Vorlesung aus dem Sommersemester 2012

Mathematical Gauge Theory 1

Prof. Dr. Dieter Kotschick

 ${\rm geT}_{\!E}\!{\rm Xt}$ von Florian Stecker

Contents

1	Lie	groups and Lie algebras	2
	1.1	Digression on integrability and the Frobenius theorem	6
	1.2	Actions of Lie groups on manifolds	9
	1.3	Homogeneous spaces	13
2	Prin	ncipal bundles	14
	2.1	Associated bundles	18
	2.2	Connections	20
	2.3	Parallel transport	25
	2.4	Curvature	29
	2.5	Global gauge transformations	35
	2.6	Principal S^1 -bundles	41
	2.7	The Yang–Mills–equations	43

1 Lie groups and Lie algebras

Definition. A smooth/differentiable manifold M is a topological space with the property that

- (1) M is Hausdorff
- (2) M is second countable, i.e. there is a countable basis of its topology
- (3) There exists a covering of M by open U_i , $i \in I$, and homeomorphisms $\varphi_i \colon U_i \to \mathbb{R}^n$ such that when $U_i \cap U_j \neq \emptyset$, then $\varphi_j \circ \varphi_i^{-1} \colon \varphi_i(U_i \cap U_j) \to \varphi_j(U_i \cap U_j)$ is a diffeomorphism.

If $f: M \to N$ is a smooth map between smooth manifolds, then there is a derivative $Df: TM \to TN$. Df is linear on the fibers of TM, i.e. $D_pf: T_pM \to T_{f(p)}N$ is linear, and the following diagram commutes:

 $\mathfrak{X}(M) \coloneqq \{X \colon M \to TM \mid X \text{ is smooth } \land \pi \circ X = \mathrm{id}_M\}$ is the set of smooth sections of TM, i.e. vector fields on M. For $f \in C^{\infty}(M)$ we have $L_X f \in C^{\infty}(M)$, the Lie derivative of f in the direction of X. [X,Y] is the unique vector field with the property $L_{[X,Y]}f = L_X L_Y f - L_Y L_X f$.

Definition. A (real) *Lie algebra* is an \mathbb{R} -vector space \mathfrak{g} together with a bilinear map $[-,-]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying:

- (1) [v, w] = -[w, v]
- (2) [[x,y],z] + [[y,z],x] + [[z,x],y] = 0

Example.

- (1) $\mathfrak{X}(M)$ with [-,-] defined by the Lie bracket is an ∞ -dimensional Lie algebra.
- (2) Let V be any \mathbb{R} -vector space. Then [-,-]=0 defines a Lie algebra. These are abelian Lie algebras.
- (3) $\operatorname{Mat}(n \times n, \mathbb{R}) = \mathfrak{gl}(n, \mathbb{R}), [A, B] = AB BA.$

Definition. A *Lie group* is a group which is also a smooth manifold and has the property that $G \times G \to G$, $(a, b) \mapsto ab^{-1}$ is smooth.

Example.

- (1) Any finite dimensional \mathbb{R} -vector space V with the group structure given by +.
- (2) $GL(n, \mathbb{R})$

(3) subgroups of $GL(n, \mathbb{R})$: O(n), SO(n), $GL(n, \mathbb{C})$, U(n), SU(n).

A Lie group G acts on itself by left multiplication. For any $g \in G$, $\ell_g \colon G \to G$, $a \mapsto ga$ is a smooth map. ℓ_g is a diffeomorphism with inverse $(\ell_g)^{-1} = \ell_{g^{-1}}$.

Definition. A vector field $X \in \mathfrak{X}(G)$ is called *left-invariant* if $X_{ga} = X_{\ell_g(a)} = (D_a \ell_g) X_a$.

Proposition. The subset of left-invariant vector fields in $\mathfrak{X}(G)$ is a linear subspace closed under the Lie bracket [-,-]. Thus it is a Lie algebra.

Proof. X left invariant means $(D\ell_g)X = X \circ \ell_g$ for all $g \in G$. Assume that X, Y are both left invariant. Then $[X,Y] = [(D\ell_g)X, (D\ell_g)Y] = (D\ell_g)[X,Y]$ for all $g \in G$. So [X,Y] is also left–invariant.

Definition. $\mathfrak{X}(G)$ with the Lie bracket [-,-] is the Lie algebra $\mathfrak{g}=\mathrm{L}(G)$ of the Lie group G.

Convention. From now on, G, H are always Lie groups and $\mathfrak{g} = L(G)$, $\mathfrak{h} = L(H)$ its Lie algebras.

Definition. Let G be a Lie group with neutral element $e \in G$. Define ev: $\mathfrak{g} \to T_eG, X \mapsto X_e$.

Proposition. ev is an isomorphism of \mathbb{R} -vector spaces.

Proof.

- (1) ev is clearly linear.
- (2) ev is injective: Suppose $X, Y \in \mathfrak{g}$ and ev(X) = ev(Y). This means $X_e = Y_e \Rightarrow (D_e \ell_g) X_e = (D_e \ell_g) Y_e \Rightarrow X_g = Y_g \Rightarrow X = Y$.
- (3) ev is surjective: Take $v \in T_eG$. Define $X \in \mathfrak{X}(G)$ by $X_g := (D_e\ell_g)(v)$. This is a smooth vector field and $X_{ga} = (D_e\ell_{ga})(v) = (D_e(\ell_g \circ \ell_a))(v) = (D_a\ell_g \circ D_e\ell_a)(v) = (D_a\ell_g)(X_a)$.

Corollary. The dimension of G is constant and equals the dimension of \mathfrak{g} as \mathbb{R} -vector space.

Proof. Denoting by G_g the connected component of G containing $g \in G$, $\ell_g \colon G_e \to G_g$ is a diffeomorphism for every $g \in G$. Thus all connected components have the same dimension and $\dim G_0 = \dim T_e G = \dim \mathfrak{g}$.

Corollary. The tangent bundle of G is globally trivial, i.e. G is parallelizable.

Proof. Consider $G \times \mathfrak{g} \to TG$, $(g, X) \mapsto X_g$. This sends the fiber of $G \times \mathfrak{g}$ over $g \in G$ to T_gG linearly. At the point e we have $(e, X) \mapsto X_e$, which is an isomorphism by the result about the evaluation map. For arbitrary $g \in G$ we have:

$$\{g\} \times \mathfrak{g} \longrightarrow T_g G$$

$$\simeq \bigcap_{\ell_g \times \mathrm{id}_{\mathfrak{g}}} \simeq \bigcap_{\ell_g \ell_g} D_e \ell_g$$

$$\{e\} \times \mathfrak{g} \longrightarrow T_e G$$

This implies that the top horizontal map is an isomorphism, as claimed. \Box

Definition. A one-parameter subgroup of G is a smooth map $s: \mathbb{R} \to G$ with s(0) = e and $s(t_1 + t_2) = s(t_1)s(t_2)$.

Example. Consider $G = U(1) = \{z \in \mathbb{C} \mid |z| = 1\}$. Then $s \colon \mathbb{R} \to U(1), t \mapsto e^{2\pi i t}$ is a (not injective) one–parameter subgroup.

Proposition.

- (1) Every left-invariant vector field on G is complete, i.e. it generates a global flow on G
- (2) For every $X \in \mathfrak{g}$ there is a unique one-parameter subgroup $s_X \colon \mathbb{R} \to G$ such that $\dot{s}_X(0) := D_0 s_X(\partial_t) = X_e$. The flow of X is given by $\varphi \colon \mathbb{R} \times G \to G, (t,g) \mapsto g s_X(t) = \ell_g(s_X(t))$.

Notation. We write $\varphi_t(g) := \varphi(t,g)$.

Proof. Given a left-invariant vector field, there is a local flow at $e \in G$:

$$\varphi \colon (-\varepsilon, \varepsilon) \times U \longrightarrow G$$

where U is an open neighbourhood of e in $G, \varepsilon > 0$. For any $g \in G$ consider

$$\psi \colon (-\varepsilon, \varepsilon) \times \ell_g(U) \longrightarrow G \qquad \psi \coloneqq \ell_g \circ \varphi \circ (\mathrm{id}_{\mathbb{R}} \times \ell_g^{-1}) \quad \Rightarrow \quad \psi_t = \ell_g \circ \varphi_t \circ \ell_g^{-1}$$

Claim: ψ is a local flow around g for X. Proof: $\ell_g(U)$ is an open neighbourhood of g in G. First we check that ψ defines a local flow:

$$\psi_0(h) = g\varphi_0(g^{-1}h) = gg^{-1}h = h$$

$$\psi_{t_1 + t_2} = \ell_g \circ \varphi_{t_1 + t_2} \circ \ell_g^{-1} = \ell_g \circ \varphi_{t_1} \circ \varphi_{t_2} \circ \ell_g^{-1} = \ell_g \circ \varphi_{t_1} \circ \ell_g^{-1} \circ \ell_g \circ \varphi_{t_2} \circ \ell_g^{-1} = \psi_{t_1} \circ \psi_{t_2} \circ \ell_g^{-1} = \ell_g \circ \varphi_{t_1} \circ \ell_g \circ \varphi_{t_2} \circ \ell_g^{-1} = \ell_g \circ \varphi_{t_1} \circ \ell_g \circ \varphi_{t_2} \circ \ell_g^{-1} = \ell_g \circ \varphi_{t_1} \circ \ell_g \circ \varphi_{t_2} \circ \ell_g \circ \varphi_{t_$$

So ψ is a flow generated by some vector field, which we can calculate by differentiating the flow lines of ψ . To do this, consider the flow lines defined by

$$s_h(t) := \psi_t(h) = g\varphi_t(g^{-1}h) = (\ell_g \circ s_{g^{-1}h})(t)$$

Then

$$\dot{s}_g(0) = D_0 s_g(\partial_t) = D_0(\ell_g \circ s_e)(\partial_t) = (D_{s_e(0)}\ell_g \circ D_0 s_e)(\partial_t) = (D_{\varphi_0(e)}\ell_g \circ D_0 s_e)(\partial_t) = D_e \ell_g(D_0 s_e(\partial_t)) = D_e \ell_g(\dot{s}_e(0)) = D_e \ell_g(X_e) = X_g$$

This proves the claim.

These local flows defined at different points in G are all defined for the same time interval $(-\varepsilon, \varepsilon)$, and so define a flow $\overline{\varphi} \colon (-\varepsilon, \varepsilon) \times G \to G$ for X. $\overline{\varphi}$ can be extended to all $t \in \mathbb{R}$, so X is complete.

To prove part (2) fix $X \in \mathfrak{g}$. By (1) we have a global flow $\varphi \colon \mathbb{R} \times G \to G$ for X. Define $s_X(t) := \varphi_t(e)$. Since

$$\varphi_t(g) = (\ell_g \circ \varphi_t \circ \ell_g^{-1})(g) = \ell_g(\varphi_t(e)) = g\varphi_t(e)$$

we have $s_X(0) = \varphi_0(e) = e$ and

$$s_X(t_1+t_2) = \varphi_{t_1+t_2}(e) = \varphi_{t_2+t_1}(e) = \varphi_{t_2}(\varphi_{t_1}(e)) = \varphi_{t_1}(e)\varphi_{t_2}(e) = s_X(t_1)s_X(t_2)$$

Also $\dot{s}_X(0) = X_e$, since s_X is the flow line at e, and the formula $\varphi_t(g) = gs_X(t)$ follows from the claim above. One can easily check that φ defined by this formula is a global flow for any one–parameter subgroup s_X and thus s_X is unique by the uniqueness of global flows.

Definition. The map $\exp: \mathfrak{g} \to G, X \mapsto s_X(1)$ is the exponential map of G.

Example. Let $G = GL(n, \mathbb{R})$ and $\mathfrak{g} = \mathfrak{gl}(n, \mathbb{R}) = \operatorname{Mat}(n \times n, \mathbb{R})$. Then exp is given by the usual exponential function.

Lemma. $s_X(t) = \exp(tX)$.

Proof. Clear.

Definition. A homomorphism of Lie groups is a smooth map $f: G \to H$ which is also a group homomorphism.

Proposition. Any homomorphism $f: G \to H$ as above induces an \mathbb{R} -linear homomorphism $f_*: \mathfrak{g} \to \mathfrak{h}$ such that $f_*[X,Y] = [f_*X, f_*Y]$.

Proof of proposition. Since f is a smooth group homomorphism, it has a derivative at e and f(e) = e.

$$T_{e}G \xrightarrow{D_{e}f} T_{e}H$$

$$\simeq \Big| \text{ev} \qquad \simeq \Big| \text{ev}$$

$$\mathfrak{g} \xrightarrow{f_{*}} \mathfrak{h}$$

Under the homomorphism provided by ev, $D_e f$ corresponds to a unique linear f_* .

Lemma. For any $X \in \mathfrak{g}$ and $g \in G$ we have $(D_g f)(X_g) = (f_* X)_{f(g)}$.

Proof. Direct calculation using the left-invariance of X and f(e) = e.

$$(D_g f)(X_g) = D_g f \circ D_e \ell_g(X_e) = D_e (f \circ \ell_g)(X_e) = D_e (\ell_{f(g)} \circ f)(X_e) =$$

$$= D_e \ell_{f(g)} \circ D_e f(X_e) = D_e \ell_{f(g)} ((f_* X)_e) = (f_* X)_{f(g)}$$

Using this lemma, we can show that $f_*X(h) \circ f = X(h \circ f)$ for any $X \in \mathfrak{X}(M)$ and $h \in C^{\infty}(H)$:

$$(f_*X)(h)(f(g)) = (f_*X)_{f(g)}[h]_{f(g)} = (D_gf)(X_g)[h]_{f(g)} = X_g[h \circ f]_g = X(h \circ f)(g)$$

Thus, applying this successively:

$$[f_*X, f_*Y](h) \circ f = f_*X(f_*Y(h)) \circ f - f_*Y(f_*X(h)) \circ f =$$

$$= X(f_*Y(h) \circ f) - Y(f_*X(h) \circ f) =$$

$$= X(Y(h \circ f)) - Y(X(h \circ f)) =$$

$$= [X, Y](h \circ f) = f_*[X, Y](h) \circ f$$

Since this holds for any $h \in C^{\infty}(H)$, we have $[f_*X, f_*Y] \circ f = f_*[X, Y] \circ f$, so in particular $[f_*X, f_*Y]$ and $f_*[X, Y]$ coincide on $e \in H$, hence they are equal by left–invariance, which proves the proposition.

1.1 Digression on integrability and the Frobenius theorem

Theorem. Let M be a smooth manifold and $X_1, \ldots, X_k \in \mathfrak{X}(M)$ with $[X_i, X_j] = 0$ for all i, j. If $X_1(p), \ldots, X_k(p)$ are linearly independent for some $p \in M$, then there is a chart (U, φ) for M with $p \in U$ and $D\varphi(X_i|U) = \partial_i$ for all $i = 1, \ldots, k$.

Proof. The problem is local, so we may assume M is an open neighborhood of 0 in \mathbb{R}^n and p = 0. We may choose U open around 0 with X_1, \ldots, X_k linearly independent throughout U. After a linear change of coordinates we may assume that

$$X_1(0),\ldots,X_k(0),\partial_k(0),\ldots\partial_n(0)$$

form a basis of \mathbb{R}^n . We may assume that the local flow φ^i for X_i is defined for all $t \in (-\varepsilon, \varepsilon), i = 1, \ldots, k$.

$$f: U \to \mathbb{R}^n$$
 $f(x_1, \dots, x_n) = \varphi_{x_1}^1 \circ \dots \circ \varphi_{x_k}^k(0, \dots, 0, x_{k+1}, \dots, x_k)$

is a smooth map. Moreover f(0) = 0 and $D_0 f(\partial_i) = \partial_i$ for i = k + 1, ..., n. For all $x \in U$ we have, since the flows φ^i commute:

$$D_x f(\partial_i) = X_i(f(x))$$
 $i = 1, \dots, k$

For x = 0 we see that $D_0 f$ is an isomorphism, so f is a local diffeomorphism around 0 by the inverse function theorem. Set $\varphi = f^{-1}$ after possibly shrinking U:

$$D\varphi(X_i|f(U)) = \partial_i \qquad \Box$$

Let M be a smooth manifold of dimension n.

Definition. A rank k distribution on M is a rank k subbundle $E \subset TM$.

What this means is that around every point $p \in M$ there exists an open set U and $X_1, \ldots, X_k \in \mathfrak{X}(M)$ such that

$$E_x = \{X_1(x), \dots, X_k(x)\}$$

Definition. An integral submanifold for E is a k-dimensional submanifold $N \subset M$ with TN = E|N.

Definition. E is called *integrable* if for all $p \in M$ there exists an integrable submanifold N with $p \in N$.

Definition. E is involutive if $[X,Y] \in \Gamma(E)$ whenever $X,Y \in \Gamma(E)$.

Theorem (Frobenius theorem). For a distribution E of rank k on M, the following are equivalent:

- (1) E is integrable.
- (2) E is involutive.
- (3) There is a covering of M by domains of charts (U,φ) with the property that

$$(D\varphi)(E) \ni \partial_i \qquad \forall i = 1, \dots, k$$

Proof.

 $3 \Rightarrow 1$ If $E = \text{span}\{\partial_1, \dots, \partial_k\}$, then the equations

$$x_{k+1} = c_{k+1}$$

$$\vdots$$

$$x_n = c_n$$

define k-dimensional submanifolds for E.

- $1 \Rightarrow 2$ Take $X, Y \in \Gamma(E)$ and $p \in M$. By (1) we have a submanifold $i: N \hookrightarrow M$ with $p \in N$ and E|N = TN. The restrictions of X, Y to N are vector fields on N. Furthermore, $[X, Y]_p \in E_p$.
- $2 \Rightarrow 3$ Everything is local, so we work at $0 \in \mathbb{R}^n$.

Step 1: Consider the projection

$$\pi: \mathbb{R}^n \to \mathbb{R}^k, (x_1, \dots, x_n) \mapsto (x_1, \dots, x_k)$$

If for some point p, $D_p\pi$ is injective on E_p , then the same is true for all x in an open neighbourhood of p.

Step 2: At every point p there is a chart so that w.r.t. the coordinates given by the chart $D_x\pi$ is an isomorphism from E_x to \mathbb{R}^n for all x in the domain of the chart. To prove this, by step 1 it is enough to ensure $D_p\pi$ is injective. We can choose local coordinates (x_1, \ldots, x_k) in such a way that if

$$X_1(p),\ldots,X_k(p)$$

is a basis for E_p , then

$$X_1(p), \ldots, X_k(p), \partial_{k+1}, \ldots, \partial_n$$

is a basis of $T_p\mathbb{R}^n$.

