ).

Definition 3.8. A symplectomorphism between two symplectic manifolds (M,ω) →
(M ′, ω′) is a diffeomorphism ϕ : M → M ′ such that ϕ∗ω′ = ω. In physics a symplecto-
morphism is called a canonical transformation.

Remark 3.9. The map Φ = ϕ∗ as above is a non–linear version of the linear push–forward
introduced in the linear part.

Corollary 3.10. The canonical 2–form ωcan is symplectic.

Proof. The 2–form ωcan is closed since d2 = 0. Let ϕ : U → Rn be a coordinate chart
for X, V = ϕ(U). Denote by Φ = ϕ∗ : T ∗U → T ∗V ⊂ R2n the push–forward as above.
By Φ∗ωcan

X′ = ωcan
X and ωcan

Rn =
∑

dqi ∧ dpi we have ωcan
X |U = Φ∗ω0. Because ω0 is

non–degenerate, so is ωcan
X |U .

Let ϕ : U → Rn be a local coordinate chart for X. We denote Φ = ϕ∗ and define
qiϕ = ϕi ◦Φ, pϕi = pi ◦Φ: T ∗U → R. These functions are called the canonical coordinates
on T ∗U induced by ϕ. They are given by

qiϕ(q, p) = ϕ(q)i pϕi (q, p) = (p dϕ(q)−1) = p ∂i(ϕi)(ϕ(q)).

By Proposition 3.7 and the equations λcan
Rn =

∑
pi dqi, ωcan

Rn = ω0 we have

λcan
X |U = Φ∗

(∑
pi dqi

)
=
∑

(pi ◦ Φ) d(qi ◦ dΦ) =
∑

pϕi dqiϕ

ωcan
X |U = Φ∗

(∑
dqi ∧ dpi

)
=
∑

dqiϕ ∧ dpϕi

The following exercise shows that the characterisation of the canonical 2–form for the
cotangent bundle of a vector space carries over to the general setting if we consider the
forms along the zero section.

Exercise 3.11. Let X be a manifold with a vector bundle E → X. For each point q ∈ X
find a canonical isomorphism T(q,0)E ∼= TqX × Eq. show that under this isomorphism
the canonical 2–form on E = T ∗X at (q, 0) agrees with the canonical linear symplectic
form.

Proposition 3.12. The form λcan is uniquely determined by α∗λcan = α for all α ∈
Ω1(X).

Proof. Let v ∈ TxX. Then α∗λcan(v) = λcan
α(x)( dxα(v)) = αx( dα(x)π( dxα(v))) = αx(v)

since π ◦ α = id. So α∗λcan = α.

3.2 Classical Mechanics
In subsection 1.2 we saw that the movement of a particle in a conservative force field
can be described by Hamilton’s equations. The Hamiltonian function is the sum of
the kinetic energy |p|2/2m and some potential energy. With ωcan on T ∗X at hand, we
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can describe a general mechanical system using the same formalism. We will see that
Hamilton’s equations on a cotangent bundle of a manifold is equivalent to Hamilton’s
principle of stationary action, via the Legendre transform. This principle says that the
physical path of a mechanical system is a stationary point (or critical point) of the
action (with fixed end points). This principle has been generalised far beyond classical
mechanics. It is fundamental for physics.

The time evolution of a mechanical system is governed by Hamilton’s principle of
stationary action: Such a system corresponds to a manifold X with a smooth function
L : R× TX → R. X is called the configuration space of the system. Points in X corre-
spond to the possible (generalised) positions of the system. L is called the Lagrangian
of the system. Let a ≤ b be real numbers and q : [a, b]→ X be a smooth path.

Definition 3.13. We define the action of q (with respect to L) as the integral

S(q) :=
∫ b

a
L(t, q(t), q̇(t)) dt.

Hamilton’s principle states that every path that occurs in nature is a ‘critical point’
of S among all paths with the same endpoints. This means that for every smooth family
of paths R × [a, b] → X, (s, t) 7→ qs(t) satisfying q0 = q, qs(a) = q(a), qs(b) = q(b) we
have d

ds |s=0 S(qs) = 0.
Consider X = Rn.

Proposition 3.14. A path q : [a, b] → Rn is a ‘critical point’ of S if and only if it
satisfies the Euler–Lagrange equations:

d
dt

∂

∂vi
L(t, q(t), q̇(t)) = ∂

∂qi
L(t, q(t), q̇(t)) ∀t ∈ [a, b]

Proof. We denote ∂qL = (∂q1L, . . . , ∂qnL). Assume that q is a critical point of S. Let
(s, t) 7→ qs(t) be a smooth variation of q (with fixed end points). We have

d
dsS(qs) =

∫ b

a
∂s(L(t, qs(t), q̇s(t)) dt

=
∫ b

a
(∂qL)∂sqs(t) + (∂vL)∂s∂tqs(t) dt

= (∂vL)∂sqs(t)
∣∣∣b
t=a

+
∫ b

a

(
∂qL−

d
dt(∂vL)

)
∂sqs(t) dt

Since qs(t) = q(t) for t ∈ {a, b}, the boundary term vanishes. Let w : [a, b] → Rn be a
smooth map satisfying w(t) = 0, for t ∈ {a, b}. We define qs(t) := q(t) + sw(t) for all
s ∈ R, t ∈ [a, b]. It follows that

0 = d
ds

∣∣∣∣
s=0

S(qs) =
∫ b

a
(∂qL(t, q(t), q̇(t))− d

dt
(
∂vL(t, q(t), q̇(t))

)
w(t) dt

Since this holds for every w as above it follows that(
∂qL−

d
dt(∂vL)

)
(t, q(t), q̇(t)) = 0.
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Conversely, assume that the Euler–Lagrange equations are satisfied. Let R × [a, b] →
Rn, (s, t) 7→ qs(t) be a smooth variation of q. Reversing the above calculation, it follows
that d

ds
∣∣
s=0S(qs) = 0. Hence q is a ‘critical point’ of S.

Example 3.15. Consider a particle of mass m in Rn, subject to a conservative force
Ft := −∇Vt where Vt : Rn → R is the potential energy of the particle. Up to a constant,
the Lagrangian for this system is given by

L(t, q, v) = m

2 |v|
2 − Vt(q).

To see this, note that the Euler–Lagrange equations for this function are

mq̈(t)T = d
dt∂vL(t, q(t), q̇(t)) = ∂qL(t, q(t), q̇(t)) = −∇Vt(q(t)) = Ft(q(t))T .

Exercise 3.16. Let k ∈ N and consider a system of k particles in Rn that interact
through conservative central forces. Write down a Lagrangian for this system, whose
Euler–Lagrange equations are Newton’s second law.

The following section on holonomic constraints shows the power of Hamilton’s princi-
ple. It is based on lecture notes by Kai Cieliebak.
Consider a particle in Rn whose motion is constrained to a submanifold X ⊂ Rn.

(As an example, consider the particle S′ ⊂ R2.) Such constraints are called holonomic.
Assume that particle is subject to an external force F : [a, b]×X → Rn. The particle is
kept inside X by a constraint force F constr : [a, b]→ Rn. This force depends on t and on
the path q : [a, b]→ X of the particle. Then Newton’s second law states

mq̈(t) = F (t, q(t)) + F constr(t) ∀t ∈ [a, b]

We assume d’Alembert’s principle: The constraint force F constr(t) is perpendicular to
X. This principle means that no work is done by the constraint force.
We assume that there exists a map f : Rn → Rk such that 0 is a regular value of f and

X = f−1(0). Then the motion of the particle can be described as follows: Assume that
q : [a, b]→ X is a smooth solution ofmq̈(t) = F (t, q(t))+F constr(t) and that d’Alambert’s
principle holds. We denote k := codimX = n − dimX, and define λ : [a, b] → (Rk)∗ to
be the unique map satisfying F Tconstr = λDf . The components λi(t) can be interpreted
as Lagrange multipliers. We denote by D2f(q) : Rn × Rn → Rk the Hessian defined by
D2f(q)(w,w′) =

∑n
i,j=1 ∂i∂jf(q0)wiwj . Taking two time derivatives of the equations

f ◦ q = 0, we obtain Df(q)q̇ = 0 and

0 = (D2f)q(q̇, q̇)+Df(q)q̈ = (D2f)q(q̇, q̇)+ 1
m

(
Df(q)F (t, q)+Df(q)Df(q)Tλ(t)T

)
. (∗)

Since by assumption 0 is a regular value of f , Df(q(t)) : Rn → Rk is surjective and hence
the k × k matrix Df(q(t))Df(q(t))T is invertible for every t. Hence λ(t) is determined
by (∗).
Furthermore, λ(t) depends only on the point (t, q(t), q̇(t)) ∈ [a, b] × TX, rather than

on the whole path q : [a, b] → X. It follows that the constraint force is given by a map
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Fconstr : [a, b]×TX → Rn. We may compute the constraint force by solving (∗) for λ and
plugging the solution into F Tconstr = λDf . The motion of the system is then determined
by Newton’s equation with Fconstr(t) = F constr(t, q(t), q̇(t)).

Example 3.17 (Centripetal force). Suppose m = 1, X := Sn−1 ⊂ Rn, F = 0. To
determine the motion of the particle, we may choose f : Rn → R, f(q) = |q|2/2. We
have Df(q) = qT and (D2f)q(w,w′) = w · w′. Therefore, it follows fromm (∗) that
Fconstr(t, q, v) = −|v|2q. Therefore, Newton’s equation mq̈ = F + F constr reads q̈ =
Fconstr = −|q̇|2q. The unique solution of this ODE with initial condition (q(0), q̇(0)) =
(q0, v0) ∈ TSn−1 is given by

q(t) = q0 cos(|v0|t) + v0
|v0|

sin(|v0|t).

Exercise 3.18. Show that the constraint force is given by Fconstr(t, q, v) = m IIq(v, v)−
F⊥(t, q) where IIq is the second fundamental form at q and F⊥ is the component of the
external force F perpendicular to X.

Now we reformulate the restrained system in terms of the Lagrangian formalism.
Consider the case of a conservative external force Ft = −∇Vt. Then a simpler approach
to finding the motion of the restrained particle is the following: We define the Lagrangian

L : [a, b]× TX → R, L(t, q, v) := m

2 |v|
2 − Vt(q)

Proposition 3.19. Let q : [a, b]→ X be a smooth path in X. The following are equiva-
lent:

1. The path q satisfies Newton’s equation mq̈(t) = Ft +F constr(t) for some constraint
force F constr(t) perpendicular to TqX.

2. q is a critical point of the action S(q) =
∫ b
a L(t, q(t), q̇(t)) dt among variations in

X with fixed and points. This means that d
ds
∣∣
s=0S(qs) = 0 for every smooth family

of paths R× [a, b]→ X, (s, t) 7→ qs(t) satisfying q0 = q, qs(a) = q(a), qs(b) = q(b).

Proof. Assume that the second property holds. As in the proof of Proposition 3.14
differentiation under the integral sign and integration by parts yields

0 = d
ds

∣∣∣∣
s=0

S(qs) =
∫ b

a
(∂qL−

d
dt∂vL)w(t) dt

for every smooth map w : [a, b] → Rn satisfying w(t) ∈ Tq(t)X for all t ∈ [a, b] and
w(a) = w(b) = 0. It follows that −∇Vt − mq̈ = ∂qL − d

dt(∂vL) ∈ Tq(t)X
⊥. The

statement follows. The other implication follows from a similar argument.

Corollary 3.20. Let q : [a, b] → X be smooth. q satisfies Newton’s equations with
Fconstr(t) ⊥ Tq(t)X if and only if q satisfies the Euler Lagrange equation in local co-
ordinates.

