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1 Lie groups and Lie algebras

Definition. A smooth/differentiable manifold M is a topological space with the property
that

(1) M is Hausdorff
(2) M is second countable, i.e. there is a countable basis of its topology

(3) There exists a covering of M by open U;, ¢ € I, and homeomorphisms ¢;: U; —
R™ such that when U; N U; # @, then ¢; o goi_l: ei(U;NU;) = ¢j(U;NU;) is a
diffeomorphism.

If f: M — N is a smooth map between smooth manifolds, then there is a derivative
Df:TM — TN. Df is linear on the fibers of TM, i.e. Dpf: T,M — Ty, N is linear,
and the following diagram commutes:

™ 2L TN

JA

M —N

X(M)={X: M — TM | X is smooth A m o X = idy} is the set of smooth sections
of TM, ie. vector fields on M. For f € C>®°(M) we have Lxf € C*>(M), the Lie
derivative of f in the direction of X. [X, Y] is the unique vector field with the property

Lixy)f=LxLyf—LyLxf.

Definition. A (real) Lie algebra is an R-vector space g together with a bilinear map
[—,—]: g X g — g satisfying:

(1) [U7w] = _[w7v]

@) [los9): 2] + [lys 2} 2] + [ 2], ] = 0

Example.
(1) X(M) with [—, —] defined by the Lie bracket is an co-dimensional Lie algebra.
(2) Let V be any R-vector space. Then [—,—] = 0 defines a Lie algebra. These are

abelian Lie algebras.
(3) Mat(n x n,R) = gl(n,R), [A, B] = AB — BA.

Definition. A Lie group is a group which is also a smooth manifold and has the property
that G x G — G, (a,b) — ab~! is smooth.

Example.

(1) Any finite dimensional R-vector space V with the group structure given by +.
(2) GL(n,R)



(3) subgroups of GL(n,R): O(n), SO(n), GL(n,C), U(n), SU(n).
A Lie group G acts on itself by left multiplication. For any g € G, {y: G — G,a +— ga
is a smooth map. ¢, is a diffeomorphism with inverse (¢4)~! = £ 1.

Definition. A vector field X € X(G) is called left—invariantif Xyo = Xy, (q) = (Daly) Xa-

Proposition. The subset of left—invariant vector fields in X(G) is a linear subspace
closed under the Lie bracket [—,—|. Thus it is a Lie algebra.

Proof. X left invariant means (D{;)X = X o /¢, for all g € G. Assume that X,Y are
both left invariant. Then [X,Y]| = [(D{y) X, (D{y)Y] = (D{,)[X,Y] for all g € G. So

[X,Y] is also left-invariant. O
Definition. X(G) with the Lie bracket [—, —] is the Lie algebra g = L(G) of the Lie
group G.

Convention. From now on, G, H are always Lie groups and g = L(G), h = L(H) its
Lie algebras.

Definition. Let G be a Lie group with neutral element e € G. Defineev: g - TG, X —
Xe.
Proposition. ev is an isomorphism of R—vector spaces.

Proof.
(1) ev is clearly linear.

(2) ev is injective: Suppose X,Y € g and ev(X) = ev(Y). This means X, = Y, =
(Delg)Xe = (Dely)Ye = Xy =Y, = X =Y.

(3) ev is surjective: Take v € T.G. Define X € X(G) by X, = (Dcly)(v). This is a
smooth vector field and Xy, = (Delga)(v) = (De(lg 0 4y))(v) = (Daly 0 Dely)(v) =
(Daly)(Xa)- O

Corollary. The dimension of G is constant and equals the dimension of g as R—vector

space.

Proof. Denoting by Gy the connected component of G' containing g € G, £,: G — G|
is a diffeomorphism for every g € GG. Thus all connected components have the same
dimension and dim Gy = dimT,G = dim g. O
Corollary. The tangent bundle of G is globally trivial, i.e. G is parallelizable.

Proof. Consider G x g — TG, (g,X) — X4. This sends the fiber of G x g over g € G
to TyG linearly. At the point e we have (e, X) — X, which is an isomorphism by the
result about the evaluation map. For arbitrary g € G we have:

{9} x 9 —T,G
:Tﬁgxidg :TDeﬁg
{e} xg—T.G

This implies that the top horizontal map is an isomorphism, as claimed. O



Definition. A one-parameter subgroup of G is a smooth map s: R — G with s(0) = e
and s(t1 + t2) = s(t1)s(ta).