Step 3: Let E, p, U, π be as above. Let $Z_i \in \Gamma(E)$ be the unique section such that $D_x \pi(Z_i(x)) = \partial_i(x)$ for all $x \in U, i = 1, ..., k$. So $Z_1, ..., Z_k$ span E throughout U.

Step 4:

$$D\pi[Z_i, Z_j] = [D\pi Z_i, D\pi Z_j] = [\partial_i, \partial_j] = 0$$

By involutivity, $[Z_i, Z_j] \in \Gamma(E|U)$. But $D\pi$ is an isomorphism on E so $[Z_i, Z_j] = 0$. By the previous theorem, we can find a chart in which $D\varphi(Z_i) = \partial_i$ for i = 1, ..., k. This gives (3) in the Frobenius theorem.

Definition. If E satisfies the conditions in the theorem above and $p \in M$, let L_p be the maximal connected submanifold of E with $p \in L_p$. This is called the *leaf* through p. The collection of all leaves formes a *foliation* of M.

Remark. The leaves of a foliation \mathcal{F} are generally not closed subsets of M and the subspace topology is not the same as the manifold topology of a leaf.

Definition. Let G be a Lie group, $H \subset G$ a subset. H is a Lie subgroup of G if H has a Lie group structure such that the inclusion $i \colon H \hookrightarrow G$ is a homomorphism of Lie groups and an injective immersion.

Theorem. For any Lie group G, there is a bijection between connected Lie subgroups $H \subset G$ and Lie subalgebras $\mathfrak{h} \subset \mathfrak{g}$.

Proof. Suppose $H \subset G$ is a Lie subgroup. Then, since i is an immersion,

$$D_e i: T_e H \to T_e G$$
 and $i_*: \mathfrak{h} \to \mathfrak{g}$,

which are essentially the same maps, are injective. So $i_*(\mathfrak{h})$ is a Lie subalgebra, which can be identified with \mathfrak{h} .

Conversely, let $\mathfrak{h} \subset \mathfrak{g}$ be a Lie subalgebra. Let $E_g := D_e \ell_g(\operatorname{ev}(\mathfrak{h})) \subset T_g G$ for all $g \in G$. This is in fact the evaluation of \mathfrak{h} at g. For every $g \in G$, E_g is a k-dimensional subspace of $T_g G$ with $k = \dim \mathfrak{h}$. The collection of all E_g is a smooth rank k distribution $E \subset TG$.

Step 1: E is involutive, and thus integrable by the Frobenius theorem. To see this, let X_1, \ldots, X_k be a basis for \mathfrak{h} . Then all $X, Y \in \Gamma(E)$ are of the form

$$X = \sum_{i=1}^{k} f_i X_i \qquad Y = \sum_{i=1}^{k} h_i X_i \qquad f_i, h_i \in C^{\infty}(G)$$

Then [X,Y] is a linear combination of the X_i and the $[X_i,X_j]$. Since \mathfrak{h} is a Lie subalgebra, $[X_i,X_j] \in \mathfrak{h}$ and so $[X,Y] \in \Gamma(E)$.

Step 2: Let \mathcal{F} be the foliation of G defined by the integral submanifolds of E, and $H := L_e$. Then $L_g = \ell_g(H)$. Proof: Both sides are connected subsets containing g. L_g is a leaf of \mathcal{F} by definition. Once we prove that $\ell_g(H)$ is a leaf, we have the conclusion by the uniqueness of leaves. For any $a \in G$, $b \in H$ we have

$$T_{ab}\ell_a(H) = D_b\ell_a(T_bH) = D_b\ell_a(E_b) = (D_b\ell_a \circ D_e\ell_b)(\operatorname{ev}(\mathfrak{h})) = D_e\ell_{ab}(\operatorname{ev}(\mathfrak{h})) = E_{ab}$$

so $\ell_a(H)$ is an integral submanifold of E and thus $g \cdot H := \ell_g(H)$ is the leaf of \mathcal{F} through g.

- Step 3: Let $a, b \in H$. Then $aH = H \ni b$, since aH is the leaf through a. But $b \in aH$, implies $a^{-1}b \in H$, so H is a subgroup of G.
- Step 4: The inclusion $i: H \hookrightarrow G$ makes H into a Lie subgroup. Since $D_g i(T_g H) = E_g$, i is an injective immersion, with the manifold structure of H given by its construction as an integral submanifold for E.
- Step 5: This H is the only connected Lie subgroup of G with Lie algebra \mathfrak{h} . To prove this, suppose \overline{H} is another Lie subgroup with Lie algebra \mathfrak{h} . Both H, \overline{H} are injectively immersed in G with the same tangent space $\operatorname{ev}(\mathfrak{h})$ at e. \overline{H} will then be an integral submanifold for E through e. By uniqueness of the leaf through e, we must have $H = \overline{H}$.

Example. The 2-torus $G = T^2 = \mathbb{R}^2/\mathbb{Z}^2$ is a connected Lie group with e = [(0,0)]. The Lie algebra is $\mathfrak{g} = \mathbb{R}^2$ with [X,Y] = 0 for all $X,Y \in \mathfrak{g}$. Every vector subspace $\mathfrak{h} \subset \mathfrak{g}$ is a Lie subalgebra in this case, giving rise to a Lie subgroup. If $\mathfrak{h} = \mathrm{span}(1,\lambda)$, $\lambda \in \mathbb{R} \setminus \mathbb{Q}$, then the corresponding connected Lie subgroup is

$$H = \{ \exp(t(1, \lambda)) \mid t \in \mathbb{R} \}$$

This is densely immersed in T^2 , in particular it is not a closed subgroup.

1.2 Actions of Lie groups on manifolds

Definition. A (left) action of a Lie group G on a smooth manifold M is a smooth map

$$\mu \colon G \times M \to M$$
 $\mu(g, p) = g \cdot p = \ell_q(p)$

such that for any $p \in M$ and $q, h \in G$

$$e \cdot p = p$$
 $q \cdot (h \cdot p) = (qh) \cdot p$

A right action is a smooth map $\mu: G \times M \to M$ such that for any $p \in M$ and $q, h \in G$

$$\mu(e, p) = p$$
 $\mu(q, \mu(h, p)) = \mu(hq, p)$

For a right action, we write $\mu(g,p) = p \cdot g = r_q(p)$. Then the axioms become

$$p \cdot e = p$$
 $(p \cdot h) \cdot g = p \cdot (hg)$

Remark. If $\mu: G \times M \to M$ is a left action, we can define $\overline{\mu}(g,p) = \mu(g^{-1},p)$. This is a right action.

Definition. Let $\mu: G \times M \to M$ be a an action of a Lie group on a smooth manifold.

- (1) μ is effective if for every $g \in G \setminus \{e\}$, there exists $p \in M$ such that $\mu(g,p) \neq p$.
- (2) For $p \in M$, the subset

$$G(p) := \{ \mu(g, p) \mid g \in G \}$$

is the orbit of p under the action.

- (3) The action is transitive if G(p) = M for some $p \in M$ (and thus for all $p \in M$).
- (4) The isotropy group of $p \in M$ is

$$G_p := \{ g \in G \mid \mu(g, p) = p \}$$

Proposition. Let $f: G \to H$ be a homomorphism of Lie groups and $f_*: \mathfrak{g} \to \mathfrak{h}$ the induced Lie algebra homomorphism. Then the following diagram commutes:

$$G \xrightarrow{f} H$$

$$\exp \uparrow \qquad \uparrow \exp$$

$$\mathfrak{g} \xrightarrow{f_*} \mathfrak{h}$$

$$\operatorname{ev} \downarrow \simeq \qquad \simeq \downarrow \operatorname{ev}$$

$$T_e G \xrightarrow{D_e f} T_e H.$$

Proof. $f(\exp(tX))$ is a C^{∞} curve in H passing through e at time t=0. Since f is a homomorphism, this is also a 1-parameter subgroup whose tangent vector at e is $D_e f(\operatorname{ev}(X)) = \operatorname{ev}(f_*(X))$. So $f(\exp(tX))$ is the unique 1-parameter subgroup of H generated by $f_*X = Y$. We know that the 1-parameter subgroup generated by Y is $\exp(tY)$. Therefore

$$f(\exp(tX)) = \exp(tY) = \exp(tf_*X) \xrightarrow{t=1} f(\exp(X)) = \exp(f_*X)$$

The isotropy group G_p is a closed subgroup of G. This means that G_p is actually a Lie subgroup of G (not proved). If we restrict μ from G to G_p , then p is a fixed point for the action of G_p on M.

Under an action $\mu \colon G \times M \to M$, every $g \in G$ gives a diffeomorphism

$$\ell_q \colon M \to M, p \mapsto q \cdot p$$

with inverse $(\ell_g)^{-1} = \ell_{g^{-1}}$.

Lemma. If p is a fixed point of the action μ : $G \times M \to M$, then G acts linearly on T_pM , so we have a representation $G \to \operatorname{GL}(T_pM)$. This is called the isotropy representation of G at p.

Proof. Since p is a fixed point, we have $\ell_g(p) = p$ for all $g \in G$, so $D_p\ell_g \colon T_pM \to T_pM$ is a linear isomorphism since ℓ_g is a diffeomorphism. We obtain a map

$$G \to \mathrm{GL}(T_pM), g \mapsto D_p\ell_g$$

which is smooth since μ is smooth. It is also a homomorphism because of the chain rule:

$$D_p \ell_{g_1 g_2} = D_p (\ell_{g_1} \circ \ell_{g_2}) = D_p \ell_{g_1} \circ D_p \ell_{g_2}$$

Example. The action

$$\mu \colon G \times G \to G, (g, p) \mapsto g \cdot p = \ell_q(p)$$

is effective, transitive, and $G_p = \{e\}$ for all $p \in G$.

Let G act on itself by conjugation:

$$a: G \times G \to G, (g,p) \mapsto g \cdot p \cdot g^{-1} =: a_g(p)$$

Note that g and p commute in G if and only if $a_g(p) = p$. The isotropy group G_p of a point $p \in G$ under the conjugation action a is the centraliser of p in G. If G has a non-trivial center, then the conjugation action a is not effective. One has $G_e = G$ since $geg^{-1} = e$ for all $g \in G$. By the Lemma, we obtain the isotropy representation of a at p = e:

$$Ad: G \to GL(T_eG).$$

This is the adjoint representation of G (on \mathfrak{g}), whereas the map ad defined by

$$T_eG \xrightarrow{D_e \operatorname{Ad}} T_e \operatorname{GL}(T_eG)$$
 $ev \qquad \simeq \qquad ev$
 $g \xrightarrow{\operatorname{ad}} \operatorname{End}(\mathfrak{g})$

with the identification $\operatorname{End}(\mathfrak{g}) = \mathfrak{gl}(T_eG)$ is the *adjoint representation* of \mathfrak{g} . Since ad = Ad_* , it is a homomorphism of Lie algebras. By the proposition, we have the commutative diagram:

Also a_g is a homomorphism of G to itself, so the following diagram commutes:

Notation. Define $\operatorname{ad}_X \colon \mathfrak{g} \to \mathfrak{g}$ by $\operatorname{ad}_X(Y) = \operatorname{ad}(X)(Y)$ for any $X, Y \in \mathfrak{g}$ and $\operatorname{Ad}_g \colon T_eG \to T_eG$ by $\operatorname{Ad}_g(X) = \operatorname{Ad}(g)(X)$ for any $g \in G$ and $X \in T_eG$.

Then $(a_g)_* = \operatorname{Ad}_g = \operatorname{Ad}(g)$, since $(a_g)_*$ is defined by $D_e a_g = \operatorname{Ad}(g)$ by the definition of Ad. Take a vector space V and $G = \operatorname{GL}(V)$. Then the above diagrams become:

$$\begin{array}{ccc} \operatorname{GL}(V) \stackrel{\operatorname{Ad}}{\longrightarrow} \operatorname{GL}(\operatorname{End}(V)) & \operatorname{GL}(V) \stackrel{a_g}{\longrightarrow} \operatorname{GL}(V) \\ \exp & & \exp & \exp & \exp \\ \end{array}$$

$$\operatorname{End}(V) \stackrel{\operatorname{Ad}}{\longrightarrow} \operatorname{End}(\operatorname{End}(V)) & \operatorname{End}(V) \stackrel{a_g}{\longrightarrow} \operatorname{End}(V)$$

We claim that $Ad_q(M) = gMg^{-1}$. This can be seen by

$$Ad_q(M) = D_e a_q(M) =$$

(something is missing here)

Consider $r_{g^{-1}}: G \to G$, the right multiplication by g^{-1} . Recall that $TG \cong G \times \mathfrak{g}$ is a trivialization of TG given by

$$G \times \mathfrak{g} \to TG \quad (p, X) \mapsto (p, X_p)$$

Lemma. Ad_g \in GL(T_eG) is given by the composition of $D_er_{g^{-1}}$ with the identification of $T_{g^{-1}}G$ with T_eG via the trivialization of the tangent bundle by left-invariant vector fields.

Proof. Any tangent vector $v \in T_{g^{-1}}G$ can be identified with $X_e \in T_eG$ for the unique $X \in \mathfrak{g}$ such that $X_{g^{-1}} = v$. This identification is via $D_{g^{-1}}\ell_g$:

$$D_{q^{-1}}\ell_q(v) = D_{q^{-1}}\ell_q(X_{q^{-1}}) = D_{q^{-1}}\ell_q \circ D_e\ell_{q^{-1}}(X_e) = X_e$$

Using this, Ad_G we get the claim:

$$D_{q^{-1}}\ell_g \circ D_e r_{q^{-1}} = D_e a_g = \mathrm{Ad}_g \qquad \Box$$

Definition. Let G be a Lie group and \mathfrak{g} its Lie algebra.

$$C(G) := \{ g \in G \mid gh = hg \, \forall h \in G \}$$

is the center of G and

$$C(\mathfrak{g}) := \{ X \in \mathfrak{g} \mid [X, Y] = 0 \, \forall Y \in \mathfrak{g} \}$$

is the *center* of \mathfrak{g} .

Lemma. Let G be a connected Lie group. Then $\ker Ad = C(G)$.

Proof. If $g \in C(G)$, then $a_g = \mathrm{id}_g$, so $\mathrm{Ad}_g = D_e a_g = \mathrm{id}_{T_e G}$, so $g \in \ker \mathrm{Ad}$. Conversely, suppose that $g \in \ker \mathrm{Ad}$. Then

$$g \exp(tX)g^{-1} = a_g(\exp(tX)) = \exp(\mathrm{Ad}_g(tX)) = \exp(tX)$$

for all $X \in T_eG$. So g commutes with all $h \in G$ containted in a small enough neighbourhood in G, because exp is a local diffeomorphism at $0 \in T_eG$. Every open neighbourhood of e in G generates the connected component of e in G by taking products. Therefore, if G is connected, then $g \in C(G)$.

Corollary. Let G be a connected Lie group. Then C(G) is a closed Lie subgroup whose Lie algebra is the center of \mathfrak{g} .

Proof. The center C(G) is a closed subgroup of G. So it is a Lie subgroup. The Lie algebra of C(G) is $C(\mathfrak{g})$.

Corollary. If G is a connected Lie group, then G is abelian iff \mathfrak{g} has trivial Lie brackets.

1.3 Homogeneous spaces

Let G be a Lie group, $H \subset G$ a closed Lie subgroup. Consider

$$G/H := \{aH \mid a \in G\},\$$

the set of left cosets of H. We denote by

$$\ell_q \colon G/H \to G/H \quad aH \mapsto (ga)H$$

the action induced by left multiplication. For any two $a, b \in G$, there exists $g \in G$ such that $\ell_g(aH) = bH$.

Theorem. G/H has a natural structure as a smooth manifold of dimension $\dim G - \dim H$, such that

$$\pi: G \to G/H \quad a \mapsto aH$$

is a smooth map that admits local smooth sections. π will actually be a submersion.

Proof. This proof will be added later

Corollary. The action

$$\mu \colon G \times G/H \to G/H \quad (g, aH) \mapsto (ga)H$$

defines a transitive smooth action of G on G/H. The isotropy group of H = eH is H.

Proof. μ is a smooth map by the construction of the smooth structure on G/H. μ is a left action of G. The action is transitive, and

$$G_{eH} = \{ g \in G \mid \mu(g, eH) = eH \} = H$$

2 Principal bundles

Definition. A principal G-bundle over a smooth manifold M is a smooth manifold P, a smooth projection $\pi: P \to M$ and a right G-action $:: P \times G \to P$ satisfying:

(a) There is a covering of M by open sets U_{α} , together with diffeomorphisms

$$\pi^{-1}(U_{\alpha}) \to U_{\alpha} \times G \qquad p \mapsto (\pi(p), \varphi_{\alpha}(p))$$

(b) For all $g \in G$, $p \in \pi^{-1}(U_{\alpha})$, we have $\varphi_{\alpha}(r_g(p)) = r_g(\varphi_{\alpha}(p))$, i.e. $\varphi_{\alpha}(pg) = \varphi_{\alpha}(p)g$ (G-equivariance)

G is called the *structure group* of P.

Remark.

- (1) π is a submersion because $\pi^{-1}(U_{\alpha}) \cong U_{\alpha} \times G$ and π_1 is a submersion.
- (2) $\pi^{-1}(m) \cong G$ for all $m \in M$.
- (3) The action of G on P maps $\pi^{-1}(m)$ to itself for all $m \in M$.
- (4) On each fiber $\pi^{-1}(m)$, the G-action is simply transitive, i.e. transitive and has trivial stabilizers. It follows also that G is free on the whole principal bundle P.

Let $X \in \mathfrak{g}$, then $\exp(tX)$ is a one–parameter subgroup of G. By restricting the right action $P \times G \to P$ we obtain a flow on P, which is generated by some vector field $X^* \in \mathfrak{X}(P)$.

Definition. X^* is the fundamental vector field generated by X. X^* is tangent to the fiber of π .