Proof. Assignment 7, based on Proposition 3.19.
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Let (X, g) be a Riemannian manifold, a < b. Recall that a geodesic on the interval
I = [a, b] is a smooth path q : I → X which is locally length minimizing and for which
‖q̇‖ (induced by g) is constant. This means, for all t0 ∈ I there exists a neighbourhood
t0 ∈ U ⊂ I such that

`(q) :=
∫ t′

t
‖q̇‖ dt = d(q(t), q(t′))

for all t < t′ ∈ U . Here d denotes the distance function induced by g. We define the
Lagrangian L : TX → R by L(q, v) = 1

2‖v‖
2 = 1

2g(v, v) with the corresponding action
S(q) = 1

2
∫ b
a ‖q̇‖ dt.

Exercise 3.21 (Assignment 7). Show that every non–constant geodesic is a critical
point of S. Find the Euler–Lagrange equations. (The converse is also true.)

The Legendre transform allows us to reformulate Lagrangian mechanics as Hamil-
tonian mechanics and vice–versa. The idea is that the Legendre transform replaces
the velocity variable v = q̇ by the momentum p and maps the Lagrangian L to the
Hamiltonian H. The Euler–Lagrange equation is equivalent to Hamiltons equation for
H. Heuristically, we define the Legendre transform of L by setting p := ∂vL(q, v) =
(∂v1L, . . . , ∂vnL)(q, v) and defining H = L∗ by H(q, p) = pv(q, p) − L(q, v(q, p)). Here
we view v as a function of q and p.

Example 3.22. Consider a non–relativistic particle in Rn of mass m in a conservative
potential U . As we saw its Lagrangian is L = T −U : R2n → R, where T := 1

2m|v|
2. We

saw that the Hamiltonian isH = T+U : R2n → R. This corresponds to ∂vL(q, v) = mvT .
Assume that L is smooth. The Legendre condition at a point (q0, v0) ∈ R2n states that
the Hessian of the map L(q0,_): Rn → R at v0 is non–degenerate. This means that
det((∂vi∂vjL(q0, v0))i,j) 6= 0. If this is true then v can locally be expressed as a smooth
function of q and p.

Proposition 3.23. If L satisfies the Legendre condition at (q0, v0) then there exist open
neighbourhoods U, V,W ⊂ Rn of q0, v0, p0 := ∂vL(q0, v0) and a smooth fuction v : U ×
W → V such that (∂vL)−1(p) ∩ (U × V ) = gr(v(_, p)) = {(q,v(q, p)) : q ∈ U} for all
p ∈W .

Proof. Assignment 8.

Remark 3.24. This means that for all p ∈ W we have ∂vL(q,v(q, p)) = p and for all
(q, p) ∈ U ×W there is at most one v ∈ V such that ∂vL(q, v) = p.
Remark 3.25. The Legendre condition is satisfied for L = T −U with T (q, v) = 1

2m|v|
2.

The derivative p := ∂vL(q, v) is called the canonical momentum associated to L. We
now define the Legendre transform in a more general setting: For a Lagrangian L on
the tangent bundle of some manifold, which is fibrewise super–linear and locally stongly
convex.
Let V be a vector space and f : V → R a function.
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Definition 3.26. f is super–linear (at ∞) if for all p ∈ V ∗ we have

inf
v∈V

(
f(v)− pv

)
> −∞.

Definition 3.27. We define the Legendre transform of f to be

f∗ : V ∗ → R, p 7→ sup
v∈V

(
pv − f(v)

)
Example 3.28 (Assignment 8). Let a ∈ (1,∞) and f : R→ R defined by f(v) := |v|a/a.
Then f is super–linear and f∗(p) = |p|a′/a′ where 1/a′ + 1/a = 1.

Definition 3.29. We call a smooth function f : V → R locally strongly convex if its
Hessian at any point in V is positive definite.

Example 3.30. Let 〈_,_〉 be an inner product on V . The function f : V → R defined
by f(v) := ‖v‖2 = 〈v, v〉 is locally strongly convex and super–linear. For k = 2, 3, . . .
the function v 7→ ‖v‖2k is super–linear, but not locally strongly convex. The function
f : R→ R given by f(v) := ev is locally strongly convex, but not super–linear.

Let now X be a manifold and L : TX → R be smooth. Assume that L is fibrewise
super–linear. This means that for every q ∈ X, the function L(q,_): TqX → R is
super–linear.

Definition 3.31. We define the Legendre transform of L to be H := L∗ : T ∗X → R,
which is defined by H(q, p) = L(q,_)∗(p).

Definition 3.32. We define the fibre derivative of L at (q, v) ∈ TX to be the covector
p := ∂vL(q, v) ∈ T ∗qX given by

∂vL(q, v)w := D(L(q,_))(v)w = d
dt

∣∣∣∣
t=0

L(q, v + tw)

for all w ∈ TqX = Tv(TqX).

Definition 3.33. For a symplectic manifold (M,ω) and a smooth function H : M → R
we define the Hamiltonian vector field generated by H to be the unique vector field
XH = Xω

H such that dH = ω(XH ,_).

Theorem 3.34 (Legendre transform). Let X be a manifold and L : TX → R a smooth
function that is fibrewise locally strongly convex and superlinear. Then

1. The map
TX 7→ T ∗X, (q, v) 7→ (q, ∂vL(q, v))

is a diffeomorphism.

2. We define
v : T ∗X → TX, (q, p) 7→ (∂vL(q,_))−1(p).

Then L∗(q, p) = pv(q, p)− L(q,v(q, p)) for all (q, p) ∈ T ∗X.

33



3. The Legendre transform is involutive: The function L∗ is smooth and fibrewise
locally strongly convex and superlinear and satisfies (L∗)∗ = L.

4. A smooth path q : [a, b]→ X is a critical point of the action

S(q) =
∫ b

a
L(q, q̇) dt

if and only if the path

x : [a, b]→ T ∗X, x = (q, ∂vL(q, q̇) ◦ q̇)

solves Hamilton’s equations ẋ = Xωcan
L∗ ◦ x.

The proof of Theorem 3.34 is based on

Proposition 3.35. Let V be a vector space, f : V → R a smooth, locally strongly convex
and superlinear function and p0 ∈ V ∗. Then

1. The function
g = fp0 : V → R, fp0(v) = p0v − f(v)

has a unique critical point.

2. The function attains its maximum at this critical point.

3. We define v : V ∗ → V such that v(p) is the unique critical point of fp. This map
is an inverse for df : V → V ∗.

4. The Legendre transform f∗ : V ∗ → R is superlinear, smooth and locally strongly
convex and d(f∗) = ι ◦ (df)−1 and f∗∗ ◦ ι = f hold, where ι : V → V ∗∗ is the
canonical isomorphism.

Proof of Theorem 3.34. Applying the third part of Proposition 3.35 to the functions
L(q,_) for q ∈ X, the map (q, v) → (q, ∂vL(q, v)) is bijective with inverse (q, p) 7→
(q,v(q, p)). By our hypothesis, the Hessian of L(q,_): TqX → R at v is positive definite
and thus non–degenerate for every (q, v) ∈ TX. Then Proposition 3.23 implies that v
is smooth. Hence the same holds for the map (q, p) 7→ (q,v(q, p)). This proves the first
part of Theorem 3.34.
The second part follows from the first three parts of Proposition 3.35 and the third

follows from the last part of Proposition 3.35. We now prove the fourth part.
Consider the case X = Rn and let H = L∗ : Rn × (Rn)∗ → R. By the definition of v

we have ∂vL(q,v(q, p)) = p and therefore

∂qH(q, p) = ∂q(pv− L(q,v)) = p∂qv− ∂vL(q,v)∂qv− ∂qL(q,v) = −∂qL(q,v).

Assume that q : [a, b] → Rn is a critical point of S. We define p := ∂vL(q, q̇) and
x = (q, p) : [a, b] → T ∗Rn. Using the fourth part of Proposition 3.35 it follows that
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q̇ = (∂vL(q,_)−1)(p) = ∂pH(q, p). This is the first of Hamilton’s equations. Since q is a
critical point of S it satisfies the Euler–Lagrange equation

ṗ = d
dt∂vL(q, q̇) = ∂qL(q, q̇) = −∂qH(q, p).

We have ωcan
Rn = ω0. Threfore this is equivalent to ẋ = Xωcan

H ◦ x. The proof of the
reverse implication and in the general setting is similar.

Proof of Proposition 3.35. Since f is superlinear, we have

sup
v∈V

(
g(v) + pv

)
= sup

v∈V

(
(p0 + p)v − f(v)

)
<∞

for all p ∈ V ∗. It follows that for every C ∈ R there exists a compact subset K ⊂ V such
that g(v) ≤ C for all v ∈ V rK. We choose K as above for C = supv∈V g(v) − 1. It
follows that g attains its maximum at some point v0 ∈ K. By Assignment 8 the function
has no other critical point. This proves the first part of Proposition 3.35.
To prove the third part let v ∈ V and set p = df(v). We have dfp(v) = p− df(v) = 0

and therefore v(p) = v. This means that v ◦ ( df) = idV . On the other hand, for every
p ∈ V ∗ we have

0 = ( dfp) ◦ v(p) = p− ( df) ◦ v(p)

and therefore ( df) ◦ v = id.
For the fourth part, superlinearity follows from Assignment 8 and smoothness from

the inverse function theorem. Let p ∈ V ∗. The equality f∗(p) = pv(p)− f(v(p)) implies
that

d(f∗)(p) = v(p) + (p− df(v(p))) dv(p).

By the third part we have p − df(v(p)) = 0, so ι ◦ d(f∗) = ( df)−1. Let v ∈ V . We
write p = ( d(f∗)−1 ◦ ι(v)) ∈ V ∗. Since f∗ is smooth, superlinear and locally strongly
convex, it follows that

f∗∗(ι(v)) = sup
p′∈V ∗

(
ι(v)p′ − f∗(p′)

)
= ι(v)p− f∗(p) = pv − (p( df)−1(p)− f ◦ ( df)−1(p)),

which is just f(v) since ( df)−1(p) = (( df)−1 ◦ ( df∗)−1 ◦ ι)(v) = v.

3.3 Symplectomorphisms, Hamiltonian diffeomorphisms and Poisson
brackets

Let (M,ω) and (M ′, ω′) be symplectic manifolds. (In this section we only consider
manifolds without boundary.) Recall that a symplectomorphism between M and M ′

is a diffeomorphism ϕ : M → M ′ such that ϕ∗ω′ = ω. We denote by Symp(M,ω) the
set of all symplectomorphisms (M,ω) → (M,ω′). This is a subgroup of the group of
diffeomorphisms of M , denoted Diff(M).

Definition 3.36. We call a vector field X on M symplectic if the one–form ιXω =
ω(X,_) is closed. We denote by X(M,ω) the vector space of symplectic vector fields on
M .
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Formally, Symp(M,ω) is an infinite dimensional subgroup of Diff(M) with Lie algebra
X(M,ω). The following result motivates this interpretation.

Proposition 3.37 (Characterisation of symplectic isotopies).

1. Let I be an interval, t0 ∈ I, (M,ω) a symplectic manifold and ϕ : I ×M → M a
smooth map such that ϕt = ϕ(t,_) is a diffeomorphism M →M for all t ∈ I and
such that ϕt0 ∈ Symp(M). Then ϕt is a symplectomorphism for all t ∈ I if and
only if the vector field Xt = ( d

dtϕt) ◦ ϕ
−1
t lies in X(M,ω) for all t.

2. If X,Y ∈ X(M,ω) then ι[X,Y ]ω = −dH for H = ω(X,Y ).

Remark 3.38. A smooth map ϕ : I ×M →M such that ϕt ∈ Diff(M) is called a smooth
isotopy. If ϕt ∈ Symp(M,ω) for all t then it is called a symplectic isotopy. If t0 = 0 and
ϕt0 = id then (ϕt)t∈I is the flow of (Xt)t∈I . In this case X0 is the derivative of the path
t 7→ ϕt in the ‘Lie group’ Diff(M) at time t = 0.
The second part of Proposition 3.37 implies that the Lie bracket preserves X(M,ω).