Example. Consider G = U(1) = {z € C | |2|] = 1}. Then s: R — U(1),t — €?™ is a
(not injective) one—parameter subgroup.

Proposition.

(1) Every left-invariant vector field on G is complete, i.e. it generates a global flow on

G.

(2) For every X € g there is a unique one—parameter subgroup sx: R — G such that
$x(0) == Dosx(0;) = X.. The flow of X is given by p: R x G — G,(t,g9) —
gsx(t) = Ly(sx (t))-

Notation. We write ¢:(g) == ¢(t, g).
Proof. Given a left-invariant vector field, there is a local flow at e € G:
o: (—e,e) xU — G
where U is an open neighbourhood of e in G, € > 0. For any g € G consider
P (—e,8) x Ly(U) — G pi=Lgopo(idr xt;') = y=1Lop0l,"

Claim: 1 is a local flow around g for X. Proof: ¢,(U) is an open neighbourhood of g in
G. First we check that 1 defines a local flow:

vo(h) = geo(g~'h) =gg 'h="h

wt1+t2 :fg O Pt1+to oﬁg_l = Kg O Pt O Pty Oeg_1 = KQO(PH Oeg;l oﬂg O Pty Ogg_l = wtl Oth

So 1 is a flow generated by some vector field, which we can calculate by differentiating
the flow lines of . To do this, consider the flow lines defined by

sn(t) = Pr(h) = gpi(g™h) = (bg 0 s4-1)(t)
Then

$¢(0) = Dosg(0r) = Do({g 0 se)(9r) = (Ds,(0)lg © Dose) (1) = (Dyg(e)lg © Dose)(9r) =
= Delg(Dose(0r)) = Delg(5e(0)) = Delg(Xe) = X,

This proves the claim.

These local flows defined at different points in G are all defined for the same time
interval (—e,¢), and so define a flow @: (—¢,¢) x G — G for X. § can be extended to
all t € R, so X is complete.

To prove part (2) fix X € g. By (1) we have a global flow ¢: Rx G — G for X. Define
sx(t) == p¢(e). Since

i(g) = (Lgo e 0 L") (g) = Ly(pe(e)) = ger(e)



we have sx(0) = ¢o(e) = e and

sx(t1 +t2) = @t 4t5(€) = Pryrer (€) = @1, (011 (€)) = @1, (€)1, (€) = sx(t1)sx (t2)

Also $x(0) = X, since sx is the flow line at e, and the formula ¢.(g) = gsx(t) follows
from the claim above. One can easily check that ¢ defined by this formula is a global
flow for any one—parameter subgroup sx and thus sx is unique by the uniqueness of
global flows. O

Definition. The map exp: g — G, X +— sx(1) is the ezponential map of G.

Example. Let G = GL(n,R) and g = gl(n,R) = Mat(n x n,R). Then exp is given by
the usual exponential function.

Lemma. sx(t) = exp(tX).
Proof. Clear.

Definition. A homomorphism of Lie groups is a smooth map f: G — H which is also
a group homomorphism.

Proposition. Any homomorphism f: G — H as above induces an R-linear homomor-
phism f.: g — b such that f[X,Y] = [f.X, f.Y].

Proof of proposition. Since f is a smooth group homomorphism, it has a derivative at e
and f(e) =e.

T.c 2L H

ETQV ~ TGV

QL

Under the homomorphism provided by ev, D.f corresponds to a unique linear f,.

Lemma. For any X € g and g € G we have (Dyf)(Xy) = (f+X) 5(g)-
Proof. Direct calculation using the left—invariance of X and f(e) = e.