Lemma. For any $g \in G$, $X \in \mathfrak{g}$ and $p \in P$, we have

$$D_p r_g(X_p^*) = (\mathrm{Ad}_{g^{-1}}(X))_{pg}^*$$

Proof. We have the commutative diagram

$$G \xrightarrow{a_{g-1}} G$$

$$\exp \bigcap \bigoplus_{Ad_{g-1}} \bigoplus g$$

so, defining $Y := \operatorname{Ad}_{g^{-1}}(X)$: $\exp(tY) = \exp(t \operatorname{Ad}_{g^{-1}}(X)) = \exp(\operatorname{Ad}_{g^{-1}}(tX)) = g^{-1} \exp(tX)g$ Next, we can define two smooth maps

$$s, s' \colon \mathbb{R} \to P$$
 $s(t) = p \exp(tX)$ $s'(t) = pg \exp(tY) = p \exp(tX)g$

Then

$$D_p r_g(X_p^*) = (D_p r_g \circ D_0 s)(\partial) = D_0 (r_g \circ s)(\partial) = D_0 s'(\partial) = Y_{pq}^* = (\mathrm{Ad}_{q^{-1}}(X))_{pq}^* \quad \Box$$

Remark.

(1) The map

$$\mathfrak{g} \to \mathfrak{X}(P) \qquad X \mapsto X^*$$

is an injective homomorphism of Lie algebras, because G acts freely.

(2) For all $p \in P$, ker $D_p \pi$ is spanned by the values of the fundamental vector fields at p: The map

$$\mathfrak{g} \to T_p P \qquad X \mapsto X_p^*$$

is a linear map of \mathbb{R} -vector spaces. This map is injective because X^* has no zeroes, and its image is in ker $D_p\pi$. So by dimensional reasons, it is ker $D_p\pi$.

Lemma. A principal G-bundle P admits a global smooth section $s \colon M \to P$ if and only if it is isomorphic to the product bundle $M \times G \xrightarrow{\pi_1} M$.

Proof. The product bundle has a smooth section

$$s: M \to M \times G \qquad m \mapsto (m, e)$$

If $f: P \to M \times G$ is an isomorphism, then $f^{-1} \circ s$ is a smooth section of P. Conversely, suppose P admits a smooth section $s: M \to P$. Then define

$$f: M \times G \to P$$
 $(m,g) \mapsto s(m)g$

Clearly f is a smooth map. For any $h \in G$,

$$(f \circ r_h)(m,g) = f(m,gh) = s(m)gh = r_h(s(m)g) = (r_h \circ f)(m,g)$$

so f maps $\{m\} \times G$ to $\pi^{-1}(m)$. This map $f : \{m\} \times G \to \pi^{-1}(m)$ is bijective. To show injectivity, assume $s(m)g_1 = s(m)g_2$, then $g_1g_2^{-1} \in \operatorname{Stab}(s(m)) = \{e\}$, so $g_1 = g_2$. It is also surjective, since G acts transitively on $\pi^{-1}(m)$. So f^{-1} . One can check smoothness of f^{-1} in the local trivialization for p.

Example.

- (0) For any smooth manifold M and any Lie group G, the trivial bundle $M \times G \xrightarrow{\pi_1} M$ is a principal bundle.
- (1) Let $H \subset G$ be a closed Lie subgroup. Then P = G is a principal H-bundle over G/H with the action

$$G \times H \to G \qquad (g,h) \mapsto gh$$

The projection $\pi\colon G\to G/H$ admits local smooth sections. Let $U\subset G$ be open such that there is a smooth $s\colon U\to G$ with $\pi\circ s=\mathrm{id}_U$ and define

$$f: U \times H \to G \qquad (m,h) \mapsto s(m)h$$

This is a diffeomorphism between $U \times H$ and $\pi^{-1}(U)$ and for any $h' \in H$, we have

$$(r_{h'} \circ f)(m,h) = r_{h'}(s(m)h) = s(m)hh' = f(m,hh')$$

So all the requirements are satisfied such that G is a principal H-bundle.

(2) Let M be a smooth manifold and P the set of bases for tangent spaces of M. P has a C^{∞} manifold structure such that π is smooth and P is the total space of a principal $GL_n(\mathbb{R})$ -bundle over M, $n = \dim(M)$.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle and $M = \bigcup_{\alpha} U_{\alpha}$ a covering by local trivialisations. Suppose $U_{\alpha} \cap U_{\beta} \neq \emptyset$. Then the composition

$$(U_{\alpha} \cap U_{\beta}) \times G \xrightarrow{(\pi \times \varphi_{\beta})^{-1}} \pi^{-1}(U_{\alpha} \cap U_{\beta}) \xrightarrow{\pi \times \varphi_{\alpha}} (U_{\alpha} \cap U_{\beta}) \times G$$

forms a diffeomorphism from $(U_{\alpha} \cap U_{\beta}) \times G$ to itself, which is the identity on the first factor. We denote this map by $(m,g) \mapsto (m,\overline{\psi_{\alpha\beta}}(m,g))$. By G-equivariance of the local trivializations, $\overline{\psi_{\alpha\beta}}(m,gh) = \overline{\psi_{\alpha\beta}}(m,g)h$ holds for any $m \in M$, $g,h \in G$, so we have $\overline{\psi_{\alpha\beta}}(m,g) = \overline{\psi_{\alpha\beta}}(m,e)g =: \psi_{\alpha\beta}(m)g$. These transition maps $\psi_{\alpha\beta}$ have the following properties:

- (1) If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then $\psi_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to G$ is a smooth map.
- (2) $\psi_{\alpha\alpha}(m) = e$ for all $m \in U_{\alpha}$.
- (3) $\psi_{\alpha\beta}(m) = \psi_{\beta\alpha}(m)^{-1}$ for all $m \in U_{\alpha} \cap U_{\beta}$.
- (4) For all $m \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$ we have the following:

$$\psi_{\alpha\beta}(m)\psi_{\beta\gamma}(m) = \psi_{\alpha\gamma}(m)$$

The properties (2) - (4) are summarized by saying that the maps $\psi_{\alpha\beta}$ satisfy the *cocycle conditions*. Property (3) follows directly from (2) and (4).

Now suppose we are given a smooth manifold M, an open covering $M = \bigcup_{\alpha} U_{\alpha}$ and smooth maps $\psi_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to G$ satisfying the cocycle conditions. Then we can construct a principal G-bundle $P \xrightarrow{\pi} M$ trivial over each U_{α} such that $\psi_{\alpha\beta}$ are the transition maps of P:

$$P = \coprod_{\alpha} (U_{\alpha} \times G) / \sim$$

The equivalence relation \sim is given as follows:

$$U_{\alpha} \times G \ni (m, g) \sim (m, \psi_{\alpha\beta}(m)g) \in U_{\beta} \times G \iff m \in U_{\alpha} \cap U_{\beta}$$

This really is an equivalence relation because $\psi_{\alpha\beta}$ satisfy the cocycle conditions. P is a smooth manifold that each $U_{\alpha} \times G$ projects to an open submanifold of P.

Now define a projection $\pi: P \to M$ by $\pi([(m,g)]) = m$. In the chart given by $U_{\alpha} \times G$ this is π_1 and so it is smooth. Also define an action

$$\mu \colon P \times G \to P$$
 $([(m,q)],h) \mapsto [(m,qh)]$

It is well–defined and smooth. This definition of P, π, μ satisfies the properties (a) and (b) in the definition of a principal bundle. So we do indeed have a principal G-bundle defined from the $\psi_{\alpha\beta}$.

Example. Let M be a smooth manifold, (U_{α}, f_{α}) an atlas for M and $n = \dim M$. If $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then we have the transition map

$$f_{\alpha\beta} := f_{\alpha} \circ f_{\beta}^{-1} \colon f_{\beta}(U_{\alpha} \cap U_{\beta}) \to f_{\alpha}(U_{\alpha} \cap U_{\beta})$$

between open sets in \mathbb{R}^n . This $f_{\alpha\beta}$ is a diffeomorphism. Let $\psi_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to \mathrm{GL}_n(\mathbb{R})$ be defined as follows:

$$\psi_{\alpha\beta}(x) = D_{f_{\beta}(x)} f_{\alpha\beta} \in \mathrm{GL}_n(\mathbb{R})$$

The $\psi_{\alpha\beta}$ so defined are smooth and satisfy

$$\psi_{\alpha\alpha}(x) = D_{f_{\alpha}(x)} f_{\alpha\alpha} = D_{f_{\alpha}(x)} \operatorname{id}_{f_{\alpha}(U_{\alpha})} = e \in \operatorname{GL}_{n}(\mathbb{R})$$

and, for any $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$:

$$\psi_{\alpha\gamma}(x) = D_{f_{\gamma}(x)} f_{\alpha\gamma} = D_{f_{\gamma}(x)} (f_{\alpha\beta} \circ f_{\beta\gamma}) = D_{f_{\beta}(x)} f_{\alpha\beta} \circ D_{f_{\gamma}(x)} f_{\beta\gamma} = \psi_{\alpha\beta}(x) \psi_{\beta\gamma}(x)$$

We have checked that $\psi_{\alpha\beta}$ satisfy (2) and (4) of the cocycle conditions and (3) follows. Therefore $\psi_{\alpha\beta}$ define a principal $GL_n(\mathbb{R})$ -bundle over \mathbb{R}^n . This is the bundle of bases/frames for tangent spaces to M.

Definition. Let $P \xrightarrow{\pi} M$ and $P' \xrightarrow{\pi'} M'$ be principal G- resp. G'-bundles. A homomorphism f from P to P' is a pair of smooth maps

$$f' \colon P \to P'$$
 $f'' \colon G \to G'$

such that f'' is a homomorphism of Lie groups and

$$f'(pg) = f'(p)f''(g) \qquad \forall p \in P, g \in G$$

Notation. For a homomorphism f of principal bundles P and P', we usually denote both f' and f'' by f. We write

$$f \colon P \to P'$$
 $f \colon G \to G'$

and the equivariance is written

$$f(pg) = f(p)f(g)$$

Note that a homomorphism $P \to P'$ sends the fibers of P to the fibers of P'. There is a well–defined smooth $\overline{f}: M \to M'$ such that the following diagram commutes:

$$P \xrightarrow{f} P'$$

$$\pi \downarrow \qquad \qquad \downarrow \pi'$$

$$M \xrightarrow{\overline{f}} M'$$

Definition. Let $P \xrightarrow{\pi} M$ be a principal G-bundle and $H \subset G$ a Lie subgroup. A reduction of the structure group of P from G to H is an injective homomorphism f of a principal H-bundle $Q \to M$ into P such that $\overline{f} = \mathrm{id}_M$.

Example. Let $P = M \times G$ be the product bundle. Let $H = \{e\} \subset G, \ Q = M \times H.$ Define

$$f: H \to G, e \mapsto e$$
 $f: Q \to P, (m, e) \mapsto (m, e)$

This f is a homomorphism and defines a reduction of the structure group of P to $\{e\}$.

Proposition. Let $P \xrightarrow{\pi} M$ be a principal G-bundle and $H \subset G$ a Lie subgroup. The structure group of P can be reduced to H if and only if there is a system of local trivializations for P such that the corresponding transition maps $\psi_{\alpha\beta}$ take values in H.

Proof. Assume there is a reduction $f\colon Q\to P$, where Q is a principal H-bundle. We may assume $f\colon H\to G$ is the inclusion. The corresponding transition maps take values in H. Conversely, suppose P admits local trivializations $U_\alpha\times G$ such that all transition maps $\psi_{\alpha\beta}$ take values in H. Then we can construct a principal H-bundle $Q\xrightarrow{\pi} M$ from the $\psi_{\alpha\beta}$. In each trivialization $U_\alpha\times G$ for P we have $U_\alpha\times H\subset U_\alpha\times G$. These inclusions induce an injective homomorphism $f\colon Q\to P$ giving a reduction of the structure group of P from G to H.

2.1 Associated bundles

Definition. Let $P \xrightarrow{\pi} M$ be a principal G-bundle, F a smooth manifold and $\mu \colon G \times F \to F$ a left action of G on F. The associated bundle $E \xrightarrow{\pi_E} M$ is defined as follows:

$$E := P \times_G F := (P \times F)/\sim$$

where

$$(p,f) \sim (pg,g^{-1}f) \qquad \forall p \in P, f \in F, g \in G$$

and

$$\pi_E([(p,f)]) \coloneqq \pi(p)$$

Let $U \subset M$ be an open set over which P is trivial and let

$$\pi^{-1}(U) \to U \times G \qquad p \mapsto (\pi(p), \varphi(p))$$

be a local trivialization. Performing the construction of E with $\pi^{-1}(U)$ in place of P, we obtain

$$\pi_E^{-1}(U) = (\pi^{-1}(U) \times F)/\!\sim \, \cong (U \times G \times F)/\!\simeq$$

with \simeq defined as follows:

$$(m,h,f) \simeq (m,hg,g^{-1}f)$$

We claim that

$$(U \times G \times F)/\simeq \cong U \times F$$

To prove this, define $\psi_1: (U \times G \times F)/\simeq \to U \times F$ by $\psi_1([(m,h,f)]) = (m,hf)$ and $\psi_2: U \times F \to (U \times G \times F)/\simeq$ by $\psi_2(m,f) = [(m,e,f)]$. Then ψ_1 is well-defined and ψ_1, ψ_2 are mutually inverse:

$$\psi_2 \circ \psi_1([(m, h, f)]) = \psi_2(m, hf) = [(m, e, hf)] = [(m, h, f)]$$
$$\psi_1 \circ \psi_2(m, f) = \psi_1([(m, e, f)]) = (m, ef) = (m, f)$$

The associated bundle E has a unique differentiable structure in which the open subsets $\pi_E^{-1}(U)$ are open smooth submanifolds diffeomorphic to $U \times F$. This shows that E is a locally trivial smooth fiber bundle with fiber F and structure group G.

Example.

- (1) If $\mu: G \times F \to F$ is the terminal action $(g, f) \mapsto f$ then $E = P \times_G F$ is diffeomorphic to $M \times F$ such that π_E corresponds to π_1 .
- (2) Let $\rho: G \to \mathrm{GL}_n(\mathbb{R})$ be a homomorphism of Lie groups. Then G acts on \mathbb{R}^n via ρ :

$$\mu \colon G \times \mathbb{R}^n \to \mathbb{R}^n \qquad (g, v) \mapsto \rho(g)v$$

In this case, $E = P \times_G \mathbb{R}^n =: P \times_{\rho} \mathbb{R}^n$ is a vector bundle over M.

- (2') Suppose $V \to M$ is a vector bundle of rank k. The basis for fibers of V form a principal $GL_k(\mathbb{R})$ -bundle $P \xrightarrow{\pi} M$. Take id: $GL_k(\mathbb{R}) \to GL_k(\mathbb{R})$. Then $E = P \times_{\rho} \mathbb{R}^n$ is isomorphic to V.
- (3) Let $P \xrightarrow{\pi} M$ be a principal G-bundle and $H \subset G$ a closed subgroup. Using the action

$$\mu \colon G \times G/H \to G/H \qquad (g, aH) \mapsto (ga)H$$

we can form the associated bundle E with fiber G/H.

Lemma. In example (3), the associated bundle E with fiber G/H is diffeomorphic to the orbit space P/H, where H acts on P by restricting the G-action.

Proof. We define to mutually inverse smooth maps ψ_1 and ψ_2 between E and P/H.

$$\psi_2 \colon E \to P/H, [(p, aH)] \mapsto H(pa) \qquad \psi_1 \colon P/H \to E, H(p) \mapsto [(p, H)]$$

These are indeed well-defined and smooth and $\psi_1 \circ \psi_2 = \psi_2 \circ \psi_1 = id$.

Proposition. Let $P \xrightarrow{\pi} M$ be a principal G-bundle and $H \subset G$ a closed Lie subgroup. The structure group of P can be reduced to H if and only if the associated bundle E with fiber G/H has a section.

Proof. Suppose the structure group of P can be reduced to H, so that there is a principal H-bundle $Q \to M$ and an injective homomorphism $f: Q \to P$. We claim that the composition $Q \xrightarrow{f} P \to P/H$ is constant on every fiber of Q. To see this, let $\alpha, \beta \in Q$

be in the same fiber of Q. Then there exists $h \in H$ such that $\alpha h = \beta$, so $f(\alpha)h = f(\beta)$ and thus $[f(\alpha)] = [f(\beta)]$, i.e. the images in P/H agree.

$$Q \xrightarrow{f} P \xrightarrow{} P/H = E$$

$$\downarrow \qquad \qquad \downarrow$$

$$M$$

By the claim, this map factors through the projection $Q \to M$, and so gives a section $s \colon M \to E$. Conversely, suppose $E \xrightarrow{\pi_E} M$ admits a section $s \colon M \to E$. Define Q as the preimage of s(M) under the map $P \to P/H = E$. The restriction to H of the G-action on P preserves $Q \subset P$ and is simply transitive on the fibers of $Q \to M$. Q is a principal H-bundle and the inclusion $Q \subset P$ is a reduction of the structure group of P to H. \square

Definition. Suppose $P \xrightarrow{\pi} M$ is a principal G-bundle and $f: N \to M$ is a smooth map. Then define

$$f^*P \coloneqq \{(n,p) \in N \times P \mid f(n) = \pi(p)$$

$$f^*P \xrightarrow{\pi_2} P$$

$$\downarrow^{\pi_1} \qquad \downarrow^{\pi}$$

$$N \xrightarrow{f} M$$

 f^*P is a principal G-bundle. It is called the *pullback bundle* obtained by pulling back $P \xrightarrow{\pi} M$ via f.

2.2 Connections

Let $P \xrightarrow{\pi} M$ be a principal G-bundle. Then π is a submersion and $D_p\pi \colon T_pP \to T_{\pi(p)}M$ has as kernel the tangent space at p to the fiber $\pi^{-1}(\pi(p))$. Moreover, $\ker(D_p\pi)$ is spanned by the fundamental vector fields X^* generated by the G-action on P. We call $\ker(D_p\pi) =: V_p$ the vertical tangent space at p.

Definition. A connection on P is a choice of a complement H_p for V_p in T_pP for all $p \in P$ such that

- (1) H_p depends smoothly on p.
- (2) $D_p r_q(H_p) = H_{pq}$ for all $p \in P$, $g \in G$.

Remark. Property (1) is equivalent to saying that $\bigcup_{p\in P} H_p$ is a smooth subbundle H of TP. If $V = \bigcup_{p\in P} V_p$ is the vertical subbundle in TP with $V = \ker(D\pi)$, then H has to be a complement to V in TP, so that $TP = V \oplus H$. A connection H on P is a G-invariant smooth complement to V.

If H is a connection on P, then

$$D_p\pi\colon H_p\to T_{\pi(p)}M$$

is an isomorphism for all $p \in P$. Under this isomorphism, vector fields on M can be lifted to horizontal vector fields on P.

If $\alpha \in \Omega^1(P)$ is a 1-form on P, then at every point $p \in P$ with $\alpha_p \neq 0$, $\ker \alpha_p \subset T_p P$ is a hyperplane. If α is a 1-form with values in \mathbb{R}^k , then at every point $p \in P$ it defines a linear map

$$\alpha_p \colon T_p P \to \mathbb{R}^k$$

If α_p is surjective onto \mathbb{R}^k , then $\ker(\alpha_p) \subset T_p P$ is a subspace of codimension k.