Proof of Proposition 3.37. By Cartan’s formula the Lie derivative of ω with respect to
a vector field X is

LXω = ( dιX + ιX d)ω = dιXω.

Assume that ϕt ∈ Symp(M,ω) for every t. Then

0 = d
dt(ϕ

∗
tω) = d

dt
(
ω( dϕt_, dϕt_)

)
= ϕ∗tLXtω,

and therefore LXtω = 0 for all t. It follows that ιXtω is closed for all t. Conversely,
assume that ιXtω is closed for all t. It follows that

d
dtϕ

∗
tω = ϕ∗tLXtω = 0

for all t. Interpreting this equality at any fixed point in M with respect to time t and
using the hypothesis ϕt0 = id, we obtain ϕ∗tω = ϕ∗t0ω = 0 for all t.
To prove the second part, consider the Leibniz rule for Lie derivatives:

LX(ιY ω(Z)) = (LXιY ω)(Z) + ιY ω(LXZ)
LX(ω(Y,Z)) = (LXω)(Y, Z) + ω(LXY,Z) + ω(Y,LXZ)

Subtracting these, one obtains using Cartan’s formula

0 = LXιY ω − ιY LXω − ιLXY ω = ιX dιY ω + dιXιY ω − ιY ιX dω − ιY dιXω − ι[X,Y ]ω.

Now if X,Y ∈ X(M,ω), the first, third and fourth terms vanish, so we get

ι[X,Y ]ω = dιXιY ω = d(ω(Y,X)) = −dH.

Recall that the Hamiltonian vector field generated by a smooth function H : M → R
is the unique vector field XH satisfying dH = ω(XH ,_). Every such vector field is
symplectic.
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Definition 3.39. Let I be an interval containing 0 and H : I × M → R a smooth
function. We define the Hamiltonian flow of H to be the flow ϕH of the time–dependent
Hamiltonian vector field (XHt)t∈I where Ht = H(t,_).

Remark 3.40. ϕH is a map from an open subset DH ⊂ I ×M to M . It is smooth and
for every t ∈ I the map ϕtH = ϕH(t,_): DtH = {x ∈ M : (t, x) ∈ DH} → M is injective
and a smooth immersion.

Example 3.41. Consider the Hamiltonian H : R2n → R given by H(x) = 1
2 |x|

2 =
1
2(|q|2 + |p|2) which describes a particle in Rn of mass m = 1 subject to the force exerted
by and ideal spring. We identify R2n = Cn. By Assignment 1, Exercise 5, we have
XH(x) = −ix with the flow ϕH : R× Cn → Cn given by ϕtH(x) = e−itx.

Example 3.42. Consider M = S2 ⊂ R3 with the symplectic form ω given by Exam-
ple 3.3: ωx(v, w) = x · (v×w). Look at the height function H : S2 → R, H(x) = x3. We
have XH(x) = (−x2, x1, 0) and ϕtH(x) = (Rt(x1, x2), x3) where Rt : R2 → R2 denotes
the counterclockwise rotation by t.

Definition 3.43. A Hamiltonian diffeomorphism of M is a map ϕ : M →M for which
there exists a smooth function H : [0, 1] × M → R such that DH = [0, 1] × M and
ϕtH : M → M is surjective for all t and ϕ = ϕ1

H . We denote by Ham(M,ω) the set of
Hamiltonian diffeomorphisms.

Remark 3.44. It follows from Remark 3.40 that every Hamiltonian diffeomorphism is
in fact a diffeomorphism of M . If H has compact support then the global definition is
automoatic. This is the case if M is closed. It follows from Proposition 3.37 that every
Hamiltonian diffeomorphism is a symplectomorphism.

Exercise 3.45. Find and example of a triple (M,ω,H) such that DH 6= I ×M . Find
an example in which ϕtH is not surjective for some t.

Definition 3.46. Let I be an interval. A Hamiltonian isotopy is a smooth map ϕ : I ×
M → M such that ϕt0 ∈ Ham(M,ω) for some t0, ϕt is surjective for all t and there
exists a function H : I ×M → R such that

d
dtϕ = XHt ◦ ϕt

Remark 3.47. It follows from Remark 3.40 and Proposition 3.48 that for every Hamilto-
nian isotopy the map ϕt is a Hamiltonian diffeomorphism for all t.
If M is closed then conversely, if ϕ : I ×M →M is such that ϕt ∈ Ham(M,ω) for all

t, there exists a function H : I ×M → R such that d
dtϕ = XHt ◦ ϕt. The proof of this

statement uses the flux homomorphism.

Proposition 3.48.

1. For every smooth function H : M → R and ϕ ∈ Symp(M,ω) we have

XH◦ϕ = ϕ∗XH = ( dϕ)−1XH ◦ ϕ.
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2. Ham(M,ω) is a normal subgroup of Symp(M,ω).

Proof. The first part follows from Assignment 9. For the second part, let ϕ,ψ ∈
Ham(M,ω). Choose smooth functions F,G : [0, 1] × M → R such that ϕ = ϕ1

F and
ψ = ϕ1

G. We have

d
dt(ϕ

t
F ◦ ϕtG) = XF t ◦ ϕtF ◦ ϕtG + ( dϕtF )XGt ◦ ϕtG

= (XF t + dϕtFXGt ◦ (ϕtF )−1) ◦ ϕtF ◦ ϕtG
= (XF t+Gt◦(ϕtF )−1) ◦ ϕtF ◦ ϕtG

It follows that (ϕtF ◦ϕtG) is the Hamiltonian flow of F t+Gt◦(ϕtF )−1, so ϕ◦ψ ∈ Ham(M,ω).
The Hamiltonian flow of −F t ◦ ϕtF is (ϕtF )−1, so ϕ−1 ∈ Ham(M,ω). Let ϕ ∈

Ham(M,ω) and ψ ∈ Symp(M,ω). We show ψ∗ϕ = ψ−1 ◦ϕ ◦ψ ∈ Ham(M,ω). Choose a
smooth function H : [0, 1]×M → R such that ϕ1

H = ϕ and write Ht = H(t,_). Consider
the map ϕ̃ : [0, 1]×M →M with ϕ̃t = ψ∗ϕtH . This solves the equation

d
dt ϕ̃

t = d(ψ−1) d
dtϕ

t
H ◦ ψ = d(ψ−1)XHt ◦ ψ ◦ ϕ̃t = XHt◦ψ ◦ ϕ̃t.

Hence, ϕ̃ is the Hamiltonian flow of Ht ◦ ψ. Since ϕ1
H = ϕ it follows that ψ∗ϕ ∈

Ham(M,ω).

Remark 3.49. For an alternative proof that Ham(M,ω) is closed under composition,
given Hamiltonian isotopies ϕt and ψt, consider

χt =
{
ϕ2t 0 ≤ t ≤ 1/2
ψ2t−1 ◦ ϕ1 1/2 < t ≤ 1.

By reparametrising we may achieve that χ is smooth and the Hamiltonian flow of a
time–dependent function. Since χ1 = ψ1 ◦ϕ1 this shows that Ham(M,ω) is closed under
composition.
Formally, the group Ham(M,ω) is a Lie subgroup of Symp(M,ω) with Lie algebra

isomorphic to C∞(M)/{locally constant functions}.
Remark 3.50. In the 1970s Banyaga proved that Ham(M,ω) is simple if M is closed and
connected. The proof can be found in McDuff–Salomon, Theorem 10.25. The Lie bracket
on ‘Lie Ham(M,ω)’ is formally given by the Poisson bracket: Let M be a manifold and
ω a non–degenerate 2–form.

Definition 3.51. The Poisson bracket wrt. ω is the map

{_,_} : C∞(M)× C∞(M)→ C∞(M), {F,G} = ω(XF , XG) = dF (XG)

Proposition 3.52.

1. {{F,G}, H}+ {{G,H}, F}+ {{H,F}, G} = 1
2 dω(XF , XG, XH).
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2. For every pair F,G ∈ C∞(M) we have [XF , XG] = −X{F,G}.

3. Let F,H ∈ C∞(M) such that the flow of H exists globally for all time. Then the
condition F ◦ ϕtH = F for all t is equivalent to {F,H} = 0.

4. Let ϕ : M → M be a symplectomorphism. Then ϕ preserves the Poisson bracket,
i.e.

{F ◦ ϕ,G ◦ ϕ} = {F,G} ◦ ϕ

Proof. We prove the second part. Let F,G ∈ C∞(M), then

[XF , XG] = LXFXG = d
dt

∣∣∣∣
t=0

D(ϕtXF )−1(XG) = d
dt

∣∣∣∣
t=0

XG◦ϕtXF
.

So for any Y ∈ TM we have

ω([XF , XG], Y ) = ω

(
d
dt

∣∣∣∣
t=0

XG◦ϕtXF

)
= d

dt

∣∣∣∣
t=0

ω(XG◦ϕtXF
, Y ) = Y

(
d
dt

∣∣∣∣
t=0

G ◦ ϕtXF

)
.

But the inner function is at a point p ∈M given by

d
dt

∣∣∣∣
t=0

G ◦ϕtXF (p) = d
dt

∣∣∣∣
t=0

G ◦ϕpXF (t) = dG(ϕ̇pXF (0)) = dG(XF ) = {G,F} = −{F,G},

so ω([XF , XG], Y ) = −Y {F,G} = −ω(X{F,G}, Y ), which by non–degeneracy proves the
desired statement. The other parts are proven in Assignment 9.

Remark 3.53. Consider the case in which ω is non–degenerate, i.e. symplectic. By
Proposition 3.37 the vector space X(M,ω) of symplectic vector fields is closed under the
Lie bracket. Furthermore by Proposition 3.52 the Poisson bracket defines the structure
of a Lie algebra und the vector space C∞(M). By the second part of Proposition 3.52
the space Ham Vect(M,ω) of Hamiltonian vector fields is a Lie subalgebra of X(M,ω)
and the map

C∞(M)→ Ham Vect(M,ω), H 7→ XH

is a surjective Lie algebra homomorphism with respect to {_,_} and [_,_]. The ker-
nel of this homomorphism consists of the locally constant functions, so it induces in
isomorphism

Ham Vect(M,ω) ∼= C∞(M)/{locally constant functions}.

The third part means that the following conditions are equivalent:

1. For every solution x : R → M of Hamilton’s equation ẋ = XH ◦ x the function
F ◦ x : R→ R is constant.

2. F and H Poisson commute, i.e. {F,H} = 0.

A function F as in the first condition is called an integral or constant of motion of H.
In particular, the fact {H,H} = 0 implies conservation of energy, i.e. H ◦ x is constant
if x solves Hamilton’s equation.
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3.4 Darboux’ Theorem and Moser isotopy
Theorem 3.54 (Darboux). Let (M,ω) be a 2n–dimensional symplectic manifold and
x ∈ M . There exists an open neighbourhood U ⊂ M of x and a chart ϕ : U → R2n

satisfying ϕ∗ω0 = ω.

Remark 3.55. This means that locally all symplectic manifolds look the same, i.e. are
symplectomorphic. In contrast with this Riemannian manifolds of the same dimension
need not be locally isometric.
Theorem 3.54 is a manifold version of the second part of Theorem 2.13, which implies

that every symplectic vector space of dimension 2n is isomorphic to (R2n, ω0). In contrast
to Theorem 3.54 globally two symplectic forms on a manifoldM may not be isomorphic.
This may happen for example if Vol(M,ω) 6= Vol(M,ω′).

Definition 3.56. A chart ϕ : U → R2n is called a Darboux chart if ϕ∗ω0 = ω.

Proposition 3.57. Let M be a 2n–dimensional manifold, N ⊂M a closed submanifold
and ω0 and ω1 symplectic forms that agree on N . Then there exist open neigbourhoods
U0 and U1 of N and a diffeomorphism ψ : U0 → U1 such that ψ∗ω1 = ω0 and ψ|N = id.

Proof of Theorem 3.54. We choose an open neighbourhood Ũ of x ∈ M and a chart
ϕ̃ : Ũ → R2n such that ϕ̃(x) = 0. By Theorem 2.13 there is an automorphism Φ of the
vector space R2n such that Φ∗ω0 = ((ϕ̃−1)∗ω)ϕ(x) = ωx(( dϕ̃)−1

x _ , ( dϕ̃)−1
x _). We define

ω0 = ω|
Ũ
, ω1 = ϕ̃∗(Φ∗ω0). The hypotheses of Proposition 3.57 are satisfied withM = Ũ

and N = {x}. Hence, there exist U and ψ as in its conclusion. The chart ϕ = Φ ◦ ϕ̃ ◦ ψ
satisfies ϕ∗ω0 = ω.

Remark 3.58. The proof of Proposition 3.57 is based on Moser’s argument on the isotopy
of symplectic forms. Roughly speaking, the argument shows that for every family of
symplectic forms ωt on a manifold M with an exact time derivative d

dtω
t = dαt there

exists a smooth isotopy (ψt) such that ψ∗t ωt = ω0. The idea is to obtain this isotopy as
the flow of a time–dependent vector field. Hence, suppose d

dtψt = Xt ◦ ψt and ψ0 = id.
Then the equation ψ∗t ωt = ω0 holds, provided that d

dt(ψ
∗
t ωt) = 0 for all t. We have

d
dt(ψ

∗
t ωt) = ψ∗t ( d

dtω
t + ιXt dωt + dιXtωt) = ψ∗t ( d

dtω
t + dιXtωt).

The relation d
dt(ψ

∗
t ωt) = 0 is satisfied if αt+ ιXtωt = 0. Since ωt is non–degenerate there

is a time–dependent vector field Xt satisfying this equation. Its flow satisfies ψ∗t ωt = ω0.
This argument works as outlined if M is closed. In general one has to take care of the
domain of (ϕt).

Proof of Proposition 3.57. There exists a neighbourhood Ũ0 of N and a 1–form α ∈
Ω1(Ũ0) such that αx = 0 for all x ∈ N and dα = ω1 − ω0. We postpone the proof of
this claim. For t ∈ [0, 1] we define the 2–form ωt = ω0 + t(ω1−ω0). Our hypothesis that
ω1
x = ω0

x for x ∈ N implies that there exists an open neighbourhood Û0 ⊂ Ũ0 of N such
that ωt|

Û0
is non–degenerate for every t. We define Xt to be the unique vector field on

Û0 satisfying α = −ιXtωt = −ωt(Xt,_). The vector field Xt vanishes along N for all t.
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It follows that there is an open neighbourhood U0 ⊂ Û0 of N such that the domain of
the flow (ϕt) of X = (Xt) contains [0, 1]× U0. We have

d
dt(ϕ

∗
tω

t) = ϕ∗t (LXtωt + d
dtω

t) = ϕ∗t (−dα+ ω1 − ω0) = 0.

We define ψ = ϕ1|U0 and U1 = ψ(U0). It follows that ψ∗ω1 = ψ∗0ω
0|U0 = ω0|U0 . Since

Xt vanishes along N for every t, its flow restricts to the identity on N . It follows that
U1 is an open neighbourhood of N .
To prove the claim, choose a tubular neighbourhood of N , i.e. an open neighbourhood

Ũ0 of N and a diffeomorphism χ : νN := (TM |N )/TN → Ũ0. We may e.g. choose a
Riemannian metric g on M . We denote by TN⊥ =

∐
x∈N TxN

⊥ the normal bundle of
N with repsect to g. The restriction of the exponential map of g to a neighbourhood
V of the zero–section in TN⊥ is an embedding. Composing this embedding with a
fibre–preserving diffeomorphism between TN⊥ and V and with the canonical isomor-
phism νN ∼= TN⊥ we obtain a tubular neighbourhood. We define τ = ω1 − ω0 and
ϕt : Ũ0 → Ũ0 with ϕt(χ(x, v)) = χ(x, tv). For t ∈ [0, 1] we define αt ∈ Ω1(Ũ0) by
αtx(v) = τϕt(x)( d

dtϕt(x), dϕt(x)v) and α =
∫ 1
0 α

t dt. Since ϕt|N = id, αt vanishes on N .
Let t > 0. Then ϕt is a diffeomorphism. We may define the vector field Xt( d

dtϕt) ◦ϕ
−1
t .

We have d
dt(ϕ

∗
t v) = ϕ∗tLXtτ = dϕ∗t ιXtτ = dαt. Also, ϕ0(Ũ0) ⊂ N and ϕ1 = id and

therefore ϕ∗0τ = 0 and ϕ∗1τ = τ . We obtain τ = ϕ∗1τ − ϕ∗0τ =
∫ 1
0 dαt dt = dα.

Remark 3.59. The vector field Xt as in the proof becomes singular at t = 0. This does
not affect the argument.
Moser’s argument has another striking consequence, namely, that two symplectic forms

on a closed manifold are isomorphic if they can be joined through a family of cohomol-
ogous symplectic forms:

Theorem 3.60 (Moser stability). Let M be a closed manifold. Suppose (ωt)t∈[0,1] is
a smooth family of cohomologous symplectic forms on M . Then there exists a smooth
isotopy ψ = (ψt) such that ψ0 = id and ψ∗t ωt = ω0.

Definition 3.61 (Isotopic symplectic forms). Two symplectic forms ω0 and ω1 on a
manifoldM are called isotopic if they can be joined by a smooth family of cohomologous
symplectic forms. The two forms are called strongly isotopic if there exists a smooth
isotopy (ψt) of M such that ψ∗1ω1 = ω0.

Remark 3.62. Strong isotopy implies isotopy. Theorem 3.60 shows that the converse is
also true on closed manifolds. It is wrong if M is open, i.e. without boundary and with
no compact connected component.

Example 3.63. Let M = R2 with the standard symplectic form ω0 and ω1 := ϕ∗ω0
where ϕ : R2 → B2

1 ⊂ R2 is an orientation preserving diffeomorphism. Then ω0 and ω1
are isotopic but not strongly isotopic, which can be shown by looking at volumes.

Corollary 3.64 (Classification of closed symplectic surfaces). Let Σ be a closed con-
nected oriented real surface.

41



1. There exists a symplectic form on Σ.

2. Two symplectic forms ω0 and ω1 on Σ are isomorphic if and only if they have the
same total area

Vol(Σ, ω0) =
∫

Σ
ω0 =

∫
Σ
ω1 = Vol(Σ, ω1)

Proof.

1. Σ can be embedded in R3 and every oriented surface in R3 carries an induced
symplectic form.

2. Assume Vol(Σ, ω0) = Vol(Σ, ω1). Since Σ is connected it follows that ω1 − ω0
is exact. For t ∈ [0, 1] define ωt = (1 − t)ω0 + tω1. This is a symplectic form
cohomologous to ω0 and ω1. Applying Moser stability, there is a smooth isotopy
(ψt) of Σ such that ψ0 = id and ψ∗t ωt = ω0. Hence, ω1 and ω0 are isomorphic.

In higher dimensions there is no such easy classification.

Example 3.65. Let (Σ, σ) and (Σ, σ′) be closed connected symplectic surfaces. Write

c =
∫

Σ′
σ′
/∫

Σ
σ.

Let C ∈ R r (Z + cZ). The symplectic forms σ ⊕ σ′ and Cσ ⊕ C−1σ′ are symplectic
forms on Σ × Σ′ with the same volume which are not isomorphic. Moreover, there is a
subset X ⊂ (1,∞) of the cardinality of the continuum such that the symplectic forms
Cσ ⊕ C−1σ′ with C ∈ X are pairwise non–isomorphic.

Remark 3.66. There is a cohomological obstruction for two symplectic forms to be iso-
morphic: If ω and ω′ are isomorphic symplectic forms on a manifold M , then there is an
isomorphism Φ: H∗dR(X)→ H∗dR(X) that maps the integer lattice to itself and satisfies
Φ[ω] = [ω′]. This lattice is the image of

H∗(X,Z)→ H∗(X,R)→ H∗dR(X).

Lemma 3.67. Let M be a closed manifold, k ∈ N and (ωt)t∈[0,1] a smooth family of
cohomologous k–forms. Then there exists a smooth family of (k− 1)–forms αt such that
d
dtωt = dαt.

Remark 3.68. The hypothesis of this lemma implies that for all t there exists α̃t such
that dα̃t = ωt − ω0. If (α̃t) is a smooth family, then we are done.

Proof of Theorem 3.60. This is a consequence of Lemma 3.67 and Remark 3.58.

Proof of Lemma 3.67. Assume first thatM = Rn and that there exists a compact subset
K ⊂M such that suppωt ⊂ K for all t. We denote by π : Rn = Rn−1 × R→ Rn−1 and
π′ : Rn = Rn−1 × R → R the canonical projection and by Ω∗c(Rn) the vector space of
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differential forms on Rn with compact support (of any degree). We define π∗ : Ω∗c(Rn)→
Ω∗−1
c (Rn−1) to be the unique linear map satisfying

(π∗τ)f 7→ 0 (π∗τ) ∧ f dxn 7→ τ

∫ ∞
−∞

f(_, xn) dxn, ∀τ ∈ Ω∗(Rn−1), f ∈ C∞c (Rn),

which is called integration along the fiber. This map is well–defined, i.e. the image
of each form π∗τ ∧ f dxn indeed has compact support. We choose a smooth function
e : R→ R with compact support and integral 1 and define

e∗ : Ω∗c(Rn−1)→ Ω∗+1
c (Rn), τ 7→ (π∗τ) ∧ (e ◦ π′) dxn

We also define E : R → R by E(s) =
∫ s
−∞ e(s′) ds′, and H : Ω∗c(Rn) → Ω∗−1

c to be the
unique linear map satisfying, for all τ ∈ Ω∗(Rn−1) and f ∈ C∞(Rn)

(π∗τ)f 7→ 0

(π∗τ) ∧ f dxn 7→ (π∗τ)
(∫ π′(_)

−∞
f(π(_), xn) dxn − E ◦ π′

∫ ∞
−∞

f(π(_), xn) dxn
)

We claim that

(1− e∗π∗)τ = (−1)k−1( dH −H d)τ ∀τ ∈ Ωk
c (Rn).

This means that H is a chain homotopy between the identity and e∗π∗. This is proved in
Assigment 10 and can be found in Bott and Tu, Differential forms in Algebraic Topology,
rev. 3, Spring, 1982, Prop. 4.6, p.38.
Let τ ∈ Ωk(Rn) be exact, and therefore closed. Then by the above formula and

π∗ d = dπ∗, we get

(π∗)iτ = e∗(π∗)i+ 1τ + dH(π∗)iτ ∀i < k.

Also we have, with τ = dα,

(π∗)k = (π∗)k dα = π∗ d(π∗)k−1α = 0,

since π∗ df = 0 for a function f . Successively inserting these formulas into the next, we
get

τ = dHτ + e∗π∗τ = dHτ + de∗Hπ∗τ + e∗e∗π∗π∗τ = · · · = d
(
k−1∑
i=0

(e∗)iH(π∗)i
)
τ

Let now (ωt)t∈[0,1] be as in the hypothesis of the lemma and t ∈ [0, 1]. Then τt = ωt−ω0
is exact and therefore

d
dtωt = d

dtτt = d
(
k−1∑
i=0

(e∗)iH(π∗)i
)
τt.