Definition. Given a connection H on P, we define a 1–form ω on P with values in \mathfrak{g} as follows:

$$\omega_p(X) = \begin{cases} 0 & \text{if } X \in H_p \\ A & \text{if } X = A_p^* \text{ for any } A \in \mathfrak{g} \end{cases}$$

where A^* is the fundamental vector field on P generated by the right action of $\exp(tA)$. Then ω is the *connection 1–form* corresponding to H.

At every point $p \in P$, we have $T_pP = V_p \oplus H_p$. H_p is in the kernel of ω_p and V_p contains only elements of the form A_p^* and for those $\omega(A_p^*) = A$. So ω is well-defined and $\ker \omega_p = H_p$, because $\omega_p \colon T_pP \to \mathfrak{g}$ is surjective. ω is also smooth, since H and A^* are smooth.

Lemma. For $g \in G$, we have

$$r_q^* \omega = \operatorname{Ad}_{q^{-1}} \omega$$

where $\operatorname{Ad}_{g^{-1}}\omega$ is the composition of $\omega\colon TP\to\mathfrak{g}$ and $\operatorname{Ad}_{g^{-1}}\colon\mathfrak{g}\to\mathfrak{g}$.

Proof. Let $X \in T_pP$. Since $(r_g^*\omega)_p(X) = \omega(D_pr_g(X))$, the claim of the lemma is equivalent to

$$\omega(Dr_g(X)) = \operatorname{Ad}_{q^{-1}}(\omega(X))$$

Both sides are linar in X, therefore it is enough to check the claim for $X \in V$ and $X \in H$.

If $X \in H_p$, then $\omega(Dr_g(X)) \in \omega(H_{pg}) = \{0\}$ by the G-invariance of H. Also $\operatorname{Ad}_{g^{-1}}(\omega(X)) = \operatorname{Ad}_{g^{-1}}(0) = 0$.

Now let $X \in V_p$. Since the fundamental vector fields span V, we can choose $Y \in \mathfrak{g}$ with $Y_p^* = X$. Then

$$\omega(Dr_g(X)) = \omega(Dr_g(Y_p^*)) = \omega((\operatorname{Ad}_{g^{-1}}(Y))_{pg}^*) = (\operatorname{Ad}_{g^{-1}}(Y))$$

and

$$\operatorname{Ad}_{g^{-1}}(\omega(X)) = \operatorname{Ad}_{g^{-1}}(\omega(Y_p^*)) = \operatorname{Ad}_{g^{-1}}(Y)$$

Proposition. Suppose ω is a \mathfrak{g} -valued 1-form on P with the property that $r_g^*\omega = \operatorname{Ad}_{g^{-1}}\omega$. Assume also that for fundamental vector fields A^* , we have $\omega(A^*) = A$. Then $H := \ker \omega$ is a connection on P.

Proof. The two requirements on ω are consistent. If A^* is the fundamental vector field generated by A, then $Dr_g(A_p^*) = (\mathrm{Ad}_{g-1}(A))_{pq}^*$. This implies

$$(\mathrm{Ad}_{q^{-1}}(A))_{pg} = \omega((\mathrm{Ad}_{q^{-1}}(A))_{pq}^*) = \omega(Dr_g(A_p^*)) = r_q^*\omega(A_p^*)$$

For all $p \in P$, the map

$$\omega_p \colon T_p P \to \mathfrak{g}$$

is surjective, so $\ker \omega_p = H_p$ is a subspace of T_pP whose codimension is $\dim \mathfrak{g}$. The requirement $\omega(A^*) = A$ means that $\omega_p|_{V_p} \colon V_p \to \mathfrak{g}$ is an isomorphism for all $p \in P$. So H_p is a complement for V_p in T_pP .

Suppose $X \in H_p$. To prove G-invariance of H, we have to show $D_p r_g(X) \in H_{pg}$. Now $X \in H_p$ means that $\omega(X) = 0$. We have to prove $\omega(Dr_g(X)) = 0$. Indeed,

$$\omega(Dr_q(X)) = r_q^* \omega(X) = \mathrm{Ad}_{q^{-1}}(\omega(X)) = \mathrm{Ad}_{q^{-1}}(0) = 0$$

Proposition. Every principal G-bundle $P \xrightarrow{\pi} M$ admits a connection.

Proof. Let $\{U_i\}_{i\in I}$ be an open cover of M with the property that P restricted to each U_i is trivial:

$$\pi^{-1}(U_i) \xrightarrow{\sim} U_i \times G$$

On the product bundle $U_i \times G$, there is a connection with

$$H_{(m,q)} = T_m U_i \times \{0\} \subset T_m U_i \oplus T_g G = T_{(m,q)}(U_i \times G)$$

Let ω_i be the connection 1-form on $\pi^{-1}(U_i)$, whose kernel corresponds to H under the trivialization $\pi^{-1}(U_i) \to U_i \times G$. Let $\{\rho_j\}_{j\in J}$ be a smooth partition of unity on M subordinate to the covering by the U_i , i.e. $\rho_j \colon M \to \mathbb{R}$ are smooth non-negative functions such that supp ρ_j are locally finite in M and $\sum_j \rho_j = 1$ and for all $j \in J$ there exists an $i \in I$ such that supp $\rho_j \subset U_i$. Then define

$$\omega \coloneqq \sum_{j \in J} \pi^* \rho_j \cdot \omega_j = \sum_{j \in J} (\rho_j \circ \pi) \cdot \omega_j$$

where for all $j \in J$, $\omega_j := \omega_i$ for some $i \in I$ such that supp $\rho_j \subset U_i$, and the summands, which are supported only inside $\pi^{-1}(U_i)$ are being extended by 0 to all of P.

We claim that ω is a connection 1-form on P. To see this, we need to check that $r_g^*\omega = \operatorname{Ad}_{g^{-1}}\omega$ for all $g \in G$ and $\omega(A_p^*) = A_p$ for all $A \in \mathfrak{g}$, $p \in P$. Since $\pi^*\rho_j$ is constant under right G-action, the first equality follows by

$$r_g^* \omega = r_g^* \left(\sum_{j \in J} \pi^* \rho_j \cdot \omega_j \right) = \sum_{j \in J} \pi^* \rho_j \cdot r_g^* \omega_j = \sum_{j \in J} \pi^* \rho_j \cdot \operatorname{Ad}_{g^{-1}} \omega_j =$$

$$= \operatorname{Ad}_{g^{-1}} \left(\sum_{j \in J} \pi^* \rho_j \cdot \omega_j \right) = \operatorname{Ad}_{g^{-1}} \omega$$

and the second by

$$\omega(A_p^*) = \left(\sum_{j \in J} \pi^* \rho_j \cdot \omega_j\right) (A_p^*) = \sum_{j \in J} \pi^* \rho_j(p) \cdot \omega_j(A_p^*) = \sum_{j \in J} \pi^* \rho_j(p) \cdot A_p = A_p \qquad \Box$$

Proposition. The set of connections on a principal G-bundle $P \xrightarrow{\pi} M$ is naturally an affine space whose vector space of translations is the space of 1-forms on M with values in the vector bundle $P \times_{Ad} \mathfrak{g} \longrightarrow M$.

More precisely, for any difference of connection 1-forms $\widetilde{\omega} = \omega_1 - \omega_2$ on P, there is a unique $\omega \in \Gamma((P \times_{\operatorname{Ad}} \mathfrak{g}) \otimes T^*M)$ such that

$$\pi^*\omega(Y) = [(p, \widetilde{\omega}(Y))] \quad \forall Y \in T_p P$$

Proof. By the previous proposition, the set of connections P is non–empty, so we can choose a reference connection 1–form ω_0 . For any connection 1–form ω_1 , let $\widetilde{\omega} := \omega_1 - \omega_0$. For all $p \in P$, V_p is spanned by the values of the fundamental vector fields A_p^* with $A \in \mathfrak{g}$, but

$$\widetilde{\omega}(A_p^*) = \omega_1(A_p^*) - \omega_0(A_p^*) = A - A = 0$$

so $\widetilde{\omega}$ vanishes on V. Let $E := P \times_{\operatorname{Ad}} \mathfrak{g}$, then $\Omega^1(M, E) = \Gamma(T^*M \otimes E)$ is the vector space of 1-forms on M with values in the vector bundle E. We want to define $\omega \in \Omega^1(M, E)$ by

$$\omega(X) = [(p, \widetilde{\omega}(Y))]$$

for all $X \in T_m M$, where $Y \in T_p P$ is a lift of X at some $p \in \pi^{-1}(m)$, i.e. $D\pi(Y) = X$. We can always choose such a lift since $D\pi$ is surjective. For ω to be well-defined, we have to check that

$$[(p, \widetilde{\omega}(Y))] = [(q, \widetilde{\omega}(Z))]$$

for any lift $Z \in T_q P$ at $q \in \pi^{-1}(m)$. To see this, first let q = p and $Z \in T_p P$ be a lift of X at p. Then

$$D\pi(Z - Y) = D\pi(Z) - D\pi(Y) = X - X = 0$$

so $Z - Y \in V$ and therefore

$$\widetilde{\omega}(Z) = \widetilde{\omega}(Y) - \widetilde{\omega}(Z - Y) = \widetilde{\omega}(Y)$$

Now let $q \in \pi^{-1}(m)$ be arbitrary and $Z \in T_q P$ a lift of X at q. There is a unique $g \in G$ such that q = pg. Since

$$D\pi(Dr_a(Y)) = D(\pi \circ r_a)(Y) = D\pi(Y) = X,$$

 $Dr_q(Y) \in T_qP$ is a lift of X at q, so $\widetilde{\omega}(Z) = \widetilde{\omega}(Dr_q(Y))$. But then we have

$$[(q,\widetilde{\omega}(Z))] = [(q,\widetilde{\omega}(Dr_q(Y)))] = [(q,r_q^*\widetilde{\omega}(Y))] = [(pg,\operatorname{Ad}_{q^{-1}}\widetilde{\omega}(Y))] = [(p,\widetilde{\omega}(Y))].$$

This shows that although ω is not well–defined as an ordinary \mathfrak{g} –valued 1–form on M, it is well–defined as a 1–form on M with values in E.

Conversely, let $\omega \in \Omega^1(M, E)$. We have to check that with $\widetilde{\omega}$ defined by

$$\pi^*\omega(Y) = [(p, \widetilde{\omega}(Y))] \quad \forall Y \in T_p P$$

the \mathfrak{g} -valued 1-form $\omega_1 = \omega_0 + \widetilde{\omega}$ is a connection 1-form. First, we show $\omega_1(X_p^*) = X$ for all $X \in \mathfrak{g}$ and $p \in P$: Since

$$[(p, \widetilde{\omega}(X_p^*))] = \pi^* \omega(X_p^*) = \omega(D\pi(X_p^*)) = \omega_{\pi(p)}(0) = \omega_{\pi(p)}(D_p\pi(0)) = (\pi^*\omega)_p(0) = [(p, 0)]$$

and the first element uniquely determines the representative of the equivalence class, we have

$$\omega_1(X_p^*) = \omega_0(X_p^*) + \widetilde{\omega}(X_p^*) = X + 0 = X.$$

Left to show is $r_g^*\omega_1 = \operatorname{Ad}_{g^{-1}}\omega_1$ for $g \in G$, but for $Y \in T_pP$,

$$\begin{split} [(pg,r_g^*\widetilde{\omega}(Y))] &= [(pg,\widetilde{\omega}(Dr_g(Y)))] = \pi^*\omega(Dr_g(Y)) = \omega(D\pi(Dr_g(Y))) = \\ &= \omega(D(\pi\circ r_g)(Y)) = \omega(D\pi(Y)) = \pi^*\omega(Y) = [(p,\widetilde{\omega}(Y))] = \\ &= [(pg,\operatorname{Ad}_{g^{-1}}\widetilde{\omega}(Y))], \end{split}$$

so $r_g^*\widetilde{\omega} = \operatorname{Ad}_{g^{-1}}\widetilde{\omega}$ and thus by linearity $r_g^*\omega_1 = \operatorname{Ad}_{g^{-1}}\omega_1$.

Let $P \xrightarrow{\pi} M$ be a principal G-bundle, ω a connection 1-form on $P, U_i, U_j \subset M$ open sets over which P is trivial. The trivializations

$$\psi_i \colon \pi^{-1}(U_i) \to U_i \times G$$

correspond to sections

$$s_i \colon U_i \to \pi^{-1}(U_i) \qquad m \mapsto \psi_i^{-1}(m, e)$$

 $\omega_i := s_i^* \omega$ is a \mathfrak{g} -valued 1-form on $U_i \subset M$. Suppose $U_i \cap U_j \neq \emptyset$. Then on $U_i \cap U_j$ both ω_i and ω_j are defined. We have the smooth transition maps $\psi_{ij} : U_i \cap U_j \to G$ defined by

$$\psi_i \circ \psi_j^{-1} \colon (U_i \cap U_j) \times G \to (U_i \cap U_j) \times G \qquad (m,g) \mapsto (m,\psi_{ij}(m)g)$$

and want to use them to find a formula for transition between ω_i and ω_i .

On G we have a canonical 1-form θ with values in \mathfrak{g} defined by

$$\theta(A_g) = A \qquad \forall A \in \mathfrak{g}, g \in G$$

This is well-defined since it is equivalent to $\theta(X) = D\ell_{q-1}(X)$ for $X \in T_qG$.

Lemma. We have the following translation from ω_i to ω_j :

$$\omega_j(X) = \operatorname{Ad}_{\psi_{ij}(m)}^{-1} \omega_i(X) + \psi_{ij}^* \theta(X) \qquad \forall X \in T_m M$$

Proof. Differentiating the function

$$s_i(m) = \psi_i^{-1}(m, e) = \psi_i^{-1} \circ \psi_i \circ \psi_i^{-1}(m, e) = \psi_i^{-1}(m, \psi_{ij}(m)) = s_i(m) \cdot \psi_{ij}(m)$$

gives for $X \in T_m M$

$$Ds_j(X) = D(\mu \circ (s_i \times \psi_{ij}) \circ \Delta)(X) = (D\mu \circ D(s_i \times \psi_{ij}) \circ D\Delta)(X) =$$

= $D\mu(Ds_i(X), D\psi_{ij}(X)) = Dr_{\psi_{ij}(m)}(Ds_i(X)) + D\ell_{s_i(m)}(D\psi_{ij}(X))$

where we can transform the last summand using $A_{pq}^* = D\ell_p(A_g)$ like

$$\begin{split} D\ell_{s_{i}(m)}(D\psi_{ij}(X)) &= (D\ell_{s_{i}(m)} \circ D\ell_{\psi_{ij}(m)} \circ D\ell_{\psi_{ij}(m)^{-1}} \circ D\psi_{ij})(X) = \\ &= D\ell_{s_{i}(m)}((D\ell_{\psi_{ij}(m)^{-1}}(D\psi_{ij}(X)))_{\psi_{ij}(m)}) = \\ &= (D\ell_{\psi_{ij}(m)^{-1}}(D\psi_{ij}(X)))_{s_{i}(m)\psi_{ij}(m)}^{*} = \\ &= (\theta(D\psi_{ij}(X)))_{s_{j}(m)}^{*} = \\ &= (\psi_{ij}^{*}\theta(X))_{s_{j}(m)}^{*} \end{split}$$

Putting the above identities together we get the desired result

$$\omega_j(X) = \omega(Ds_j(X)) = \omega(Dr_{\psi_{ij}(m)}(Ds_i(X)) + \omega((\psi_{ij}^*\theta(X))_{s_j(m)}^*) =$$

$$= r_{\psi_{ij}(m)}^*\omega(Ds_i(X)) + \psi_{ij}^*\theta(X) = \operatorname{Ad}_{\psi_{ij}(m)}^{-1}\omega_i(X) + \psi_{ij}^*\theta(X) \qquad \Box$$

2.3 Parallel transport

Let $P \xrightarrow{\pi} M$ be a principal G-bundle, $H = \ker \omega$ a connection on P. For every $p \in P$, $D_p \pi|_H$ is an isomorphism $H_p \to T_{\pi(p)} M$. Every $X \in T_{\pi(p)} M$ has a unique preimage $X^* \in H_p$ under this isomorphism. Every vector field $X \in \mathfrak{X}(M)$ gives rise to a unique vector field X^* on P such that

$$X_p^* = (D_p \pi)^{-1} (X_{\pi(p)})$$

This construction has the following simple properties: $(fX)^* = \pi^* f \cdot X^*$ for any $f \in C^{\infty}(M,\mathbb{R})$ and $(X+Y)^* = X^* + Y^*$. But $[X,Y]^* \neq [X^*,Y^*]$: Although $[X,Y]_{\pi(p)} = D\pi([X^*,Y^*]_p)$ holds, $[X^*,Y^*]$ is not necessarily horizontal. Denoting the projections from to the horizontal and vertical subbundles of TP by

$$\mathcal{Y}: TP \to V$$
 $\mathscr{H}: TP \to H$

the above equality shows that

$$\mathcal{H}([X^*, Y^*]) = [X, Y]^*$$

Remark. In general $\mathscr{V}([X^*,Y^*]) \neq 0$, and is related to the curvature of H.

Definition. A smooth curve $c: [0,1] \to P$ is *horizontal* (wrt H) if $\dot{c}(t) \in H_{c(t)}$ for all $t \in [0,1]$.

Proposition. Let $c: [0,1] \to M$ be a smooth curve and $p \in \pi^{-1}(c(0))$. Then there is a unique horizontal curve $\overline{c}: [0,1] \to P$ with $\overline{c}(0) = p$ and $\pi \circ \overline{c} = c$. \overline{c} is called a horizontal lift of c.

Proof. Given c and $p \in \pi^{-1}(c(0))$, there exists some smooth $\overline{c}: [0,1] \to P$ with $\overline{c}(0) = p$ and $\pi \circ \overline{c} = c$ (by local triviality). Any other lift of c to P with starting point p is of the form $\overline{c} \cdot g$ where $g: [0,1] \to G$ is a smooth map with g(0) = e. We need to find a g such

that $\overline{c} \cdot g$ is horizontal. This is the case iff $\frac{d}{dt}(\overline{c}(t) \cdot g(t)) \in H$, i.e. $\omega(\frac{d}{dt}(\overline{c} \cdot g)) = 0$ for all $t \in [0,1]$. As in the lemma above, we get

$$\frac{\mathrm{d}}{\mathrm{d}t}(\overline{c}\cdot g) = D_t(\overline{c}\cdot g)(\partial) = (D\mu \circ D(\overline{c}\cdot g) \circ D_t\Delta)(\partial) = D_{\overline{c}}r_g(D_t\overline{c}(\partial)) + D_g\ell_{\overline{c}}(D_tg(\partial))$$

and

$$D_g \ell_{\overline{c}}(D_t g(\partial)) = (D_g \ell_{\overline{c}} \circ D_e \ell_g \circ D_g \ell_{g^{-1}} \circ D_t g)(\partial) = D_g \ell_{\overline{c}}(((D_g \ell_{g^{-1}} \circ D_t g)(\partial))_g) = ((D_g \ell_{g^{-1}} \circ D_t g)(\partial))_{\overline{c} \cdot q}^* = (D_g \ell_{g^{-1}}(\dot{g}))_{\overline{c} \cdot q}^*$$

so

$$\begin{split} \omega\left(\frac{\mathrm{d}}{\mathrm{d}t}(\bar{c}\cdot g)\right) &= \omega(D_{\overline{c}}r_g(\dot{\bar{c}})) + D_g\ell_{g^{-1}}(\dot{g}) = r_g^*\omega(\dot{\bar{c}}) + D\ell_{g^{-1}}(\dot{g}) = \\ &= \mathrm{Ad}_{g^{-1}}\,\omega(\dot{\bar{c}}) + D\ell_{g^{-1}}(\dot{g}) = D\ell_{g^{-1}}(Dr_g(\omega(\dot{\bar{c}}))) + D\ell_{g^{-1}}(\dot{g}) = \\ &= (D\ell_{g^{-1}}\circ Dr_g)(\omega(\dot{\bar{c}}) + Dr_{g^{-1}}(\dot{g})) \end{split}$$

Since $D\ell_{g^{-1}} \circ Dr_g$ is an isomorphism, this is 0 if and only if

$$Dr_{q(t)^{-1}}(\dot{q}(t)) = -\omega(\dot{\bar{c}}(t))$$

So the statement of the proposition is just that this differential equation has a unique solution with g(0) = e. This is shows by the following lemma.

Lemma. Let $X: [0,1] \to \mathfrak{g}$ be smooth. There exists a unique $g: [0,1] \to G$ with g(0) = e and

$$Dr_{q(t)^{-1}}(\dot{g}(t)) = X(t)$$

Proof. On $G \times [0,1]$, X defines a time-independent vector field X with

$$\mathbb{X}_{(q,t)} = (X_q(t), \partial)$$

The flow of X is defined for all t (see the proof of completeness of left–invariant vector fields on G). Under the flow φ of X we have

$$\varphi_t(e,0) = (q(t),t)$$

for a g(t) which solves our equation. This is the only solution with g(0) = e.

Let $c: [0,1] \to M$ be a smooth curve. Define

$$P_c : \pi^{-1}(c(0)) \to \pi^{-1}(c(1)) \qquad p \mapsto \overline{c}(1)$$

where \bar{c} is the unique horizontal lift of c with $\bar{c}(0) = p$.

The map P_c is the parallel transport map defined by c. P_c is invertible by running back along c. Except from change of direction, it is independent of the parametrization of c. The parallel transport map can also be defined for a piecewise smooth curve c by concatenating the P_{c_i} for c_i obtained by restricting c to subintervals of [0,1] where it is smooth.

Fix a basepoint $m_0 \in M$. For every closed piecewise smooth curve $c: [0,1] \to M$ with $c(0) = c(1) = m_0$ we have

$$P_c \colon \pi^{-1}(m_0) \to \pi^{-1}(m_0)$$

Claim. The set of all these P_c is a group with composition as group operation.

Proof. $\{P_c\}$ has $\mathrm{id}_{\pi^{-1}(m_0)}$ as an element obtained as P_c for c the constant path at m_0 . If c_1 and c_2 are two closed paths beginning and ending at m_0 , then $P_{c_2} \circ P_{c_1} = P_{c_1c_2}$, where c_1c_2 denotes the concatenation of c_1 and c_2 . This is associative and $P_c^{-1} = P_{\overline{c}}$ where \overline{c} is c parametrized backwards.

Fix a basepoint $p_0 \in P$ with $\pi(p_0) = m_0$. If P_c is one of the parallel transport maps defined above, then $P_c(p_0) \in \pi^{-1}(m_0)$. Since G acts simply transitively on the fiber, there exists a unique $g(c) \in G$ such that $P_c(p_0) = p_0 g(c)$.

Claim. The map

$$h: \{P_c\} \to G \qquad P_c \mapsto g(c)$$

is an injective homomorphism of groups.

Proof. Since $h(P_{c_1} \circ P_{c_2}) = h(P_{c_2c_1}) = g(c_2c_1)$ and $h(P_{c_1})h(P_{c_2}) = g(c_1)g(c_2)$ need to prove that $g(c_2c_1) = g(c_1)g(c_2)$.

For any curve $c: [0,1] \to M$, the curve \overline{c} from $p \in P$ to $P_c(p)$ is horizontal, since it is a horizontal lift of c. Since H is G-invariant, the G-action maps horizontal curves to horizontal curves, so for any $g \in G$, $\overline{c} \cdot g$ is a horizontal curve from pg to $P_c(p)g$. This means $P_c(pg) = P_c(p)g$, i.e. P_c is G-equivariant. So

$$p_0g(c_2c_1) = P_{c_2c_1}(p_0) = P_{c_1} \circ P_{c_2}(p_0) = P_{c_1}(p_0g(c_2)) = P_{c_1}(p_0)g(c_2) = p_0g(c_1)g(c_2)$$

and thus $g(c_2c_1)=g(c_1)g(c_2)$. We have proved that h is a homomorphism. Now suppose $P_c \in \ker h$, i.e. $g(c)=h(P_c)=e$. Then $P_c(p_0)=p_0$. Every $p \in \pi^{-1}(p_0)$ is of the form $p=p_0g$ for some $g \in G$. But $P_c(p)=P_c(p_0g)=P_c(p_0)g=p_0g=p$ by the G-equivariance of P_c , so $P_c=\operatorname{id}_{\pi^{-1}(p_0)}$. Thus h is injective.

Definition. The holonomy group $\operatorname{Hol}(H, p_0) = \operatorname{Hol}(p_0)$ of the connection H wrt $p_0 \in P$ is the subgroup of G obtained by parallel transport along closed loops based at p_0 , i.e. $\operatorname{Hol}(H, p_0) = \operatorname{Im} h$.

The restricted holonomy group $\operatorname{Hol}_0(H, p_0) = \operatorname{Hol}_0(p_0)$ is the subgroup obtained by considering only parallel transports P_c for closed loops c which are contractible or null-homotopic.

Properties.

- (1) $\operatorname{Hol}(H, p_1) = g^{-1} \operatorname{Hol}(H, p_0)g$ if $p_1 = p_0g$.
- (2) $\operatorname{Hol}(H, p_1) = \operatorname{Hol}(H, p_0)$ if p_1 is obtained from p_0 by parallel transport.
- (3) If M is connected, $Hol(H, p_0)$ and $Hol(H, p_1)$ are conjugate in G for any $p_0, p_1 \in H$.

These properties also hold for Hol_0 .

Proof.

(1) Consider $h_0 \in \text{Hol}(H, p_0)$ and $h_1 \in \text{Hol}(H, p_1)$ defined by $P_c(p_0) = p_0 h_0$ and $P_c(p_1) = p_1 h_1$ for the same curve c on M. Then

$$p_0gh_1 = p_1h_1 = P_c(p_1) = P_c(p_0g) = P_c(p_0)g = p_0h_0g$$

so $gh_1 = h_0 g$ and $h_1 = g^{-1}h_0 g$.

(2) Let c be a smooth curve on M such that $p_1 = P_c(p_0)$ and let $h_1 \in \operatorname{Hol}(H, p_1) = \operatorname{Hol}(H, P_c(p_0))$. There exists a closed curve c_1 on M such that $P_{c_1}(P_c(p_0)) = P_c(p_0)h_1$. The curve $cc_1\bar{c}$ is a closed curve in M based at $\pi(p_0)$, so there exists $h_0 \in \operatorname{Hol}(H, p_0)$ such that $P_{cc_1\bar{c}}(p_0) = p_0h_0$. But

$$P_c(p_0)h_1 = P_c \circ P_c^{-1} \circ P_{c_1} \circ P_c(p_0) = P_c(P_{cc_1\bar{c}}(p_0)) = P_c(p_0h_0) = P_c(p_0)h_0$$

so $h_1 = h_0$ and thus $h_1 \in \text{Hol}(H, p_0)$. By using \overline{c} instead of c, we get the other inclusion.

(3) Since M is connected, there is a smooth curve c from $\pi(p_0)$ to $\pi(p_1)$, which has a horizontal lift from p_0 to $P_c(p_0) \in \pi^{-1}(\pi(p_1))$, $\operatorname{Hol}(H, P_c(p_0)) = \operatorname{Hol}(H, p_0)$ by (2). By (1), this is conjugate to $\operatorname{Hol}(H, p_1)$.

Theorem. The restricted holonomy group $Hol_0(H, p_0)$ is a connected Lie subgroup of G.

Proof. By definition, $\operatorname{Hol}_0(H,p_0) \subset G$ is a subgroup. We claim that $\operatorname{Hol}_0(H,p_0)$ is connected, more precisely for any $g \in \operatorname{Hol}_0(H,p_0)$ there is a piecewise smooth curve $\widetilde{g} \colon [0,1] \to G$ with $\widetilde{g}(0) = e$, $\widetilde{g}(1) = g$ and $\widetilde{g}(s) \in \operatorname{Hol}_0(H,p_0)$ for all $s \in [0,1]$. The property $g \in \operatorname{Hol}_0(H,p_0)$ means that there is a piecewise smooth curve $c \colon [0,1] \to M$ with $c(0) = c(1) = m_0$ such that $P_c(p_0) = p_0 g$ and c is contractible as a curve based at m_0 . There exists a piecewise smooth map

$$H: [0,1] \times [0,1] \to M$$

such that

$$H(t,0) = m_0, \quad H(t,1) = c(t), \quad H(0,s) = H(1,s) = m_0 \quad \forall s, t \in [0,1]$$

For every $s \in [0, 1]$,

$$c_s \colon [0,1] \to M \qquad t \mapsto H(t,s)$$

is a piecewise smooth curve in M based at m_0 . Define \tilde{g} by $p_0\tilde{g}(s) = P_{c_s}(p_0)$. This is piecewise smooth in s. We have $\tilde{g}(0) = e$ since c_0 is constant and $\tilde{g}(1) = g$ since $c_1 = c$. $\tilde{g}(s) \in \operatorname{Hol}_0(H, p_0)$ because each c_s is a closed loop based at m_0 and is contractible. The proof of the theorem is completed by the following proposition.

Proposition. Let G be a Lie group and $H \subset G$ a subgroup with the property that every $g \in H$ can be connected to e by a piecewise smooth curve in H. Then H is a Lie subgroup of G.

Proof. Let

$$\mathfrak{h} = \{\dot{c}(0) \mid c \colon [0,1] \to G \text{ piecewise smooth}, \ c(0) = e, \ \forall t \colon c(t) \in H\}.$$

We claim that \mathfrak{h} is a Lie subalgebra of $\mathfrak{g} = L(G)$. If $X \in \mathfrak{g}$ is in \mathfrak{h} , then so is λX by reparametrizing c with $\dot{c}(0) = E$. If c_1 and c_2 are two curves with $\dot{c}_1(0) = X \in \mathfrak{h}$ and $\dot{c}_2 = Y \in \mathfrak{h}$, then, with

$$c: [0,1] \to G, \quad t \mapsto c_1(t)c_2(t),$$

we have $\dot{c}(0) = X + Y$, so $\mathfrak{h} \in \mathfrak{g}$ is a linear subspace. It remains to prove that for $X, Y \in \mathfrak{h}$ we have $[X,Y] \in \mathfrak{h}$. Let c_1,c_2 be as above. Consider $c(t^2) = c_1(t)c_2(t)c_1(-t)c_2(-t)$. Without loss of generalit, we may take c_1,c_2 defined on $(-\varepsilon,1]$ for some small $\varepsilon > 0$. The defining formula for c makes sense for small positive t. We have $\dot{c}(0) = [X,Y]$ and c satisfies $c(t) \in H$ for all t, so $[X,Y] \in \mathfrak{h}$.

Now we define a subbundle $E \subset TG$ by $E_g := D\ell_g(\mathfrak{h}) \subset T_gG$ for all $g \in G$. We prove that E is integrable: Since \mathfrak{h} is closed under [-,-], E is involutive. By the Frobenius theorem, E is integrable, i.e. there exists an integral submanifold through every point. Let $K \subset G$ be the maximal connected integral submanifold of E through $e \in G$. E is a connected Lie subgroup with Lie algebra E.

Next, we show that $H \subset K$. By assumption, every $h \in H$ is connected to $e \in G$ by a piecewise smooth $c \colon [0,1] \to G$ with $c(t) \in H$ for all t. Suppose c is smooth. For a fixed t_0 define $\overline{c}(t) = c(t_0)^{-1}c(t) \in H$. We have $\overline{c}(t_0) = e$ and $\dot{\overline{c}}(t_0) = D_{c(t_0)}\ell_{c(t_0)^{-1}}(\dot{c}(t_0)) \in \mathfrak{h}$, so $\dot{c}(t_0) = D_e\ell_{c(t_0)}(\dot{\overline{c}}(t_0)) \in E_{c(t_0)}$ for all t_0 . Hence c is contained in K and in particular $h = c(1) \in K$. For piecewise smooth c we repeat this argument for each subinterval of [0,1] where c is smooth. So $H \subset K$.

To prove that $K \subset H$, pick a basis X_1, \ldots, X_k for \mathfrak{h} . For each i we can choose a curve c_i with $c_i(0) = e$, $c_i(t) \in H \,\forall t$ and $\dot{c}_i(0) = X_i$. Define

$$f: (-\varepsilon, \varepsilon)^k \to G, \qquad (t_1, \dots, t_k) \mapsto c_1(t_1)c_2(t_2)\cdots c_k(t_k).$$

Since each c_i is contained in H and $H \subset G$ is a subgroup, $f(t_1, \ldots, t_k) \in H$ for all t_i and $f(0, \ldots, 0) = e$. The linear map $D_{(0, \ldots, 0)} f$ is an isomorphism between \mathbb{R}^k and \mathfrak{h} . So, for $\varepsilon > 0$ small enough, f is an immersion. We obtain an immersed submanifold through e which is an integral submanifold for E, since $\mathrm{Im}(Df)$ is contained in E at every point. The maximal integral submanifold of E through e is E, so $\mathrm{Im} f \subset E$. In fact, $\mathrm{Im} f \subset E$ and E have the same dimension, so $\mathrm{Im} f \subset E$ is an open neighbourhood of E in E. Since E is a connected Lie subgroup, each element of E is a product of finitely many elements of E is a connected E is also a subgroup, E is also a subgroup, E is an open neighbourhood of E in E is a connected E in E is also a subgroup, E is a product of finitely many elements of E in E in E is also a subgroup, E is also a subgroup, E is an open neighbourhood of E in E is a connected E in E is also a subgroup, E is also a subgroup, E is an open neighbourhood of E in E i

2.4 Curvature

Definition. The curvature of H is the following \mathfrak{g} -valued 2-form on P:

$$\Omega(X,Y) = d\omega(\mathcal{H}X,\mathcal{H}Y) \qquad \forall X,Y \in T_p P, p \in P$$

For $X, Y \in T_pP$, $p \in P$, we have

$$\begin{split} (r_g^*\Omega)(X,Y) &= \Omega(Dr_g(X),Dr_g(Y)) = \mathrm{d}\omega(\mathscr{H}Dr_g(X),\mathscr{H}Dr_g(Y)) = \\ &= \mathrm{d}\omega(Dr_g(\mathscr{H}X),Dr_g(\mathscr{H}Y)) = (r_g^*\mathrm{d}\omega)(\mathscr{H}X,\mathscr{H}Y) = \\ &= \mathrm{d}(r_g^*\omega)(\mathscr{H}X,\mathscr{H}Y) = (\mathrm{d}\operatorname{Ad}_{g^{-1}}\omega)(\mathscr{H}X,\mathscr{H}Y) = \\ &= \operatorname{Ad}_{g^{-1}}\mathrm{d}\omega(\mathscr{H}X,\mathscr{H}Y) = \operatorname{Ad}_{q^{-1}}\Omega(X,Y), \end{split}$$

so $r_q^* \Omega = \operatorname{Ad}_{q^{-1}} \Omega$.

Proposition (Structure equation). $\Omega(X,Y) = d\omega(X,Y) + [\omega(X),\omega(Y)].$

Proof. Both sides of the claim are bilinear and skew–symmetric, so we may assume that each X,Y is either in V or in H. In the case $X,Y\in H$, we have $\omega(X)=\omega(Y)=0$, and $\Omega(X,Y)=\mathrm{d}\omega(X,Y)$ by definition of Ω . If instead $X,Y\in V_p$ with $p\in P$, we may assume $X=A_p^*$ and $Y=B_p^*$ for $A,B\in\mathfrak{g}$. Since $\mathscr{H}X=\mathscr{H}Y=0$, we have $\Omega(X,Y)=0$. The structure equation then holds since

$$d\omega(A^*, B^*) = A^*(\omega(B^*)) - B^*(\omega(A^*)) - \omega([A^*, B^*]) =$$

$$= A^*(B) - B^*(A) - \omega([A, B]^*) = 0 - 0 - [A, B] =$$

$$= -[\omega(A^*), \omega(B^*)]$$

so in particular $d\omega(X,Y) + [\omega(X),\omega(Y)] = 0 = \Omega(X,Y)$. In the third case, $X_p \in H_p$ and $Y_p \in V$, where X is a vector field and $Y_p = B_p^*$ for some $B \in \mathfrak{g}$. Again,

$$\Omega(X,Y) = d\omega(\mathcal{H}X,\mathcal{H}Y) = d\omega(X,0) = 0.$$

Then we have

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]) = = X(B) - 0 - \omega([X,B^*]) = -\omega([X,B^*]) = 0$$

by the following lemma. Since also $[\omega(X), \omega(Y)] = [0, B] = 0$, this completes the proof of case 3 and of the proposition.

Lemma. Let X be a vector field with $X_p \in H_p$. Then $[X, B_p^*] \in H_p$.