The statement of the claim in the caseM = Rn follows. In general, the statement follows
from this and an induction argument over the minimal number of parametrizations
ψi : Rn →M needed to cover M .

Remark 3.69. Compare this to the proof of the Poincaré Lemma with compact support.
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3.5 Symplectic, (co-)isotropic and Lagrangian submanifolds
Let (M,ω) be a symplectic manifold and N ⊂M an embedded submanifold.

Definition 3.70. N is called symplectic/isotropic/coisotropic/Lagrangian if for every
x ∈ N the subspace TxN of (TxM,ωx) is symplectic/isotropic/coisotropic/Lagrangian.

Example 3.71. If (M,ω) and (M ′, ω′) are symplectic manifolds and x′ ∈ M ′ then
M × {x′} is a symplectic submanifold of (M ×M ′, ω ⊕ ω′). Let X be a manifold. For
q ∈ X the fiber T ∗qX is Lagrangian: Let p ∈ T ∗qX, x = (q, p) and u ∈ Tx(T ∗qX) = T ∗qX.
By the definition of λcan we have

λcan
x v = p dπ(x)v = 0.

Hence the pullback of λcan under the inclusion T ∗qX → T ∗X vanishes. Thus the same
holds for the pullback of ωcan = −dλcan. This shows that T ∗qX is Lagrangian with
respect to ωcan.

Let (M,ω) be a symplectic manifold. Every one–dimensional submanifold of M is
isotropic. Every hypersurface in M is coisotropic. More examples of Lagrangian sub-
manifolds:

Proposition 3.72. Let (M,ω) be a symplectic manifold and ϕ : M → M a diffeo-
morphism. Then ϕ is a symplectomorphism if and only if its graph is a Lagrangian
submanifold with respect to (−ω)⊕ ω.

Proof. Assignment 10.

Corollary 3.73. The diagonal {(x, x) | x ∈ M} ⊂ M ×M is Lagrangian with respect
to (−ω)⊕ ω.

Proposition 3.74. Let X be a manifold and α ∈ Ω1(X). Then the graph of α is a
Lagrangian submanifold of T ∗X if and only if α is closed.

Proof. The form ωcan vanishes on the graph of α if and only if α∗ωcan = 0. By Proposi-
tion 3.12 α∗λcan = α, and therefore α∗ωcan = α∗(−dλcan) = −dα. It follows that ωcan

vanishes on grα if and only if dα = 0.

Corollary 3.75. The zero section in T ∗X is Lagrangian.

Proof. This follows from Proposition 3.74 with α = 0.

Exercise 3.76. Let X be a manifold and Y ⊂ X a submanifold. Prove that the
annihilitor

TY 0 := {(q, p) ∈ T ∗X | q ∈ Y, p|TqY = 0}

is a Lagrangian submanifold of T ∗X with respect to ωcan.
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Proposition 3.72, Proposition 3.74 and Exercise 3.76 show that Lagrangian submani-
folds show up in various situations. In fact, the symplectic geometer A. Weinstein came
up with the motto ‘everything is a Lagrangian submanifold’ and he created a dictionary
in which he interpreted many concepts of symplectic geometry in terms of Lagrangian
submanifolds.

Example 3.77. Let (M,ω) be a symplectic manifold and ϕ ∈ Symp(M,ω). The fixed
points of ϕ correspond bijectively to intersection points of the graph of ϕ with the
diagonal ∆ := {(x, x) | x ∈M} ⊂M ×M via the map x 7→ (x, x). By Proposition 3.72
grϕ and ∆ are Lagrangian submanifolds of (M ×M, (−ω)⊕ ω).

Symplectic, isotropic, coisotropic and Lagrangian submanifolds admit normal forms.
These are consequences of a normal form for a general submanifold. In order to state
this result we need:

Definition 3.78. Let X be a smooth manifold and π : E → X a real (smooth) vector
bundle. A symplectic bilinear form on E is a collection ω := (ωx)x∈X , where ωx is a
symplectic bilinear form on Ex which varies smoothly in x. We call (E, π, ω) a (smooth)
symplectic vector bundle. An isomorphism (covering the identity on the base) between
two symplectic vector bundles (E, π, ω) and (E′, π′, ω′) overX is a (smooth) isomorphism
of vector bundles Φ: E → E′ such that π′ ◦ Φ = π and Φ∗ω′ = ω.

Remark 3.79. The smoothness condition on ω means that ω is a smooth section of the
exterior product E∗ ∧ E∗.

Example 3.80. Let E → X be a smooth vector bundle. We equip E ⊕ E∗ with the
symplectic bilinear form ωE defined by

ωE((w,ϕ), (w′, ϕ′)) := ϕ′(w)− ϕ(w′).

The pair (E ⊕E∗, ωE) is a symplectic vector bundle, which generalizes the definition of
the canonical bilinear form on W ×W ∗ for a vector space W . Let (E,ω) be a symplectic
vector bundle over X and W ⊂ E a subbundle. We denote

Wω = {(x, v) | x ∈ X, v ∈Wωx
x }

This is a (smooth) subbundle of E. Assume that W ∩Wω has constant rank. Then
this is a subbundle of E. We endow the quotient bundle W/(W ∩Wω) with the bilinear
symplectic form ωW defined by

ωW (v +W ∩Wω, v′ +W ∩Wω) := ω(v, v′)

Exercise 3.81. Prove that this is a symplectic bilinear form. Compare to subsection 2.3.

The following theorem is the main result of this section:

Theorem 3.82 (Normal form). Let M be a manifold, ω0 and ω1 symplectic forms on M
and N ⊂M a closed submanifold. We denote by ι : N →M the inclusion. Assume that
ι∗ω0 = ι∗ω1 and K := TN ∩ TNω0 has constant rank and the symplectic vector bundles
(TNωi/K, ωTN

ωi

i ) with i ∈ {0, 1} are isomorphic. Then there exist neighbourhoods U0
and U1 of N and a diffeomorphism ϕ : U0 → U1 such that ϕ|N = id and ϕ∗ω1 = ω0.
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Remark 3.83. We have K = TN ∩ TNω0 = TN ∩ TNω1 = ker(TN 3 (x, v) 7→
(x, (ωi)x(v,_)|TxN ) ∈ T ∗N). Theorem 3.54 is a consequence of Theorem 3.82.

Corollary 3.84 (A Weinstein symplectic neighbourhood theorem). Assume that ι∗ω0 =
ι∗ω1, this restriction is symplectic and the bundles (TNωi , ωi|TNωi ) are isomorphic for
i ∈ {0, 1}. Then there exist U0, U1 and ϕ as in the conclusion of Theorem 3.82.

Corollary 3.85 (A Weinstein Lagrangian neighbourhood theorem). Let (M,ω) be a
symplectic manifold and L ⊂M a closed Lagrangian submanifold. Then there exists an
open neighbourhood U ⊂ T ∗L of the zero section and V ⊂M of L and a diffeomorphism
ϕ : U → V such that ϕ|L = id and ϕ∗ω = ωcan.

Proof. Since L is Lagrangian, the map Φ: νL = (TM |L)/TL→ T ∗L defined by Φ(x, v+
TxL) := (x, ωx(v,_)) is a well–defined isomorphism (Check this!). We choose a tubular
neighbourhood for L, i.e. an open neighbourhood Ṽ ⊂ M of L and a diffeomorphism
χ : νL → Ṽ that is the identity on L. Compare to the proof of Proposition 3.57. Applying
Theorem 3.82 to the forms ω0 = ωcan and ω1 = (Φ−1)∗χ∗ω there exist open neighbour-
hoods U0, U1 of L in T ∗L and a diffeomorphism ψ : U0 → U1 satisfying ψ|L = id and
ψ∗ω1 = ω0. The triple U := U0, V := χ ◦ Φ−1(U1), ϕ := χ ◦ Φ−1 ◦ ψ has the required
properties, since ϕ∗ω = ψ∗(Φ−1)∗χ∗ω = ψ∗ω1 = ω0 = ωcan.

Remark 3.86. Together with the fact that the embedding of L as the zero section of T ∗L
is Lagrangian, this result classifies germs of neighbourhoods of Lagrangian embeddings
of a given manifold L up to diffeomorphisms of such neighbourhoods that intertwine the
embeddings and the symplectic structures.
Theorem 3.82 immediately implies normal form results for (co–)isotropic submanifolds.

(See Assignment 11).
The proof of Theorem 3.82 is based on Proposition 3.57, which was already used in

the proof of Darboux’ Theorem, Theorem 3.54. We also need

Proposition 3.87 (Whitney Extension Theorem). Let M be a manifold, N ⊂ M a
submanifold and Ψ a smooth automorphism of TM |N that restricts to the identity on TN .
Then there exists an open neighbourhood U ⊂ M of N and an embedding ψ : U → M
such that ψ|N = id and dψ(x) = Ψx for all x ∈ N .

Remark 3.88. The automorphism Ψ in this result serves as a germ for the embedding ψ.

Proof. Assignment 11.

Proposition 3.89 (Subbundles of symplectic vector bundles). Let (E,ω) be a symplectic
vector bundle over a manifold X and W0 ⊂W ⊂ E subbundles such that W = W0 ⊕K,
where K := W ∩Wω. Then there exists an iosmoprhism

Φ: (E,ω)→ (W/K,ωW )⊕ (Wω/K, ωW
ω)⊕ (K ⊕K∗, ωK)

such that Φ(w0 + w) = (w0 +K, 0, w, 0) for all w0 ∈W0 and w ∈ K.
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Proof of Theorem 3.82. Since by hypothesis K := TN ∩ TNω0 has constant rank, there
exists a subbundleW0 ⊂ TN such that TN = W0⊕K. By Proposition 3.89 for i ∈ {0, 1}
there exists an isomorphism

Φi : (TM |N , ωi)→ (TN/K,ωTNi )⊕ (TNωi/K, ωTN
ωi

i )⊕ (K ⊕K∗, ωK)

such that Φi(w0 +w) = (w0 +K, 0, w, 0) for all w ∈W0 and w ∈ K. By hypothesis there
exists an isomorphism between symplectic the vector bundles (TNωi/K, ωTN

ωi

i ). Com-
bining such an isomorphism with Φ0 and Φ1 we obtain an isomorphism Ψ: (TM |N , ω0)→
(TM |N , ω1) that restricts to the identity on TN (Check this!). By Proposition 3.87 there
exists an open neighbourhood U ⊂ M of N and an embedding ψ : U → M such that
ψ|N = id and dψ(x) = Ψx for all x ∈ N . It follows that ψ∗ω1 = Ψ∗ω1 = ω0 along N and
the triple N,ω0, ω1 satisfies the requirements of Proposition 3.87. Applying that result
there exist neighbourhoods U0 ⊂ U and U1 ⊂ ψ(U) and a diffeomorphsim ψ′ : U0 → U1
that restricts to the identity on N and satisfies ψ′∗ω1 = ω0. The triple U0, U1, ϕ := ψ◦ψ′
has the properties required by the conclusion of Theorem 3.82.

We will prove Proposition 3.89 by reducing to the case in whichW ⊂ E is a Lagrangian
subbundle. In this case we may extend the proof of Theorem 2.53 to the vector bundle
setting. The main ingredient is

Lemma 3.90 (Lagrangian complement). Let X be a manifold, (E,ω) a symplectic
vector bundle over X and W ⊂ E a Lagrangian subbundle. Then there exists a (smooth)
Lagrangian subbundle W ′ ⊂ E that is complementary to W , i.e. W ∩W ′ = 0.

Remark 3.91. This is a generalization of Lemma 2.58.