Proof. For any two vector fields X and Y we have

$$[X,Y] = L_X Y = -\frac{\mathrm{d}}{\mathrm{d}t} D\varphi_t(Y)\Big|_{t=0}$$

With this we have for X horizontal and $Y = B_n^*$:

$$[X, B_p^*] = -[B_p^*, X] = \frac{\mathrm{d}}{\mathrm{d}t} Dr_{\exp(tB)}(X) \Big|_{t=0} \in H$$

since H is invariant under right G-action.

Definition. Let α be a differential k-form on P. Then D is defined by

$$D\alpha = d\alpha \circ \mathcal{H}$$
, i.e. $D\alpha(X_1, \dots, X_{k+1}) = d\alpha(\mathcal{H}X_1, \dots, \mathcal{H}X_{k+1})$.

D depends on the connection H and is called the *covariant derivative* defined by H.

Proposition (Bianchi identity). $D\Omega = 0$, in other words $d\Omega(\mathcal{H}X, \mathcal{H}Y, \mathcal{H}Z) = 0$ for all $X, Y, Z \in T_pP$.

Proof. Let $X, Y, Z \in H_p$, then

$$d\Omega(X,Y,Z) = L_X(\Omega(Y,Z)) + L_Y(\Omega(Z,X)) + L_Z(\Omega(X,Y))$$

$$-\Omega([X,Y],Z) - \Omega([Z,X],Y) - \Omega([Y,Z],X)$$

$$= L_X(d\omega(Y,Z)) + L_Y(d\omega(Z,X)) + L_Z(d\omega(X,Y))$$

$$-d\omega([X,Y],Z) - d\omega([Z,X],Y) - d\omega([Y,Z],X)$$

$$= dd\omega(X,Y,Z) = 0$$

Proposition. Let $P \xrightarrow{\pi} M$ be a principal G-bundle an H a connection of P with curvature Ω . The following conditions are equivalent:

- (1) $\Omega = 0$.
- (2) H is involutive, i.e. closed under [-,-].
- (3) H is integrable.

Proof. Conditions (2) and (3) are equivalent by the Frobenius theorem. Assume $X, Y \in H$. Then

$$\Omega(X,Y) = d\omega(X,Y) = L_X(\omega(Y)) - L_Y(\omega(X)) - \omega([X,Y]) = -\omega([X,Y]),$$

so $\Omega = 0$ iff $[X, Y] \in H$ whenever $X, Y \in H$. This shows the equivalence of (1) and (2).

Let $L \subset P$ be the maximal connected integral submanifold for H with $p_0 \in L$. If c is any loop in M based at $m_0 = \pi(p_0)$, then the horizontal lift \bar{c} of c with initial value p_0 is contained in L. Note that L is a covering space of M.

$$\pi|_L \colon L \to M$$
 $D(\pi|_L) \colon T_p L = H_p \to T_{\pi(p)} M$

 $D(\pi|_L)$ is an isomorphism, so $\pi|_L$ is a local diffeomorphism.

Definition. The connection $H = \ker \omega$ is flat if $\Omega = 0$.

Now let H be arbitrary, not necessarily flat. For $p_0 \in P$ let

$$H(p_0) = \{ p \in P \mid p \text{ is obtained from } p_0 \text{ by parallel transport} \}$$

Note that $\operatorname{Hol}_0(H, p_0)$ is a connected Lie subgroup of G. Moreover, $\operatorname{Hol}_0(H, p_0)$ is the connected component of e in $\operatorname{Hol}(H, p_0)$. $\operatorname{Hol}(H, p_0)$ has at most countable many connected components, each diffeomorphis to $\operatorname{Hol}_0(H, p_0)$. So $\operatorname{Hol}(H, p_0) \subset G$ is a Lie subgroup as well.

Proposition. If M is connected, then $H(p_0)$ is a principal $Hol(H, p_0)$ -bundle.

Proof. $H(p_0)$ is a subset of P, so we have a projection $\pi: H(p_0) \to M$ by restricting $\pi: P \to M$. Consider

$$H(p_0) \cap \pi^{-1}(m_0) = \{p_0 g(c) \mid c \text{ is a closed loop based at } m_0\}.$$

Since $g(c) \in \text{Hol}(H, p_0)$, this shows that $\text{Hol}(H, p_0)$ acts simply transitively on the fiber of $H(p_0)$ over m_0 . G acts on P on the right, and we restrict this action to the subgroup $\text{Hol}(H, p_0) \in G$.

We claim that the restricted action maps $H(p_0)$ to itself. To prove this, let $p \in H(p_0)$ and \overline{c} be a horizontal curve connecting p_0 to p. Assume $g \in \text{Hol}(H, p_0)$. Then $r_g \circ \overline{c}$ is a horizontal curve connecting p_0g to pg. Because $g \in \text{Hol}(H, p_0)$, there is a horizontal curve from p_0 to p_0g . Concatenating with $r_g \circ \overline{c}$ gives a piecewise smooth horizontal curve from p_0 to pg, so $pg \in H(p_0)$.

Next, we want to show that the action of $\operatorname{Hol}(H,p_0)$ on $H(p_0)$ is simply transitive on every fiber of $H(p_0) \xrightarrow{\pi} M$. Let $p \in H(p_0)$ and \overline{c} be a horizontal curve from p_0 to p. For every $g \in \operatorname{Hol}(H,p_0)$, $pg \in H(p_0)$ by the previous paragraph. Suppose $p' \in H(p_0) \cap \pi^{-1}(\pi(p))$. There exists a horizontal curve \overline{c}' from p_0 to p'. Since both p and p' are connected to p_0 by horizontal curves, there is a horizontal curve from p to p'. So there exists $p' \in \operatorname{Hol}(H,p)$ such that p' = pp'. Since there is a horizontal curve between p_0 and p, we have $\operatorname{Hol}(H,p) = \operatorname{Hol}(H,p_0)$. We have shown that $\operatorname{Hol}(H,p_0)$ acts transitively on $H(p_0) \cap \pi^{-1}(\pi(p))$ for all $p \in H(p_0)$. Since the action of p on p has trivial stabilizers, the restricted action of $\operatorname{Hol}(H,p_0)$ on $H(p_0)$ has trivial stabilizers.

By connectedness of M, $H(p_0)$ intersects every fiber of P. Take local trivializations for P:

$$\psi \colon \pi^{-1}(U) \to U \times G$$

Since $\operatorname{Hol}_0(H, p_0) \subset G$ is a Lie subgroup, $U \times \operatorname{Hol}_0(H, p_0)$ is a smooth manifold and so is $U \times \operatorname{Hol}(H, p_0)$. Using the restriction of ψ to $\pi^{-1}(U) \cap H(p_0)$, we can identify $\pi^{-1}(U) \cap H(p_0)$ with $U \times \operatorname{Hol}(H, p_0)$. $H(p_0)$ has a unique smooth structure for which these identifications are diffeomorphisms. With respect to this smooth structure on $H(p_0)$, the action of $\operatorname{Hol}(H, p_0)$ on $H(p_0)$ discussed before is smooth.

Definition. Let $p_0 \in P$ and H be a connection on P. The principal $Hol(H, p_0)$ -bundle $H(p_0)$ is the *holonomy bundle* of H through p_0 .

Remark. Consider $H(p_0) \hookrightarrow P$. This is a homomorphism of principal bundles where the corresponding homomorphism of Lie groups is $\text{Hol}(H, p_0) \hookrightarrow G$.

A reduction of the structure group of P to H is a principal H-bundle $Q \to M$ together with a homomorphism $Q \to P$ with respect to the inclusion $H \hookrightarrow G$ such that

commutes.

The existence of such a reduction is equivalent to a section of the bundle

$$G/H \longrightarrow P/H$$

$$\downarrow$$
 H

Extending this definition slightly, we have proved that if H is a connection of P and $Q := H(p_0)$ is the holonomy bundle through a basepoint $p_0 \in P$, then $Q \hookrightarrow P$ defines a reduction of the structure group of P to $Hol(H, p_0) \subset G$.

Suppose Q is a reduction of the structure group G of P to a subgroup $G' \subset G$. Let H be a connection on Q.

Claim. H extends uniquely to P.

Proof. For $p \in P$ consider some $p' \in Q \cap \pi^{-1}(\pi(p))$. The connection H on Q defines $H_{p'} \subset T_{p'}Q$. $H_{p'}$ is a complement to the vertical subspace at p' in Q and also in P. There exists $g \in g$ such that p'g = p. Define $H_p := Dr_g(H_{p'})$. This is a horizontal subspace at p in P.

This defines a connection on P! H is clearly horizontal. It is also smooth, so we only have to check G-invariance. Let $\overline{p} \in \pi^{-1}(\pi(p))$. There exists $\overline{g} \in G$ such that $\overline{p} = p\overline{g}$. We have to check that

$$Dr_{\overline{g}}(H_p) = H_{\overline{p}}$$

There exist $p' \in Q \cap \pi^{-1}(\pi(p))$ and $g' \in G$ such that p' = pg'. Then $p = p'g'^{-1}$ and $\overline{p} = p\overline{g} = p'g'^{-1}\overline{g}$, so

$$H_{\overline{p}}=Dr_{q'^{-1}\overline{q}}(H_{p'})=Dr_{\overline{g}}(Dr_{q'^{-1}}(H_{p'}))=Dr_{\overline{g}}(H_p).$$

Suppose \overline{H} is a connection on P which restricts to the given H on Q, i.e. $\overline{H_p} = H_p$ if $p \in Q$. Then \overline{H} is the connection defined above, because every fiber of P contains a point in Q and the connection \overline{H} on P is completely determined by G-invariance and \overline{H} at a single point in every fiber.

Definition. Let \overline{H} be a connection on a principal G-bundle $P \xrightarrow{\pi} M$ and $G' \subset G$ a Lie subgroup. \overline{H} is reducible to the subgroup G' if there is a reduction $Q \to M$ of P to a principal G'-bundle and a connection H on Q whose extension to P is \overline{H} .

Proposition. Every connection \overline{H} on P is reducible to $\operatorname{Hol}(\overline{H}, p_0)$.

Proof. Set
$$Q = H(p_0)$$
 and H the restriction of \overline{H} to Q .

Theorem (Ambrose–Singer). Le $P \xrightarrow{\pi} M$ be a principal G–bundle with a connection $H = \ker \omega$ and curvature Ω , where M is connected, and let $p \in P$. Define

$$\mathfrak{g}' := \{\Omega(X_p, Y_p) \mid X_p, Y_p \in T_p P\} \subset \mathfrak{g}$$

Then \mathfrak{g}' is the Lie algebra of $\operatorname{Hol}(H,p)$.

Proof. We replace P by the hononomy bundle Q = H(p) through P. We work on Q whose structure group is G' = Hol(H, p). We have to prove that the values of Ω span the full Lie algebra of G'.

Take a basis A_1, \ldots, A_k for the subspace \mathfrak{g}' . The A_i induce fundamental vector fields A_i^* on Q. Let X_1, \ldots, X_n be a basis for H_p and X_1^*, \ldots, X_n^* extensions of the X_i to horizontal vector fields. Let $S \subset T_pQ$ be the span of the $(A_i^*)_p$ and $(X_j^*)_p = X_j$. We extend S to a smooth distribution on Q by setting

$$S_q := \operatorname{span}\{(A_1^*)_q, \dots, (A_k^*)_q\} \oplus H_q.$$

We claim that S is integrable as a distribution on Q. To check that S is closed under [-,-], we can check at p: First, $[A_i^*,A_j^*]=[A_i,A_j]^*$, so we need to check that $\mathfrak{g}'=\operatorname{span}\{A_1,\ldots,A_k\}$ is a Lie subalgebra. Second, $[A_i^*,X_j^*]$ is horizontal by a previous Lemma, so it is in $H\subset S$. And third,

$$[X_i^*, X_j^*] = \mathscr{H}([X_i^*, X_j^*]) + \mathscr{V}([X_i^*, X_j^*]).$$

Since the horizontal part is in S, we only need to prove that $\mathcal{V}([X_i^*, X_j^*]) \in S$. Since the fundamental vector fields span the vertical subspace, we can write

$$\mathscr{V}([X_i^*, X_i^*](p)) = B_p^*$$
 for some $B \in \mathfrak{g}$,

so $\omega(\mathscr{V}([X_i^*, X_i^*](p))) = B$. Then

$$\Omega(X_i^*(p), X_j^*(p)) = d\omega(X_i^*(p), X_j^*(p)) = L_{X_i^*}(\omega(X_j^*)) - L_{X_j^*}(\omega(X_i^*)) - \omega([X_i^*, X_j^*]) = -\omega([X_i^*, X_j^*](p)) = -\omega(\mathcal{V}([X_i^*, X_j^*](p))) = -B$$

so $B \in \text{span}\{A_1, \dots, A_k\}$. The equation $\mathscr{V}([X_i^*, X_j^*](p)) = B_p^*$ then shows that $\mathscr{V}([X_i^*, X_j^*](p)) \in \text{span}\{(A_1^*)_p, \dots, (A_k^*)_p\} \subset S$.

We have proved that S is closed under [-,-], so it is integral by the Frobenius theorem.

Let L be the maximal connected integral submanifold of S through the point $p \in Q$. Every point in Q can be reached from p by parallel transport of p. The corresponding horizontal curve is tangent to H and therefore tangent to S. Therefore the whole curve is contained in L and so L = Q. Since

$$k + \dim M = \operatorname{rank} S = \dim L = \dim Q = \dim G' + \dim M$$

we have
$$\dim \mathfrak{g}' = k = \dim G' = \dim L(G')$$
, so $\mathfrak{g}' = L(G')$.

By definition, H is G-invariant. So, since $r_g^*\omega = \operatorname{Ad}_{g^{-1}}\omega$, we also have $r_g^*\Omega = \operatorname{Ad}_{g^{-1}}\Omega$, i.e. $\Omega(Dr_g(X), Dr_g(Y)) = \operatorname{Ad}_{g^{-1}}\Omega(X, Y)$ for all $X, Y \in T_pP$. Since $\operatorname{Ad}_{g^{-1}}$ is a linear isomorphism, there is as much curvature at pg as there is at p for all $g \in G$.

With $E = P \times_{\operatorname{Ad}} \mathfrak{g} = P \times \mathfrak{g}/\simeq$ where $(p,A) \simeq (pg,\operatorname{Ad}_{g^{-1}}A)$ for all $g \in G$, the bundle $\pi_E \colon E \to M, [(p,A)] \to \pi(p)$ is a vector bundle on M whose fiber at every point $m \in M$ is isomorphic to \mathfrak{g} . We interpret the curvature Ω of a connection H on P as a 2-form on M with values in E, i.e.

$$\Omega \in \Omega^2(M) \otimes E = \Gamma(\Lambda^2 T^* M \otimes E)$$

For $X, Y \in T_m M$ we should have $\Omega(X, Y) \in E_m = \pi_E^{-1}(m)$. Given $X, Y \in T_m M$, choose preimages $\widetilde{X}, \widetilde{Y} \in T_p P$ with $\pi(p) = m$ and $D_p \pi(\widetilde{X}) = X$, $D_p \pi(\widetilde{Y}) = Y$. Then

$$\Omega(X,Y) = [(p,\Omega(\widetilde{X},\widetilde{Y}))] \in E_{\pi(p)} = E_m$$

If we replace \widetilde{X} by $\widetilde{X}' \in T_p P$ with $D_p \pi(\widetilde{X}') = X$, then $\widetilde{X} - \widetilde{X}' \in \ker D_p \pi = V_p$, so

$$\Omega(\widetilde{X}',\widetilde{Y}) = \Omega(\widetilde{X}' - \widetilde{X},\widetilde{Y}) + \Omega(\widetilde{X},\widetilde{Y}) = \Omega(\widetilde{X},\widetilde{Y})$$

This shows that $\Omega(X,Y)$ is independent of the choice of \widetilde{X} at p and similarly for \widetilde{Y} at p.

Any $p' \in P$ with $\pi(p') = m$ is of the form p' = pg for some $g \in G$. Then

$$(p,\Omega(\widetilde{X},\widetilde{Y})) \simeq (pg,\operatorname{Ad}_{g^{-1}}\Omega(\widetilde{X},\widetilde{Y})) = (p',r_g^*\Omega(\widetilde{X},\widetilde{Y})) = (p',\Omega(Dr_g(\widetilde{X}),Dr_g(\widetilde{Y})))$$

and $D\pi(Dr_g(\widetilde{X})) = X$, $D\pi(Dr_g(\widetilde{Y})) = Y$. This shows that $\Omega(X,Y) := [(p,\Omega(\widetilde{X},\widetilde{Y}))]$ is well–defined as an element of E_m .

2.5 Global gauge transformations

Definition. An automorphism (or global gauge transformation) of P is a diffeomorphism $\phi \colon P \to P$ such that $\pi \circ \phi = \pi$ ad $\phi(pg) = \phi(p)g$ for all $g \in G$.

Every such ϕ has an inverse ϕ^{-1} which is a diffeomorphism. Moreover, $\pi \circ \phi^{-1} = \pi$ and $\phi^{-1}(pg) = \phi^{-1}(p)g$ for all $g \in G$. So the automorphisms of P form a group.

Definition. The group of automorphisms of P is called the gauge group \mathscr{G} of P.

Proposition. \mathscr{G} is the space of sections of the bundle $F \to M$ with fiber G associated to P by the conjugation action of G on itself.

Proof. F is defined by $F = P \times G/ \simeq$ where $(p,h) \simeq (pg,g^{-1}hg)$ for all $g \in G$. Let $\phi \in \mathscr{G}$. Then $\phi(p) = pu(p)$ for some smooth $u \colon P \to G$. The definition of automorphisms gives

$$(pg)u(pg) = pu(p)g \Rightarrow gu(pg) = u(p)g \Rightarrow u(pg) = g^{-1}u(p)g$$

Define a section $s: M \to F$ by s(m) = [(p, u(p))] for any $p \in \pi^{-1}(m)$. Since

$$(p, u(p)) \simeq (pg, g^{-1}u(p)g) = (pg, u(pg)),$$

s is well–defined and so it is a smooth section of F.

Conversely, suppose $s: M \to F$ is a smooth section of F. Define $u: P \to G$ by $p \mapsto g$ if $[(p,g)] = s(\pi(p))$. Then $\phi(p) = pu(p)$ is a gauge transformation of P.

The gauge group \mathscr{G} acts on connections. If ω is a connection 1–from defining a connection H on P, then $\phi^*\omega$ is also a connection 1–form defining the pulled–back connection:

$$(\phi^* H)_p = (D_p \phi)^{-1} H_{\phi(p)}$$

For every H we can think of its curvature Ω as a section of $\Lambda^2 T^*M \otimes E$, equivalently a 2-form on M with values in E, where $E = P \times_{\operatorname{Ad}} \mathfrak{g}$. The action of \mathscr{G} on P by automorphisms induces an action on E:

$$\mathscr{G} \times E \to E$$
, $(\phi, [p, A]) \mapsto [\phi(p), A)$

If [q, B] = [p, A], then there exists $g \in G$ such that q = pg and $B = \mathrm{Ad}_{g^{-1}}(A)$, so

$$[\phi(q), B] = [\phi(pg), B] = [\phi(p), Ad_q(B)] = [\phi(p), A].$$

This shows that the action of \mathscr{G} on E is well-defined. ϕ maps ϕ^*H to H and so it maps the curvature $\widetilde{\Omega}$ of ϕ^*H to the curvature Ω of H, i.e.

$$\phi(\widetilde{\Omega}(X,Y)) = \Omega(X,Y) \quad \forall X, Y \in T_m M$$

Choose $p \in \pi^{-1}(m)$ and write $\widetilde{\Omega}(X,Y) = [p,A]$ for some $A \in \mathfrak{g}$. Then

$$\phi\widetilde{\Omega}(X,Y) = [\phi(p), A] = [pu(p), A] = [p, \mathrm{Ad}_{u(p)}(A)]$$

So if $A \in \mathfrak{g}$ represents the curvature of ϕ^*H , then $\mathrm{Ad}_u(A)$ represents the curvature of H itself. If $\phi(p) = pu(p)$, then the curvature $\widetilde{\Omega}$ of ϕ^*H is $\widetilde{\Omega} = \mathrm{Ad}_{u^{-1}}\Omega$ where Ω is the curvature of H. (The same formula holds for the curvature as a 2-form).

Corollary. If $\phi \in \mathcal{G}$ and H is a connection on P, then ϕ^*H is flat if and only if H is flat.

Definition. Two connections H_1, H_2 on P are called gauge equivalent if there is a $\phi \in \mathcal{G}$ with $\phi^* H_1 = H_2$.

The corollary says that if H_1, H_2 are gauge equivalent, then H_1 is flat if and only if H_2 is flat.

Let $\langle -, - \rangle$ be a Riemannian metric on M. If M is oriented, then $\langle -, - \rangle$ induces a volume form dvol on M characterized by

$$dvol(e_1,\ldots,e_n)=1$$

if e_1, \ldots, e_n is a positively oriented orthonormal basis for $(T_m M, \langle -, - \rangle)$. Assume that \mathfrak{g} is equipped with an Ad-invariant, positive definite scalar product. $\langle -, - \rangle$ together with the Ad-invariant scalar product in \mathfrak{g} induces a smooth fiber-wise metric on $\Lambda^2 T^* M \otimes E$.

Definition. If H is a connection on $P \to M$ with curvature Ω , where M is an oriented compact manifold, we define the Yang-Mills-functional

$$\mathcal{YM}(H) := \int_{M} \|\Omega\|^2 \, \mathrm{d}\mathrm{vol}$$

Lemma. $\mathcal{YM}(\phi^*H) = \mathcal{YM}(H)$, i.e. \mathcal{YM} is \mathscr{G} -invariant.

Proof. Let $\widetilde{\Omega}$ be the curvature of ϕ^*H . Since the scalar product on the fiber of E is Ad–invariant, we have

$$\|\widetilde{\Omega}\|^2 = \|\Omega\|^2$$

Remark. We have $\mathcal{YM}(H) \geq 0$ with equality if and only if H is flat.

Theorem. There is a 1:1 correspondence between the flat connections on all possible principal G-bundles $P \to M$ up to gauge equivalence and the set $\operatorname{Hom}(\pi_1(M), G)/G$ where G acts on homomorphisms by conjugation.

Lemma. Let $P \xrightarrow{\pi} M$ be a principal G-bundle and H a connection on P. If H is flat, then P_c (with respect to H) depends only on the homotopy class of c.

Proof. If H is flat, then by the Ambrose–Singer theorem, Hol_0 is trivial, so P_c is the identity if c is a closed loop which is null–homotopic through closed loops.

Let c_1, c_2 be paths from m_1 to m_2 . Then c_1 travelled backwards followed by c_2 is a closed loop based at m_2 . Parallel transport along this loop maps $P_{c_1}(p)$ to $P_{c_2}(p)$ for all $p \in \pi^{-1}(m_2)$. If c_1 and c_2 are homotopic with fixed endpoints, then this loop at m_2 is null-homotopic as a loop. Since H is flat, this implies $P_{c_1}(p) = P_{c_2}(p)$.

If H is a flat connection on $P \xrightarrow{\pi} M$ and $p_0 \in \pi^{-1}(m_0)$, define the holonomy representation

hol:
$$\pi_i(M, m_0) \to G$$
, $[\gamma] \mapsto g(\gamma)^{-1}$

where $P_{\gamma}(p_0) = p_0 g(\gamma)$. This is well–defined by the lemma and is a group homomorphism $g(\gamma)g(\gamma') = g(\gamma'\gamma)$ since

$$p_0 g(\gamma)^{-1} g(\gamma')^{-1} = P_{\gamma'}(P_{\gamma}(p_0)) = P_{\gamma\gamma'}(p_0) = p_0 g(\gamma\gamma')^{-1}.$$

Suppose we use $p_1 \in \pi^{-1}(m_0)$ instead of p_0 to define hol. Then we get g_1 defined by $P_{\gamma}(p_1) = p_1 g_1(\gamma)$. There exists a unique $h \in G$ such that $p_1 = p_0 h$, so

$$p_0g(\gamma)h = P_{\gamma}(p_0)h = P_{\gamma}(p_0h) = p_0hg_1(\gamma).$$

This implies $g_1(\gamma)^{-1} = h^{-1}g(\gamma)^{-1}h$, so the conjugacy class of hol is independent of the choice of basepoint $p_0 \in \pi^{-1}(m_0)$.

Lemma. If H_1 , H_2 are gauge equivalent flat connections on $P \xrightarrow{\pi} M$, then their holonomy representations are conjugate.

Proof. Let $\phi: P \to P$ be a gauge transformation with $D\phi(H_1) = H_2$. Pick a basepoint $p_1 \in \pi^{-1}(m_0)$ to define hol₁, the holonomy representation of H_1 . To define hol₂, the holonomy representation of H_2 , use the basepoint $p_2 = \phi(p_1)$. Then hol₁($[\gamma]$) = $g_1(\gamma)^{-1}$ and hol₂($[\gamma]$) = $g_2(\gamma)^{-1}$ where g_1 and g_2 are defined by $P_{\gamma}^1(p_1) = p_1\gamma_1(\gamma)$ and $P_{\gamma}^2 = p_2\gamma_2(\gamma)$ where P^1 is the parallel transport with respect to H_1 and P^2 is the parallel transport with respect to H_2 . We have

$$p_2g_2(\gamma) = P_{\gamma}^2(p_2) = \phi(p_1g_1(\gamma)) = \phi(p_1)g_1(\gamma) = p_2g_1(\gamma)$$

so $g_1(\gamma) = g_2(\gamma)$, meaning that $\text{hol}_1 = \text{hol}_2$ if we use p_1 respectively $p_2 = \phi(p_1)$ as basepoints for the definition of hol.

Let $\rho \colon \pi_1(M, m_0) \to G$ be a representation. Consider the universal covering $\widetilde{M} \to M$. Definie $P \colon \widetilde{M} \times_{\rho} G = \widetilde{M} \times G / \simeq$ where

$$(x,g) \simeq (\gamma x, \rho(\gamma)g) \qquad \forall \gamma \in \pi_1(M, m_0)$$

P is the quotient of $\widetilde{M} \times G$ by the action of $\pi_1(M, m_0)$ given by

$$\pi_1(M, m_0) \times \widetilde{M} \times G \to \widetilde{M} \times G \quad (\gamma, x, g) \mapsto (\gamma x, \rho(\gamma)g)$$

The equivalence class of (x,g) is denoted by [x,g]. Define $\pi \colon P \to M, [x,g] \mapsto [x]$ where $\widetilde{M} \to M, x \mapsto [x]$ comes from the covering. This is well–defined and smooth. G acts on P on the right as follows:

$$P \times G \to P$$
, $([x, h], g) \mapsto [x, hg] =: [x, h]g$

For any $\gamma \in \pi_1(M, m_0)$, we have $[x, h] = [\gamma x, \rho(\gamma)h]$. Since also

$$[\gamma x, \rho(\gamma)h]g = [\gamma x, \rho(\gamma)hg] = [x, hg]$$

this right G-action on P is well-defined.

The P constructed in this way from ρ is a principal G-bundle over M. $\widetilde{M} \times G$ has a natural connection whose horizontal subspaces are tangent spaces to $\widetilde{M} \times \{g\}$. This distribution is tautologically integrable, so the connection is flat. $\pi_1(M, m_0)$ acts on $\widetilde{M} \times G$ preserving the flat product connection, which therefore descends to P as a flat connection.

Suppose $\overline{\rho}$ is defined by $\overline{\rho}(\gamma) = \alpha \rho(\gamma) \alpha^{-1}$ for all γ and some fixed $\alpha \in G$. Then $\overline{\rho}$ gives rise to a principal G-bundle \overline{P} with a flat connection \overline{H} .

Lemma. There is an isomorphism of principal bundles $\phi \colon \overline{P} \to P$ with $D\phi(\overline{H}) = H$.

Proof. We have $\overline{P} = \widetilde{M} \times G / \simeq$ with

$$(x,g) \simeq (\gamma x, \overline{\rho}(\gamma)g) = (\gamma x, \alpha \rho(\gamma)\alpha^{-1}g) \qquad \forall \gamma \in \pi_1(M, m_0)$$

Now define

$$\phi \colon \overline{P} \to P \quad [x,g]_{\overline{\rho}} \mapsto [x,\alpha^{-1}g]_{\rho}$$

This ϕ is well–defined since $[x,g]_{\overline{\rho}} = [\gamma x, \alpha \rho(\gamma) \alpha^{-1} g]_{\overline{\rho}}$ is mapped to $[x,\alpha^{-1} g]_{\rho} = [\gamma x, \rho(\gamma) \alpha^{-1} g]_{\rho}$. ϕ is also smooth. We have $\pi_P \circ \phi = \pi_{\overline{P}}$ and

$$\phi([x,g]_{\overline{\rho}}h) = \phi([x,gh]_{\overline{\rho}}) = [x,\alpha^{-1}gh]_{\rho} = [x,\alpha^{-1}g]_{\rho}h = \phi([x,g]_{\overline{\rho}})h.$$

This shows that ϕ is an automorphism of principal G-bundles. ϕ preserves the local product structures in which H, \overline{H} are given by the tangent spaces to the first factor in $U \times G$, $U \subset M$ open. So $D\phi(\overline{H}) = H$.

For the theorem, it remains to prove that the composition of these two maps. in both directions is the identity. Start with a representation $\rho \colon \pi_1(M, m_0) \to G$ and consider the corresponding principal G-bundle P and the flat connection H on P. Choose a basepoint $x_0 \in \overline{M}$ with $[x_0] = m_0$. Let γ be a loop in M based at m_0 Then γ has a unique lift $\widetilde{\gamma}$ to \overline{M} with starting point x_0 and endpoint $[\gamma]x_0$.

Define $\overline{\gamma}(t) := [\widetilde{\gamma}(t), e]$, where $e \in G$ is the neutral element. If $\pi : P \to M$ is the projection, then

$$\pi(\overline{\gamma}) = \pi([\widetilde{\gamma}(t), e]) = [\widetilde{\gamma}(t)] = \gamma(t)$$

so $\overline{\gamma}$ is a lift of γ from M to P. The starting point of $\overline{\gamma}$ is $[x_0, e]$. This lift is horizontal for the flat connection H because the curve $(\widetilde{\gamma}(t), e)$ in $\widetilde{M} \times G$ has tangent vector tangent to the first factors.

We use $p_0 = [x_0, e]$ as a basepoint in P to define hol.

hol:
$$\pi_1(M, m_0) \to G$$
, $[\gamma] \mapsto g(\gamma)^{-1}$

where $P_{\gamma}(p_0) = p_0 g(\gamma)$. Since $\overline{\gamma}$ is the unique horizontal lift of γ ,

$$p_0 g(\gamma) = P_{\gamma}(p_0) = \overline{\gamma}(1) = [\widetilde{\gamma}(1), e] = [[\gamma] x_0, e] = [x_0, \rho([\gamma])^{-1}] = [x_0, e] \rho([\gamma])^{-1} = p_0 g(\gamma)^{-1}$$

so hol = ρ .

Finally, start with a flat connection H on some principal G-bundle $P \xrightarrow{\pi} M$. Fix $p_0 \in \pi^{-1}(m_0)$ and define hol: $\pi_1(M, m_0) \to G$ using the basepoint p_0 . Define \overline{P} by $\widetilde{M} \times G/\simeq$ where $(x,g)\simeq (\gamma x, \text{hol}(\gamma)g)$ for all $\gamma\in\pi_1(M,m_0)$. \overline{P} has an obvious flat connection \overline{H} . We need to find an isomorphism $\phi\colon P\to \overline{P}$ with $D\phi(H)=\overline{H}$.

Let H(p) be the holonomy bundle of $p \in P$. So $H(p) = \widetilde{M}/\Gamma$ where $\Gamma \subset \pi_1(M, m_0)$ is a subgroup. In fact, $\Gamma = \ker(\text{hol})$. Define

$$\phi \colon H(p) \to \overline{P}, \quad [x] \mapsto [x, e]$$

If $\gamma \in \Gamma$, then $[x] = [\gamma x]$. Since

$$[\gamma x, e] = [x, \text{hol}(\gamma)^{-1}] = [x, e],$$

 ϕ is well–defined and smooth. If $q \in P \setminus H(p)$, there exists g such that $qg \in H(p)$. Define $\phi(q) := \phi(qg)g^{-1}$. We will leave out the check that this is well–defined. This ϕ defined on all of P is then an isomorphism $P \to \overline{P}$ mapping H to \overline{H} .

Proposition. Let φ be a \mathfrak{g} -valued 1-form on P satisfying $r_g^*\varphi = \operatorname{Ad}_{g^{-1}}\varphi$ and $\varphi(X) = 0$ if X is vertical. Then

$$D\varphi(X,Y) = d\varphi(X,Y) + [\omega(X),\varphi(Y)] + [\varphi(X),\omega(Y)] \quad \forall X,Y \in TP$$

Proof. Both sides of the equation are bilinear and skew–symmetric. It suffices to check the three cases that X, Y are both horizontal, both vertical or one horizontal and the other vertical.

If both X and Y are horizontal, $\omega(X) = 0 = \omega(Y)$ and $D\varphi(X,Y) = d\varphi(X,Y)$ by the definition of the covariant derivative.

If X and Y are vertical, $\varphi(X) = 0 = \varphi(Y)$ and $D\varphi(X,Y) = 0$ since $\mathscr{H}X = 0 = \mathscr{H}Y$. Extend X, Y to fundamental vector fields $A_p^* = X$, $B_p^* = Y$, then

$$d\varphi(A^*, B^*) = L_{A^*}(\varphi(B^*)) - L_{B^*}(\varphi(A^*)) - \varphi([A^*, B^*]) = 0$$

since $[A^*, B^*]$ is vertical and φ vanishes on fundamental vector fields, so $d\varphi(X, Y) = (d\varphi(A^*, B^*))(p) = 0$.

Given $X \in V_p$ and $Y \in H_p$ we choose extensions to vector fields on P as follows: X is extended by A^* with $A \in \mathfrak{g}$, such that $A_p^* = X$. Y is extended to a G-invariant horizontal vector field \widetilde{Y} on P. This is possible since: $D_p\pi\colon H_p \to T_{\pi(p)}M$ is an isomorphism. We extend $D_p\pi(Y)$ to a vector field on M with support in a neighbourhood of $\pi(p)$ over which P is trivial. Choosing a section $s\colon U \to P$, U containing the support of the vector field in M, we can an isomorphism $D\pi\colon H_{s(U)} \to TU$. We lift the vector field on M under this isomorphism and use the G-action to extend it to a G-invariant horizontal vector field on P extending the original Y.

Now X is vertical, so $\varphi(X) = 0$ and $D\varphi(X,Y) = 0$ since $\mathscr{H}X = 0$. To check the claim in this case, we have to prove $d\varphi(X,Y) = -[\omega(X),\varphi(Y)]$.

Let ω_0 be a connection 1-form on P and ω is a 1-form on P with values in \mathfrak{g} satisfying $r_g^*\omega = \operatorname{Ad}_{g^{-1}}\omega$ and $\omega|_V = 0$. Let $\omega_t = \omega_0 + t\omega$ with $t \in \mathbb{R}$. This is a smoothly varying familiy of connection 1-forms defining $H_t = \ker \omega_t$. Let Ω_t be the curvature of H_t . Then

$$\Omega = d\omega_t + [\omega_t, \omega_t] = d\omega_0 + td\omega + [\omega_0 + t\omega, \omega_0 + t\omega] =$$

$$= d\omega_0 + [\omega_0, \omega_0] + t(d\omega + [\omega_0, \omega] + [\omega, \omega_0]) + t^2[\omega, \omega] =$$

$$= \Omega_0 + tD_0\omega + t^2[\omega, \omega]$$

where D_0 is the derivative with respect to ω_0 or H_0 .

$$\left. \frac{\mathrm{d}}{\mathrm{d}t} \Omega_t \right|_{t=0} = D_0 \omega$$

With the Yang-Mills-functional

$$\mathcal{YM} \colon \operatorname{Conn}(P) \to R, \quad H \mapsto \int_M \|\Omega\|^2 \operatorname{dvol}$$

where we think of Ω as a section of $\Lambda^2 T^* M \otimes (P \times_{\operatorname{Ad}} \mathfrak{g})$ and choose a Riemannian metric on M and an Ad–invariant scalar product on \mathfrak{g} , we have

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathcal{Y} \mathcal{M}(H_t) \Big|_{t=0} = \frac{\mathrm{d}}{\mathrm{d}t} \int_M \langle \Omega_t, \Omega_t \rangle \, \mathrm{d}vol
= \frac{\mathrm{d}}{\mathrm{d}t} \int_M \langle \Omega_0 + t D_0 \omega + t^2 [\omega, \omega], \Omega_0 + t D_0 \omega + t^2 [\omega, \omega] \rangle \, \mathrm{d}vol
= 2 \int_M \langle \Omega_0, D_0 \omega \rangle \, \mathrm{d}vol = 2 \int_M \langle D_0^* \Omega_0, \omega \rangle \, \mathrm{d}vol$$

Proposition. $H_0 = \ker \omega_0$ is a critical point of \mathcal{YM} if and only if $D_0^*\Omega_0 = 0$.