Proof of Proposition 3.89. Consider the case in which W is Lagrangian. Then W0 = 0.
We choose a complementary Lagrangian subbundle W ′ ⊂ E as in Lemma 3.90. We
define

Φ: E →W ×W ∗, Φ(x, v) := (x,w, ω(w′,_)|W )

where x ∈ X and (w,w′) ⊂ Wx × W ′x is the unique pair satisfying v = w + w′. It
follows as in the proof of Theorem 2.53 that this map is well–defined and restricts to an
isomorphism Ex → Wx ×W ∗x , for every x ∈ X, and satisfies Φ∗ωW = ω (Check this!).
Furthermore, Φ is smooth. So it has the disired properties. This proves Proposition 3.89
if W is Lagrangian. Consider now the general situation. We choose a subbundle W1 of
Wω that is complementary to K := W ∩Wω, i.e. Wω = W1 ⊕K. We may for example
choose a bundle metric on Wω and define W1 := K⊥ with respect to this metric. We
define E′ := (W0⊕W1)ω. It follows from linear algebra thatWi is a symplectic subbundle
of E for i ∈ {0, 1} (Check this!). Therefore, by what we proved above, there exists an
isomorphism Φ′ : (E′, ω|E′) → (K ⊕K∗, ωK) satisfying Φ′(w, 0) = (w, 0) for all w ∈ K.
We define the map

Φ: E → (W/K)⊕ (Wω/K)⊕K ⊕K∗, Φ(x, v) := (x,w0 +K,w1 +K,Φ′w′),

where wi ∈ (Wi)x and w′ ∈ E′x are the unique vectors such that v = w0 +w1 +w′. This
map has the required properties.
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Proof of Lemma 3.90. The statement follows from the proof of Lemma 2.58 using the
fact that there exists a smooth subbundle U inside E that is complementary to W .

Remark 3.92. There is an alternative construction of a Lagrangian complement of a
Lagrangian subspaceW of (V, ω). Choose a linear structure J on V that is ω–compatible.
Define W ′ = JW .

Theorem 3.93. Let (M,ω) be a closed symplectic manifold, and equip the group of
Hamiltonian diffeomorphisms Ham(M,ω) with the C1–topology. Define CritM to be the
minimal number of critical points of a smooth real valued function on M . There exists
a C1–neighbourhood U of the identity in Ham(M,ω) such that every ϕ ∈ U has at least
CritM fixed points.

Remark 3.94. This is the statement of the Arnold Conjecture, but we have the additional
C1–closeness hypothesis.

Proof. If H1
dR(M) = 0 then this follows from Assignment 11, Exercise 5. The idea of

the proof is the following: By Corollary 3.85 we find ψ : U ⊂ M × M → V ⊂ T ∗∆
(where ∆ = {(x, x) | x ∈ M} is the diagonal submanifold) such that ψ∗ω = ωcan and
ψ|∆ = id. If ϕ ∈ Ham(M,ω) is C1–close to the identity, then grϕ ⊂ U and ψ(grϕ) is
C1–close to the zero section in T ∗∆ ∼= T ∗M , so it is the graph of a 1–form α ∈ Ω1(M).
By Proposition 3.72, gr(ϕ) is Lagrangian and by therefore, by Proposition 3.74, dα =
0. Since H1

dR(M) = 0 by assumption, α is exact, i.e there exists a smooth function
f : M → R such that df = α. So the fixpoints of ϕ correspond to critical points of f .
The statement of the theorem follows. For the general situation without H1

dR(M) = 0
see [MS:344] IST Proposition 11.5.

3.6 Symplectic and Hamiltonian Lie group actions, momentum maps,
Marsden–Weinstein quotients

Noether’s Theorem states that every continous symmetry of configuration space that
preservces the Lagrangian function gives rise to a conserved quantity (integral of motion).
Such a symmetry gives rise to a Hamiltonian action of the Lie group R on phase space
T ∗X that preserves the Hamiltonian function corresponding to the Lagrangian function
via Legendre transform.
Conserved quantities are important in mechanics, since they can be used to decrease

the number of degrees of freedum. The notion of a symplectic (ore Marsden–Weinstein)
quotient makes this precise. Such quotients are associated with Hamiltonian Lie group
actions. the definition of such an action involves the notion of momentum maps, which
generalizes linear and angular momentum. We will see how to generalize Marsden–
Weinstein quotients to symplectic quotients of regular presymplectic manifolds and hence
of regular coisotropic submanifolds. This yields many examples of symplectic manifolds.
Let (M,ω) be a symplectic manifold, G a Lie group and g = LieG = T1G the Lie

algebra of G.
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Definition 3.95. The adjoint representation (or action) of G is

Ad = AdG : G× g→ g, Adg ξ := Ad(g, ξ) := d
dt

∣∣∣∣
t=0

g exp(tξ)g−1 ∀g ∈ G

where exp: g → G denotes the exponential map, i.e. exp(ξ) = γ(1) if γ : R → G is the
unique smooth group homomorphism with γ̇(0) = ξ.
Definition 3.96. A (smooth) action of G on M is called symplectic if every element of
G acts by a symplectomorphism. It is called Hamiltonian if it is symplectic and there
exists a smooth function µ : M → g∗ such that µ(gx) = Ad∗g−1 µ(x) = µ(x) Adg−1 and
d〈µ, ξ〉 = ω(Xξ,_). A map with these properties is called momentum map for the action
of G on M . Here g∗ is the dual of g, 〈µ, ξ〉 : M → R is defined by x 7→ 〈µ(x), ξ〉 = µ(x)ξ
and (Xξ)x = DeRx(ξ) (where Rx : G→M, g 7→ gx) is the fundamental vector field of ξ.
Remark 3.97. This means that µ is equivariant with respect to G �M and the coadjoint
representation of G (the dual of the adjoint representation). The condition d〈µ, ξ〉 =
ω(Xξ,_) means that µ generates the infinitesimal action of g on M .
A momentum map is in general not unique. However if M is connected then it is

unique up to adding a central element ϕ ∈ g∗. This means that Ad∗g ϕ = ϕ for all g ∈ G.
The next exercise shows that if G is connected then in the definition of a Hamiltonian

action the condition that the action is symplectic is redundant.
Exercise 3.98. Let (M,ω) be a symplectic manifold and G a Lie group. Fix a smooth
action of G on M for which there exists a smooth map µ : M → g satisfying d〈µ, ξ〉 =
ω(Xξ,_) for all x ∈ M and ξ ∈ g. If G is connected then every element of G acts by a
Hamiltonian diffeomorphism.
Remark 3.99. It follows that the action is symplectic.
Example 3.100. The trivial action of a Lie group on a symplectic manifold is Hamil-
tonian. Its momentum map is µ = 0: M → g∗.
Example 3.101 (standard Hamiltonian action of the unitary group). Let k, n ∈ N and
G := U(k) act on Ck×n by left multipliction of matrices. We equip Ck×n = R2kn with the
standard symplectic form ω0. We define the inner product 〈_,_〉 on u(k) := LieU(k)
by 〈ζ, ζ ′〉 = tr(ζ∗ζ ′). The map

µ : Ck×n → u(k)∗, 〈µ(Θ), ξ〉 := 〈 i2(1−ΘΘ∗), ξ〉

is a momentum map for the action (Assignment 12).
Remark 3.102. If k = 1 in this example then the circle U(1) = S1 acts on C1×n = Cn
via w · z := (wz1, . . . , wzn), with the moment map µ : Cn → LieS1 = iR given by
µ(z) :− i

2(1− |z|2). Here we identify LieS1 with its dual via the standard inner product
〈_,_〉 on LieS1. Under the canonical identification

R/2πZ 3 (t+ 2πZ) 7→ eit ∈ S1

this momentum map corresponds to the function H : Cn → R given by H(z) := 1
2(1 −

|z|2). Threfore, it follows from Assignment 1, Exercise 5 and Remark 3.103 below that
i
2(1− |z|2) is indeed a momentum map of the action of S1 on Cn.
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Remark 3.103 (Hamiltonian actions of the real line). Let (M,ω) be a symplectic man-
ifold. A smooth action of R on M is Hamiltonian if and only if X1, the fundamental
vector field of 1 ∈ LieR = R, is Hamiltonian. In this case the map µ : M → R∗ satis-
fying 〈µ(x), ξ〉 := H(x)ξ, is a momentum map. Here H : M → R is any function with
Hamiltonian vector field X1.

Example 3.104. We define M := S2 ⊂ R3 and equip it with the standard symplectic
form (see Assignment 1, Exercise 6). The circle action on S2 given by rotation about the
x3–axis is Hamiltonian with the Hamiltonian function H(x) = x3 given by the height
function. This follows from Assignment 9, Exercise 2.

Remark 3.105 (action induced by a Lie group homomorphism). Let (M,ω) be a sym-
plectic manifold, G and G′ Lie groups and ϕ : G′ → G a Lie group homomorphism. We
fix a Hamiltonian action of G on M with momentump map µ : M → g∗. Then the map

G′ ×M →M, (g′, x) 7→ ϕ(g′)x

is a Hamiltonian action of G′ with moment map µ = µ dϕ(1) : M → g′∗ = (LieG′)∗ (see
Assignment 12).
In particular, using Remark 3.103 if S1 ∼= R/Z acts on (M,ω) in a Hamiltonian way

with Hamiltonian function (corresponding to the momentum map) H : M → R then R
acts on M in a Hamiltonian way via t · x := (t + Z)x with the same H. Question: Is
the converse also true? Given a Hamiltonian action of R, do we get a Hamiltonian circle
action?

Example 3.106. Let G be a Lie group. For g ∈ G we denote by

Lg, Rg : G→ G, Lgh = gh, Rgh = hg

the left and right translations by g. The action of G on T ∗G given by

g · (h, ϕ) := (gh, ϕ dLg(h)−1)

is Hamiltonian with moment map

µ : T ∗G→ g∗, µ(g, ϕ) := ϕ dRg(1).

See Assignment 12.

Remark 3.107. The condition that µ is G–equivariant can not be dropped from the
definition of a Hamiltonian action. Consider e.g. M = R2 equipped with the standard
symplectic form and the standard action of R2 on R2 given by addition. The map

u : R2 → (LieR2)∗ = R2, 〈µ(q, p), (ξ, η)〉 := pξ − qη

generates the infinitesimal action of LieR2 on R2 (Check this!). However, the action
is not Hamiltonian (i.e. the map µ cannot by chosen invariant under the action). See
Assignment 12.
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Remark 3.108. The GL(k,C)–action on Ck×n is not Hamiltonian. In fact, it is not even
symplectic, e.g. 1

2 does not preserve ω0.
Given a Hamiltonian action, we can obtain a Hamiltonian S1–action out of it if and

only if Z acts trivially. If this is the case, for any t+Z ∈ R/Z ∼= S1, define (t+Z)x := t·x.

Example 3.109 (exact actions are Hamiltonian, induced action on a cotangent bundle).
Let M be a manifold, λ a 1–form on M , G a Lie group and ϕ : G×M →M an action.
We denote by ξM = Xξ the infinitesimal action of ξ ∈ g on M . We define

ω := −dλ, µ : M → g∗, 〈µ, ξ〉 = ιξMλ = λ(ξM ).

Assume that ϕ preserves λ, i.e. ϕ∗gλ = λ for all g ∈ G. Then µ is a momentum map for
the pair (ω, ϕ). Hence the action ϕ is Hamiltonian (See Assignment 12). In particular,
let X be a manifold. We fix a smooth action of G on X. We define the induced action
ϕ of G on T ∗X by

ϕg(q, p) := (gq, p dLg(q)−1) ∈ T ∗X

By Proposition 3.7 the map ϕg : T ∗X → T ∗X preserves the canonical 1–form λcan.
It follows that the action ϕ is hamiltonian with respect to ωcan = −dλcan with the
momentum map µ : T ∗X → g∗ given by

〈µ(x), ξ〉 := λcanξT ∗X(x) = p dπ(x)ξT ∗X = pξX(q)

for every x = (q, p) ∈ T ∗X and ξ ∈ g.