Remark. We always have $D_0\Omega_0 = 0$ by the Bianchi identity.

2.6 Principal S^1 -bundles

We consider principal S^1 -bundles over M. \mathfrak{g} -valued forms on P or M are ordinary forms. Because G is Abelian, $\mathrm{Ad} \colon G \to \mathrm{Aut}(\mathfrak{g})$ sends G to $\mathrm{id}_{\mathfrak{g}}$. A connection 1-form ω on a principal S^1 -bundle $P \xrightarrow{\pi} M$ is an ordinary S^1 -invariant 1-form on P, since

$$r_q^*\omega = \operatorname{Ad}_{q^{-1}}\omega = \omega.$$

The curvature Ω is an S^1 -invariant ordinary 2-form on P which vanishes on vertical vectors. We can think of Ω as an ordinary 2-form on M. By the structure equation

$$D\omega = \Omega = d\omega + [\omega, \omega] = d\omega$$

on P since G is Abelian. On M, Ω is closed but not necessarily exact, because ω is not defined on M, only on P. In this case D=d. The Yang–Mills–equation $D_0^*\Omega_0=0$ becomes $d^*\Omega_0=0$. Since Ω_0 is closed, H_0 is a Yang–Mills–connection if and only if Ω_0 is a harmonic 2–form. Let ω_0, ω_1 be 2 different connection 1–forms on a principal S^1 –bundle $P \to M$ and $\omega := \omega_1 - \omega_0$. Then

$$\Omega_1 = d\omega_1 = d(\omega_0 + \omega) = d\omega_0 + d\omega = \Omega_1 + d\omega$$

with ω defined on M. So $[\Omega] \in H^2_{dR}(M)$ is independent of the connection whose curvature we take.

Definition. $[\Omega] \in H^2_{dR}(M)$ is the Euler class of $P \to M$ (or first Chern class if G = U(1)).

Given a principal S^1 -bundle $P \xrightarrow{\pi} M$, let $C(P) \in H^2_{dR}(M)$ be its Euler class and \mathscr{C}_P the space of closed 2-forms on M whose cohomology class is C(P).

Lemma. Every $\alpha \in \mathscr{C}_P$ is the curvature of some connection on P.

Proof. Choose some connection ω_0 on P with curvature Ω_0 . Then $\Omega_0 - \alpha$ is exact and we can write $\alpha = \Omega_0 + d\omega$ for some 1-form ω on M. Then $\omega_0 + \pi^*\omega$ is a connection 1-form with curvature α .

Let \mathcal{A} be the affine space of connections on P and define the map

$$c: \mathcal{A} \to \mathscr{C}_P$$
, $\ker \omega = H \mapsto \Omega$.

Then by the above lemma, c is surjective.

Lemma. For every $\Omega \in \mathscr{C}_P$, the preimage $c^{-1}(\Omega)$ can be identified with C^1 , the space of closed forms on M.

Proof. Let $H_0 = \ker \omega_0 \in c^{-1}(\Omega)$. Every other connection 1-form ω_1 on P is defined by $\omega_1 = \omega_0 + \pi^* \omega$ for some 1-form ω on M. The curvature Ω_1 of $H_1 = \ker \omega_1$ is

$$\Omega_1 = d\omega_1 = d\omega_0 + d\pi^*\omega = \Omega + \pi^*d\omega$$

so $H_1 \in c^{-1}(\Omega)$ if and only if $\pi^* d\omega = 0$, which is equivalent to $d\omega = 0$, i.e. $\omega \in \mathcal{C}^1$. \square

The gauge group \mathcal{G} is, since S^1 is Abelian,

$$\mathcal{G} = \operatorname{Aut}(P) = \{u \colon P \to S^1 \mid u(pg) = g^{-1}u(p)g\} = \{u \colon P \to S^1 \mid u(pg) = u(p)\} = \{\overline{u} \colon M \to S^1\}.$$

 \mathcal{G} acts on A by

$$\phi^* \omega_0 = \operatorname{Ad}_{u^{-1}} \omega_0 + u^* \theta = \omega_0 + u^* \theta = \omega_0 + \pi^* (\overline{u}^* \theta).$$

The curvature of $\phi^*\omega_0$ is

$$d\phi^*\omega_0 = d\omega_0 + d\pi^*(\overline{u}^*\theta) = d\omega_0 + \pi^*\overline{u}^*d\theta = d\omega_0.$$

The map $c: \mathcal{A} \to \mathscr{C}_P$ descends to

$$A/\mathscr{G} \xrightarrow{\overline{c}} \mathscr{C}_P$$

which is again surjective and C^1 surjects onto $\overline{c}^{-1}(\Omega)$.

Let $\mathscr{G}H_0 = \mathscr{G} \ker \omega_0 \in \overline{c}^{-1}(\Omega)$. Then every other gauge equivalence class in $\overline{c}^{-1}(\Omega)$ is represented by $\omega_0 + \pi^* \omega$ for some closed ω . What is the condition on ω and ω' to ensure that $\omega_0 + \pi^* \omega$ and $\omega_0 + \pi^* \omega'$ are gauge equivalent?

$$\omega_0 + \pi^* \omega' = \phi^* (\omega_0 + \pi^* \omega) = \omega_0 + \pi^* \omega + \pi^* (\overline{u}^* \theta) \Longleftrightarrow \omega' = \omega + \overline{u}^* \theta$$

The map exp: $\mathbb{R} \to S^1, t \mapsto e^{2\pi i t}$ is a universal cover of S^1 . We lift $\overline{u} \colon M \to S^1$ to $\widetilde{u} \colon M \to \mathbb{R}$ such that

$$M \xrightarrow{\widetilde{u}} \mathbb{R}$$

$$e^{2\pi it}$$

$$M \xrightarrow{\overline{u}} S^1$$

commutes. So $\overline{u}^*\theta = \widetilde{u}^* \exp^*\theta = \widetilde{u}^*(\mathrm{d}t) = \mathrm{d}\widetilde{u}$, i.e. if $\overline{u} = \exp \circ \widetilde{u}$, then $\overline{u}^*\theta = \mathrm{d}\widetilde{u}$. Conversely, for every exact 1-form α on M, we can choose a $\widetilde{u} \in C^{\infty}(M)$ such that $\alpha = \mathrm{d}\widetilde{u}$ and consider $\exp \circ \widetilde{u} = \overline{u}$ as a gauge transformation of P. So $\mathcal{C}^1/\mathcal{E}^1 = H^1_{\mathrm{dR}}(M)$ surjects onto $\overline{c}^{-1}(\Omega)$.

$$[M, S^1] \to H^1(M, \mathbb{Z}), \quad [\overline{u}] \mapsto [\overline{u}^* \theta] = \overline{u}^* [\theta]$$

Lemma. For any $\Omega \in \mathscr{C}_P$, the preimage $\overline{c}^{-1}(\Omega) \in \mathcal{A}/\mathscr{G}$ can be parametrized by the quotient

$$H^1(M,\mathbb{R})/H^1(M,\mathbb{Z}),$$

i.e. the sequence $\mathbb{C}^1 \to \mathcal{A} \to \mathscr{C}_P$ induces

$$H^1(M,\mathbb{R})/H^1(M,\mathbb{Z}) \longrightarrow \mathcal{A}/\mathscr{G} \longrightarrow \mathscr{C}_P$$
.

A connection $H_0 = \ker \omega_0$ is a critical point of the Yang–Mills–functional if and only if $d^*\Omega_0 = 0$. We know that $d\Omega_0 = 0$. If M is compact without boundary, the pair of equations

$$d\Omega_0 = 0 \qquad d^*\Omega_0 = 0$$

Is equivalent to $\Delta\Omega_0 = 0$, where $\Delta = dd^* + d^*d$. By Hodge theory, there is a unique harmonic 2–form in \mathscr{C}_P . All Yang–Mills–connections on P map to the unique harmonic 2–form in \mathscr{C}_P .

The gauge equivalence classes of Yang–Mills–connections on P are parametrized by $H^1(M,\mathbb{R})/H^1(M,\mathbb{Z})$. If $H^1(M,\mathbb{R})=0$, then there is a unique gauge equivalence class of Yang–Mills–connections on every principal S^1 –bundle $P \to M$.

2.7 The Yang-Mills-equations

Fix a Lie group G with the property that \mathfrak{g} as a positive definite scalar product (e.g. G is compact). We fix once and for all such a $\langle -, - \rangle$. Let (M, g) be a compact Riemannian manifold, oriented without boundary.

If $P \xrightarrow{\pi} M$ is a principal G-bundle, then the space of connections \mathcal{A} on P is an affince space for $\Omega^1(M, E) = \Gamma(T^*M \otimes E)$ where $E = P \times_{\operatorname{Ad}} \mathfrak{g}$. We have metrics on T^*M and E.

More generally, we can look at k-forms on M with values in E.

$$\Omega^k(M, E) = \Gamma(\Lambda^k T^* M \otimes E)$$

Example. The curvature form of a connection on P is an element of $\Omega^1(M, E)$.

Elements of $\Omega^k(M,E)$ correspond to k-forms α on P with the following properties:

- (1) $\alpha(X_1,\ldots,X_k)=0$ if one of the X_1,\ldots,X_k is vertical.
- (2) $r_a^* \alpha = \operatorname{Ad}_{a^{-1}} \alpha$ for all $g \in G$.

We define the following operations on $\Omega^k(M, E)$:

$$[-,-]: \Omega^k(M,E) \times \Omega^l(M,E) \to \Omega^{k+l}(M,E), \quad (\alpha \otimes v, \beta \otimes w) \mapsto (\alpha \wedge \beta) \otimes [v,w]_{\mathfrak{g}}$$

$$\wedge: \Omega^k(M,E) \times \Omega^l(M,E) \to \Omega^{k+l}(M), \quad (\alpha \otimes v, \beta \otimes w) \mapsto \langle v,w \rangle \alpha \wedge \beta$$

A connection $H=\ker\omega$ on P defines a covariant derivative D on \mathfrak{g} —valued k–forms on P by

$$D\alpha = d\alpha \circ \mathscr{H}.$$

If α has values in \mathfrak{g} and satisfies (1) and (2), then so does $D\alpha$. Therefore, D can be thought of as

$$D \colon \Omega^k(M, E) \to \Omega^{k+1}(M, E)$$

D is compatible with the metric and with [-,-] and \wedge . That means: Let $V \to M$ be a vector boundle with scalar product $\langle -,-\rangle$. A covariant derivative $D: \Omega^k(M,V) \to \Omega^{k+1}(M,V)$ is compatible with $\langle -,-\rangle$ if

$$d\langle s_1, s_2 \rangle = \langle Ds_1, s_2 \rangle + \langle s_1, Ds_2 \rangle.$$

For $\omega^k \in \Omega^k(M, E)$ and $\omega^l \in \Omega^l(M, E)$, we have

$$d(\omega^k \wedge \omega^l) = D\omega^k \wedge \omega^l \pm \omega^k \wedge D\omega^l$$

Let V be a real vector space with an orientation, and $\langle -, - \rangle$ a positive definit scalar product on V. The volume form $\operatorname{dvol} \in \Lambda^n V^*$ where $n = \dim V$ is defined by $\operatorname{dvol}(e_1, \ldots, e_n) = 1$ if e_1, \ldots, e_n is a positively oriented orthonormal basis of V. The scalar product induces a scalar product V^* by the requirement that the isomorphism $V \to V^*, v \mapsto \langle v, - \rangle$ should be isometric. This also gives rise to a scalar product $\langle -, - \rangle$ on $\Lambda^k V^*$ where vectors of the form $\lambda_{i_1} \wedge \cdots \wedge \lambda_{i_k}$ with $\lambda_1, \ldots, \lambda_n$ an orthonormal basis of V^* and $i_1 < \cdots < i_k$ have length 1.

If $\langle -, - \rangle_0$ and $\langle -, - \rangle_1$ are two different scalar products on V, such that $\langle -, - \rangle_1 = \lambda^2 \langle -, - \rangle_0$ with $\lambda > 0$, then $\langle -, - \rangle_1 = \lambda^{-2k} \langle -, - \rangle_0$ on $\Lambda^k V^*$ and $\text{dvol}_1 = \lambda^n \text{dvol}_0$. We define the Hodge operator

$$\star : \Lambda^k V^* \to \Lambda^{n-k} V^*$$

by $\alpha \wedge \star \beta = \langle \alpha, \beta \rangle$ dvol for all $\alpha, \beta \in \Lambda^k V^*$. One can check that $\star \star = (-1)^{k(n-k)}$. If again $\langle -, - \rangle_1 = \lambda^2 \langle -, - \rangle_0$ on V, then

$$\alpha \wedge \star_1 \beta = \langle \alpha, \beta \rangle_1 \operatorname{dvol}_1 = \lambda^{-2k} \langle \alpha, \beta \rangle_0 \lambda^n \operatorname{dvol}_0 = \lambda^{n-2k} \alpha \wedge \star_0 \beta$$

for all $\alpha, \beta \in \Lambda^k V^*$, so $\star_1 = \lambda^{n-2k} \star_0$ on $\Lambda^k V^*$.

Let M be an oriented Riemannian manifold. Then the Hodge star

$$\star \colon \Omega^k(M) \to \Omega^{n-k}(M)$$

where $n = \dim M$ is defined fiberwise as above, i.e.

$$\alpha \wedge \star \beta = \langle \alpha, \beta \rangle \operatorname{dvol} \qquad \star \star = (-1)^{n(n-k)} \qquad \forall \alpha, \beta \in \Omega^k(M)$$

Let $P \to M$ be a principal G-bundle, fix an Ad-invariant positive definit scalar product on the Lie algebra $\mathfrak g$ and define $E := P \times_{\operatorname{Ad}} \mathfrak g$. We can extend \star to a map $\Omega^k(M,E) \to$ $\Omega^{n-k}(M,E)$ using the same formula with the above defined operation $\wedge : \Omega^k(M,E) \times$ $\Omega^{n-k}(M,E) \to \Omega^n(M)$.

Lemma. Let M be a compact oriented Riemannian manifold without boundary. On $\Omega^k(M, E)$, $k \geq 1$, we have $D^* = (-1)^{nk-n+1} \star D\star$, where D is the covariant derivative defined b a connection on P.

Proof. Let $\alpha \in \Omega^{k-1}(M, E)$ and $\beta \in \Omega^k(M, E)$. Then by Stokes' theorem,

$$\begin{split} 0 &= \int_M \mathrm{d}(\alpha \wedge \star \beta) = \int_M D\alpha \wedge \star \beta + (-1)^{k-1} \int_M \alpha \wedge D \star \beta \\ &= \int_M \langle D\alpha, \beta \rangle \operatorname{dvol} + (-1)^{k-1} \int_M \langle \alpha, \star^{-1} D \star \beta \rangle \operatorname{dvol} \end{split}$$

So we have, for $\beta \in \Omega^k(M, E)$:

$$D^*\beta = -(-1)^{k-1}(-1)^{(k-1)(n-k+1)} \star D \star \beta = (-1)^{nk+n+1} \star D \star \beta$$

Now for $\omega_t = \omega_0 + t\omega$ with $t \in \mathbb{R}$ and $\omega \in \Omega^1(M, E)$, if ω_0 is a critical point of the Yang–Mills–functional, we have

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \mathcal{YM}(\omega_t) \Big|_{t=0} = 2 \int_M \langle \Omega_0, D_0 \omega \rangle \, \mathrm{d}vol = (-1)^{n+1} 2 \int_M \langle \star D_0 \star \Omega_0, \omega \rangle \, \mathrm{d}vol.$$

So

$$D_0 \star \Omega_0 = 0$$

which is the Yang-Mills-equation for ω_0 . The Yang-Mills-equation is a second order differential equation.

Assume $n = \dim M = 4$. Then $\star\Omega_0$ is a 2-form just like Ω_0 itself. By the Bianchi identity, $D_0\Omega_0 = 0$. We want to know when $\Omega_0 = \star\Omega_0$ holds. In the case n = 4, k = 2, \star is an endomorphism of the 6-dimensional vector space Λ^2V . It has eigenvalues ± 1 and this splits Λ^2V :

$$\Lambda^2 V = \Lambda^2_{\perp} V \oplus \Lambda^2_{-} V$$

where \star acts as \pm on $\Lambda^2_{\pm}V$. $\Lambda^2_{+}V$ is called the *self-dual (SD)* and $\Lambda^2_{-}V$ the *anti-self-dual (ASD)* part of Λ^2V .

If $\alpha_1, \ldots, \alpha_4$ is an orthonormal basis for V^* , then we have a basis for Λ^2_{\pm} given by

$$\alpha_1 \wedge \alpha_2 \pm \alpha_3 \wedge \alpha_4$$

$$\alpha_1 \wedge \alpha_3 \pm \alpha_4 \wedge \alpha_2$$

$$\alpha_1 \wedge \alpha_4 \pm \alpha_2 \wedge \alpha_3$$

If $\omega \in \Lambda^2_+ V$ and $\eta \in \Lambda^2_- V$, then

$$\omega \wedge \eta = \star \omega \wedge \eta = \eta \wedge \star \omega = \langle \eta, \omega \rangle \, dvol = 0$$

 $\Lambda_{\pm}^2 V$ are orthogonal for $\langle -, - \rangle$ and for \wedge . If a connection ω_0 has self-dual or anti-self-dual curvature, then $\star \Omega_0 = \pm \Omega_0$ and $D_0 \star \Omega_0 = 0$ because of the Bianchi identity.

The equation $\star\Omega_0=\pm\Omega_0$ is the (anti-)self-duality equation for ω_0 . It implies the Yang-Mills equation.

Lemma. On a 4-manifold M, the Yang-Mills-equation and the (anti-)self-duality equation are conformally invariant.

Proof. Two metrics $\langle -, - \rangle_1$ and $\langle -, - \rangle_0$ on M are conformally invariant if $\langle -, - \rangle_1 = \lambda^2 \langle -, - \rangle_0$ for some $\lambda \neq 0, \lambda \in C^{\infty}(M)$.

We calculated that on k-forms, $\star_1 = \lambda^{n-2k} \star_0$, so in our case $\star_1 = \star_0$ for 2-forms and so the (A)SD equations for 2-forms with respect to the two metrics agree. The Yang-Mills equation is $D_0 \star \Omega_0 = 0$. Since the metric enters only in \star , this is the same for both metrics.