Remark 3.110. The statement of Example 3.106 follows from Example 3.109. The action
of G on T ∗G induced by left multiplication of G on G is Hamiltonian with momentum
map 〈µ(g, ϕ), ξ〉 = ϕdRg(1) (Check this!).
Remark 3.111. An action as in Example 3.109 is called exact (with respect to λ).

The next result characterizes Hamiltonian actions of connected Lie groups.

Proposition 3.112. Let (M,ω) be a symplectic manifold and G a Lie group. We fix an
action of G on M . If G is connected then the following holds:

1. If µ is a momentum map for the action, then the map

g→ C∞(M), ξ 7→ 〈µ, ξ〉

is a homomorphism of Lie algebras with respect to the Lie bracket on g and the
Poisson bracket on C∞(M).

2. If there exists a homomorphism of Lie algebras

H : g→ C∞(M), ξ 7→ Hξ

such that the fundamental vector field Xξ equals the Hamiltonian vector field XHξ ,
for every ξ ∈ g, then the action is Hamiltonian with momentum map

µ : M → g∗, 〈µ(x), ξ〉 = Hξ(x).
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The proof of the second part of this result is based on

Lemma 3.113. Let M be a manifold, G a Lie group, and ϕ : G ×M → M a smooth
action. Then we have XAdg−1 ξ = ϕ∗gXξ for all g ∈ G and ξ ∈ g.

Proof. Assignment 12.

Proof of Proposition 3.112 part two. We choose a map H : g → C∞(M) as in the hy-
pothesis. We define µ : M → g∗ by 〈µ(x), ξ〉 := Hξ(x) for all x ∈ M and ξ ∈ g. We
show that this is a momentum map: We have d〈µ, ξ〉(x) = dHξ(x) = ω(Xξ(x),_) for all
x ∈M and ξ ∈ g. Therefore, µ generates the infinitesimal action. We show that µ is G–
equivariant: Let x ∈ M , g ∈ G and ξ ∈ g. We claim that 〈µ(gx), ξ〉 = 〈µ(x),Adg−1 ξ〉.
To show this, observe that by Exercise 3.98 G acts by Hamiltonian diffeomorphisms.
Combining this with Lemma 3.113 and the fact that dHη = ω(Xη,_), it follows that

dHAdg−1 ξ = ω(XAdg−1 ξ,_) = ω(ϕ∗gXξ,_) = ω(Xξ, (ϕ−1
g )∗_) = ϕ∗g dHξ = d(Hξ ◦ ϕg).

It follows that HAdg−1 ξ − Hξ ◦ ϕg is constant. (We assume that M is connected).
Therefore, we have

H[Adg−1ξ,Adg−1 η] = {HAdg−1 ξ, HAdg−1 η} = {Hξ ◦ ϕg, Hη ◦ ϕg}

for every η ∈ g. Since by assumption, G is connected, there exists a smooth path
h : [0, 1] → G satisfying h(0) = 1 and h(1) = g. For g0, g1 ∈ G and a vector v ∈ Tg0G
we denote by vg1 = dg0Rg1(v) the differential of the right translation Rg1 : G→ G at g0
applied to v. We define the path η := ḣh−1 : [0, 1] → g. Then we have d

dtϕh = Xη ◦ ϕh
( d

dt(h(t)x) = (ḣ(t)h(t)−1)h(t)x), and therefore
d
dt(Hξ ◦ ϕh) = d(Hξ ◦ ϕh)ϕ∗hXη = ω(XHξ◦ϕh , ϕ

∗
hXη)

= ω(XHξ◦ϕh , XHη◦ϕh) = {Hξ ◦ ϕh, Hη ◦ ϕh} (**)

using Proposition 3.48. We have d
dt(Adg−1 ξ) = Adh−1 [ξ, η] and therefore d

dtHAdh−1 ξ =
HAdh−1 [ξ,η] = {Hξ ◦ ϕh, Hη ◦ ϕh}, where we used that η 7→ Hη(x) is linear. Combining
this with (∗∗), it follows that d

dt(Hξ ◦ϕh−HAdh−−1 ξ) = 0. Integrating this equality in t
andusing that ϕh(0) = 1 = id, we obtain Hξ ◦ ϕg = HAdg−1 ξ. The equality 〈µ(gx), ξ〉 =
〈µ(x),Adg−1 ξ〉 follows. This proves the claim and completes the proof of the second
part of Proposition 3.112.

3.7 Physical motivation: Symmetries of mechanical systems and Noether’s
principle

Let X be a manifold. Noether’s principle states that every continuous symmetry of X
that preserves the Lagrangian function gives rise to a conserved quantity (integral of
motion). Via the Legendre transformation, this is a special case of the following remark
about Hamiltonian mechanics: Let H : M := T ∗X → R be a smooth function (the
Hamiltonian). A symmetry of the corresponding mechanical system is an action of a
Lie group G on phase space M under which H is invariant. Assume that the action is
Hamiltonian. We fix a momentum map µ : M → g∗.
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Remark 3.114 (Noether’s principle). For every ξ ∈ g, the function 〈µ, ξ〉 : M → R is a
constant (integral of motion) for H, i.e. 〈µ, ξ〉 ◦ ϕtH = 〈µ, ξ〉 for all t.

Proof. By hypothesis, we have H(exp(tξ)x) = H(x) for all t ∈ R and x ∈ M . Differen-
tiating with respect to t we obtain 0 = dH(Xξ) = dH(X〈µ,ξ〉) = {H, 〈µ, ξ〉}. Therefore,
the claimed equality follows from Proposition 3.52.

Note: Integrals of motion are important in mechanics, as they can be used to decrease
the degrees of freedom.

Example 3.115 (angular momentum). Consider a particle in R3 subject to a conser-
vative force. Its Hamiltonian is given by H(q, p) = T (p) + U(q), where T is the kinetic
energy and U is the potential energy. Assume that these functions are rotationally invari-
ant, i.e. there exist functions T̃ , Ũ : [0,∞)→ R such that T = T̃ (|_ |) and U = Ũ(|_ |).
(For a Newtonian, i.e. non–relativistic, particle we have T (p) = |p|2/2m). We claim that
the angular momentum q × p is preserved (under the time evolution of the system). To
see this, consider the standard action of SO(3) on R3 given by left–multiplication. The
induced action of SO(3) on T ∗R3 = R3 × (R3)∗ is given by

Φ(q, p) = (Φq, pΦ−1).

Hence it preserves the Hamiltonian H. By Example 3.109 the action is Hamiltonian,
with the momentum map

µ : R3 × (R3)∗ → so(3)∗, 〈µ(q, p), ξ〉 = pξR3(q) = pξq.

The Lie algebra so(3) consists of all antisymmetric real 3× 3 matrices. Hence the map
Φ: R3 → so(3)

Φv :=

 0 −v3 v2
v3 0 v1
−v2 v1 0


is a vector space isomorphism. Identifying R3 with its dual via the standard inner
product, we have µ(q, p)Φ = q×p (Assignment 12). Hence it follows from Remark 3.114
that the angular momentum q × p is a constant of motion for H, as claimed.

Remark 3.116. Under the canonical identification of R3 with its dual, the induced action
of SO(3) on T ∗R3 = R6 is given by the diagonal action Φ(q, p) = (Φq,Φp).
Remark 3.117. The term ‘momentum map’ is motivated by the above example and a
similar example about linear momentum.

3.8 Symplectic Quotients
Symplectic quotients are defined for regular presymplectic manifolds, in particular for
regular coisotropic submanifolds of symplectic manifolds. Let (M,ω) be a symplectic
manifold and G a Lie group, and fix a Hamiltonian G–action on M and a momentum
map µ : M → g∗. If 0 is a regular value then µ−1(0) is a coisotropic submanifold of
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M . Under suitable conditions the corresponding symplectic quotient is the set of orbits
µ−1(0)/G together with a canonical manifold structure and symplectic form induced by
ω. To explain this, we need the following:

Definition 3.118. A presymplectic manifold is a pair (M,ω), where M is a manifold
and ω is a closed 2–form on M of constant corank.

Example 3.119.

• Any manifold equipped with the 2–form 0.

• Any symplectic manifold is presymplectic.

• The product of two presymplectic manifolds.

• (N, ι∗ω), where (M,ω) is a symplectic manifold and ι : N → M is a coisotropic
submanifold.

Definition 3.120. Let (M,ω) be a presymplectic manifold. We define the isotropic leaf
relation to be the set

R(M,ω) = {(x(0), x(1)) : x ∈ C∞([0, 1],M),∀t : ẋ(t) ∈ Tx(t)M
ω}.

Remark 3.121. The set R(M,ω) is an equivalence relation on M (Assignment 13). For
a point x ∈ M we define Mx := Mω

x , the isotropic leaf through x to be the R(M,ω)–
equivalence class of x. We denote the set of these leafs by Mω.
Remark 3.122. The subspaces TxMω ⊂ TxM form an involutive distribution onM , called
the isotropic (or characteristic) distribution. By Frobenius’ theorem such a distribution
is integrable and hence gives rise to a foliation on M , called the isotropic foliation. The
isotropic leafs are the leafs of this foliation.

Definition 3.123. We call (M,ω) regular if there exists a manifold structure on the
set of isotropic leafs Mω, such that the canonical projection π : M → Mω is a (smooth)
submersion.

Theorem 3.124 (symplectic reduction). Let (M,ω) be a presymplectic manifold. As-
sume that it is regular. Then there exists a unique symplectic form ωM on Mω (wrt. the
manifold structure from Definition 3.123) such that π∗ωM = ω.

Remark 3.125. Theorem 3.124 is a manifold version of the linear symplectic reduction of
subsection 2.3. If it exists, then the manifold structure on Mω as in this result is unique.

Definition 3.126. Assume that (M,ω) is regular. We define its symplectic quotient to
be the triple (Mω,A, ωM ), where A is the above manifold structure on Mω.

An important class of examples of regular presymplectic manifolds is given as follows:
Let (M,ω) be a symplectic manifold and G a Lie group. Fix a Hamiltonian action
of G on M and a momentum map µ : M → g∗. Such a collection of data is called a
Hamiltonian manifold. Since µ is G–equivariant, the action of G restricts to an action
on N = µ−1(0). We denote by ι : N →M the inclusion.
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Definition 3.127. An action of a topological group G on a topological space X is called
proper if the map

G×X → X ×X, (g, x) 7→ (x, gx)

is proper.

Example 3.128. Every continuous action of a compact group is proper.

Proposition 3.129. Assume that G acts freely on µ−1(0). Then the following holds:

1. 0 is a regular value of µ and N := µ−1(0) is a coisotropic submanifold.

2. The isotropic leaf through a point x ∈ N is the G–orbit through x.

3. If G also acts properly on µ−1(0) then the pair (N, ι∗ω) is a regular presymplectic
manifold.

Remark 3.130. By the last part of Example 3.119, under the hypotheses of this result,
the pair (N, ι∗ω) is a presymplectic manifold.
This result together with Theorem 3.124 has the following consequence. We denote

by M = µ−1(0)/G the set of orbits in µ−1(0) and by π : µ−1(0) → M the canonical
projection.

Corollary 3.131 (Marsden-Weinstein quotient).

1. If G acts freely and properly on N := µ−1(0) then there exists a manifold structure
and a symplectic form on M such that π is a smooth submersion, and π∗ω = ι∗ω.

2. There exists at most one manifold structure on M for which π is a smooth submer-
sion. For this structure there is at most one 2–form ω on M satisfying π∗ω = ι∗ω.

Under the hypotheses of this corollary we write M//G := µ−1(0)/G for the symplecitc
quotient. The idea behind this notation is that M//G is a ‘doubly reduced space’: First
we reduce from M to µ−1(0) and then to the quotient µ−1(0)/G. The dimension is thus
reduced by twice the dimension of G. The following remark will be unsed in the next
example:
Remark 3.132. Given a continuous and proper action of a topological group G on a
topological space X and a G–invariant subset Y ⊂ X, the restricted action of G on Y
is proper.

Example 3.133. Consider a smooth, free and proper action of a Lie group G on a
manifold X. We define

µ : T ∗X → R, 〈µ(q, p), ξ〉 := p(ξM )(q), ∀ξ ∈ g

By Example 3.109 this is a momentum map for the induced action of G on T ∗X. This
action is free and proper. By Remark 3.132 the same holds for its restriction to µ−1(0) ⊂
T ∗X. Hence (µ−1(0), ι∗ωcan) is a regular (by Proposition 3.129) presymplectic manifold.
By Theorem 3.124 the symplectic quotient µ−1/G = T ∗X//G is well–defined.
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Example 3.134. Let k, n ∈ N and G := U(k) act on Ck×n by left–multiplication. We
equip Ck×n = R2kn with ω0. WE define the inner product 〈_,_〉 on u(k) = LieU(k) by
〈ζ, ζ ′〉 := tr(ζ∗ζ ′). By Remark 3.102 the map

µ : Ck×n → u(k)∗, 〈µ(Θ), ξ〉 := 〈 i2(1−ΘΘ∗), ξ〉

is a momentum map for the action. The zero–level set µ−1(0) is the Stiefel manifold

V (k, n) := {Θ ∈ Ck×n | ΘΘ∗ = 1},

which can be interpreted as the set of orthonormal k–forms on Cn.
Since U(k) is compact, its action on Ck×n is proper. Hence the same holds for its

restriction to V (k, n). This restricted action is also free. Hence (V (k, n), ι∗ω0) is a
regular presymplectic manifold. Its sympletic quotient V (k, n)/U(k) = Ck×n//U(k) is
the complex Grassmannian G(k, n) of k–planes in Cn. (Θ∗Ck ⊂ Cn is such a ‘plane’ for
every Θ ∈ V (k, n) and (UΘ)∗Ck = Θ∗Ck. Also we obtain every k–plane in this way.
Furthermore, if ΘCk = Θ′Ck and Θ,Θ′ ∈ V (k, n), then there exists U ∈ U(k) such
that UΘ = Θ′.) In the case k = 1 this is the complex projective space CPn−1 and the
quotient symplecitc form is called the Fubini Study form. In the standard holomorphic
chart

Cn−1 3 z → [1, z1, . . . , zn−1] ∈ CPn−1

is given by i
2∂∂(log(|z|2 + 1)), where

∂ :=
n−1∑
i=1

∂

∂zi
dzi, ∂ =

n−1∑
i=1

∂

∂zi
dzi.

Remark 3.135. For n = 2 we get CP 1 = S2 ⊂ R3 with the standard symplectic form on
S2.

In the proof of Theorem 3.124 we will use
Remark 3.136. Let (M,ω) be a presymplectic manifold and x0 ∈ M . We denote n :=
dimM , k := co rkω = rk TMω and 2m = rkω. By an exercise in Assignment 13
the isotropic distribution TMω is involutive and hence integrable, i.e. there exists a
foliation chart around x0, or equivalently a local parametrization ψ : Rn →M satisfying
ψ(0) = x0 and dψ(x′)({0} × Rk) = (Tψ(x′)M)ω for all x′ ∈ Rn. This implies that
π ◦ ψ(x′1, x′2) = π ◦ ψ(x′1, y′2) for all x′1 ∈ R2m and x′2, y

′
2 ∈ Rk. It follows that d(π ◦

ψ)(x′1, x′2)v′ = d(π ◦ ψ)(x′1, y′2)v′ ∈ Tπ◦ψ(x′1,x′2)Mω for all x′1 ∈ R2m, x′2, y′2 ∈ Rk and
v′ ∈ Rn.

Proof of Theorem 3.124. We prove existence of ωM . Let x ∈ Mω and v1, v2 ∈ TxM .
We choose a point x ∈ x and vectors v1, v2 ∈ TxM satisfying dπ(x)vi = vi. We define
(ωM )x(v1, v2) := ωx(v1, v2). By Assignment 13 we have ker dπ(x) = (TxM)ωx , and
therefore ωx(v1, v2) does not depend on the choices of vi. We show that it does not
depend on the choice of x ∈ x: Consider first the case in which M = Rn together with
the standard foliation, which corresponds to the distribution whose fiber at x ∈ Rn =
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R2m × Rk is given by {0} × Rk. Let x0, x1 ∈ x. By definition there exists a smooth
path x : [0, 1] → Rn satisfying x(i) = xi for i ∈ {0, 1} and ẋ(t)

∫
(Tx(t)Rn)ω = {0} × Rk.

Denoting by pr: Rn = R2m×Rk → R2m the canonical projection, it follows that pr(x1) =
pr(x0). We write

ω =
∑
i<j

ωij dxi ∧ dxj .

Our assumption that (TxRn)ω = {0} × Rk implies that ωij = 0, if i or j is in {2m +
1, . . . , n}. By hypothesis, we have

0 = dω =
∑
i<j,l

∂lωij dxl ∧ dxi ∧ dxj .

It follows that ∂lωij = 0 for all l ∈ {2m+ 1, . . . , n} and i < j. It follows that ωx0 = ωx1 .
For i ∈ {1, 2} let vi ∈ Tx(Rnω) = Rn/({0} × Rk). We choose vectors vi ∈ Rn such that
dπ(x0)vi = vi + ({0} × Rk) = vi. By the definition of the standard foliation, it follows
that dπ(x1)vii = vi+({0}×Rk) = vi. We also have ωx0(v1, v2) = ωx1(v1, v2). Combining
this, it follows that the right hand side of the equation (ωM )x(v1, v2) = ωx(v1, v2) does
not depend on the choice of representative of x in the case M = Rn with the standard
foliation.
In the general situation let again v1 ∈ Tx(Mω) and x0, x1 ∈ x. Consider the case in

which there exists a smooth path x : [0, 1]→M tangent to TMω and connecting x0 and
x1, and a foliation paramatrization ψ as in Remark 3.136 satisfying x([0, 1] ⊂ U = ψ(Rn).
Recall that this means that ψ(0) = x0 and dψ(x′)({0}×Rk) = (Tψ(x′)M)ω for all x′ ∈ Rn.
The path x′ := ψ−1 ◦ x : [0, 1]→ Rn is tangent to the standard distribution with fiber
{0} × Rk and therefore satisfies pr ◦x′(0) = pr ◦x′(1). We choose vectors v0

i ∈ Tx0M
satisfying dπ(xi0) = vi. We define

vi := d(ψ−1)(x0)v0
i , v1

i := dψ(x′(1))v′i

By Remark 3.136, we have

dπ(x1)v1
i = d(π ◦ ψ)(x′(1))v′i = d(π ◦ ψ)(x′(0))v′i = dπ(x0)v0

i = vi.

Furthermore, the isotropic foliation for ψ∗ω is the standard foliation. (Check this!)
Therefore, by what we already proved, we have

ωx0(v0
1, v

0
2) = (ψ∗ω)x′(1)(v′1, v′2) = (ψ∗ω)x′(1)(v′1, v′2) = ωx1(v1

1, v
1
2).

This shows that (ωM )x is well–defined in the case in which there exist x : [0, 1] → M
and ψ as above. In the general situation we choose a finite collection of foliation charts
that cover the image of x([0, 1]) ⊂ M . The statement then follows from an induction
argument.
We show that ωM is clsed and non–degenerate: Let x ∈ Mω. Since π : M → Mω

is a submersion, by an argument using the Implicit Function Theorem there exists an
open neighbourhood U ⊂ Mω of x and a smooth map f : U → M satisfying π ◦ f = id.
(Compare to Assignment 8 and Assignment 13). Such a map f is called a (local) slice.It
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follows that ωM |U = f∗π∗ωM = f∗ω and therefore ( dωM )|U = f∗ dω = 0. This proves
that ωM is closed.
We show that it is non–degenerate. We denote x := f(x). By Assignment 13 we have

ker dπ(x) = (TxM)ω and therefore im df(x) ∩ (TxM)ω = im df(x) ∩ ker dπ(x) = 0.
The last equality follows from the fact that dπ(x) df(x) = d(π ◦ f)(x) = id. Since
dimMω + co rkω = dimM , it follows that im df(x) + (TxM)ω = TxM . It follows that
df(x)(TxMω)ωM ⊂ (TxM)ω = ker dπ(x) and therefore, using injectivity of df(x), we
have (TxMω)ωM = 0. Hence ωM is non–degenerate.

Uniqueness of the symplecic form on Mω follos from Assignment 13.

Remark 3.137. Let (M,ω,G, µ) be a Hamiltonian manifold. Assume that the action
of G on N := µ−1(0) is free and proper. We denote by ι : N → M the inclusion.
By Proposition 3.129 the pair (N, ι∗ω) is a regular presymplecitc manifold. In this
situation, there is an alternative argument showing that the symplectic form on the
quotient M := µ−1(0)/G does not depend on the choice of a representative x ∈ µ−1(0)
of the given point x ∈M . Namely, this follows from G–invariance of ω.

The proof of the third part of Proposition 3.129 is based on
Theorem 3.138 (Slice theorem). Let M be an n–dimensional manifold, x ∈M and let
a k–dimensional Lie group G act smoothly, freely and properly on M . There exists a
G–invariant embedding ψ : Rn−k ×G→M satisfying ψ(0, g) = gx for all g ∈ G.
Proof. This follows from V. Guillemin, V. Ginzburg, Y. Karshon ‘Moment maps, cobor-
disms, and Hamiltonian group actions’, 2002, Theorem B.24 on page 180, or T. tom
Dieck, ‘Transformation grups’, 1987, Theorem (5.6) on page 40 (for compact G).

Remark 3.139. The reason for the name ‘Slice Theorem’ is that the image ψ(Rn−k×{0})
is a slice for the action of G on M , i.e. a submanifold of M of codimension k that is
transverse to the orbits of G and intersects every orbit at most in one element.
Corollary 3.140. Under the hypotheses of Theorem 3.138 there exists a manifold struc-
ture on the set of orbits M/G such that the canonical projection π : M → M/G is a
submersion.
Proof. Let ι : Rn−k → Rn−k ×G be defined by ι(y) = (y, 1). We show that the set

A := {π ◦ ψ ◦ ι | ψ : Rn−k ×G→M is an equivariant embedding}
is an atlas onM/G. It follows from Theorem 3.138 that A coversM/G, i.e.

⋃
ψ(Rn−k) =

M/G, where ψ := π ◦ ψ ◦ ι. Let ψ,ψ′ ∈ A. We choose equivariant embeddings
ψ,ψ′ : Rn−k × G → M such that ψ = π ◦ ψ ◦ ι. We denote by pr: Rn−k × G → Rn−k
the canonical projection. The transition map from ψ to ψ′ is

ψ
′−1 ◦ ψ = pr ◦ψ′−1 ◦ ψ ◦ ι : ψ−1(im(ψ′)) ⊂ Rn−k → Rn−k.

This map is a diffeomorphism onto its image. Hence the altas A is compatible. By an
elementary argument the induced topology is Hausdorff and second countable.

Proof of Proposition 3.129. For the first and second statement see Assignment 13. The
third statement is an immediate consequence of Corollary 3.140.
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