(Dgf)(Xg) = Dgf ° Degg(Xe) = De(f o 69)(Xe) = De(gf(g) o f)(Xe) =
= Delly(g) 0 Def(Xe) = Deliyq) (£:X)e) = (£:X) 1) =
Using this lemma, we can show that f, X (h)o f = X(ho f) for any X € X(M) and
h e C®(H):

(£X)(M)(f(9)) = (f+X) s [Pl p(g) = (Dgf)(Xg)[hlg(g) = Xglh 0 flg = X (ho f)(9g)

Thus, applying this successively:

£+ X, £Y(h) o f = [ X(fY (R) o f = fY (fu X (R)) o f =
= X(fY(h) o f) =Y (fX(h)o f) =
= X(Y(ho f)) =Y (X(ho[)) =
= [X,Y](ho f) = il X, Y](h) o f



Since this holds for any h € C°°(H), we have [f. X, f.Y]of = f.[X,Y]of, so in particular
[/« X, f.Y] and f.[X,Y] coincide on e € H, hence they are equal by left-invariance, which
proves the proposition. O

1.1 Digression on integrability and the Frobenius theorem

Theorem. Let M be a smooth manifold and X1, ..., X € X(M) with [X;,X;] =0 for
all i,5. If X1(p),..., Xk(p) are linearly independent for some p € M, then there is a
chart (U, @) for M with p € U and Do(X;|U) = 0; for alli=1,... k.

Proof. The problem is local, so we may assume M is an open neighborhood of 0 in R"
and p = 0. We may choose U open around 0 with X7,..., X linearly independent
throughout U. After a linear change of coordinates we may assume that

X1(0), ..., X5(0), 81.(0), ... 9, (0)

form a basis of R”. We may assume that the local flow ¢’ for X; is defined for all
te(—ee),i=1,... k.

f:U—=R"Y f(a:l,...,:pn):go;lo---o@gk(o,...,0,xk+1,...,xk)

is a smooth map. Moreover f(0) = 0 and Dof(9;) = 0; for i = k+1,...,n. For all
x € U we have, since the flows ¢’ commute:

Dxf(az):Xz(f(x)) i=1,...,k

For x = 0 we see that Dgf is an isomorphism, so f is a local diffeomorphism around 0
by the inverse function theorem. Set ¢ = f~! after possibly shrinking U

Dp(X;|f(U)) = 0; O
Let M be a smooth manifold of dimension n.
Definition. A rank k distribution on M is a rank k subbundle £ C TM.

What this means is that around every point p € M there exists an open set U and
X1,..., X € X(M) such that

Ea; = {Xl(CE), e ,Xk(l')}

Definition. An integral submanifold for E is a k—dimensional submanifold N C M with
TN = E|N.

Definition. F is called integrable if for all p € M there exists an integrable submanifold
N with p € N.

Definition. E is involutive if [X,Y] € I'(E) whenever X,Y € I'(E).



Theorem (Frobenius theorem). For a distribution E of rank k on M, the following are
equivalent:

(1) E is integrable.

(2) E is involutive.

(3) There is a covering of M by domains of charts (U, ) with the property that

Proof.

(Dp)(E)38; Vi=1,...,k

3 =1 If £ =span{di,..., 0}, then the equations

Ti4+1 = Ck+1

Tp = Cp

define k—dimensional submanifolds for E.

1 =2 Take X, Y € I'(E) and p € M. By (1) we have a submanifold i: N < M with
p € N and E|N = TN. The restrictions of X,Y to N are vector fields on N.
Furthermore, [X,Y], € E,.

2 = 3 Everything is local, so we work at 0 € R™.

Step 1:

Step 2:

Step 3:

Consider the projection
m: R® — ]Rk,(xl,...,:zn) = (1, ..., 2)
If for some point p, D, is injective on E),, then the same is true for all x in

an open neighbourhood of p.

At every point p there is a chart so that w.r.t. the coordinates given by the
chart D,m is an isomorphism from F, to R" for all x in the domain of the
chart. To prove this, by step 1 it is enough to ensure D,7 is injective. We
can choose local coordinates (z1,...,z)) in such a way that if

Xi(p), ..., Xk(p)

is a basis for E,, then

X1(p)s - X(p), Oky1s- -+, On

is a basis of T),R".

Let E,p,U,m be as above. Let Z; € I'(E) be the unique section such that
Dyn(Zi(x)) = 0i(z) forallz € U,i=1,...,k. So Z,...,Z span E through-
out U.



Step 4:
P Dnrl[Z;, 2] = [DnZi, DnZ;] = [8:,0;] = 0

By involutivity, [Z;,Z;] € T'(E|U). But Dr is an isomorphism on E so

[Zi, Z;] = 0. By the previous theorem, we can find a chart in which Dy(Z;) =

0; for i = 1,... k. This gives (3) in the Frobenius theorem. O

Definition. If F satisfies the conditions in the theorem above and p € M, let L, be
the maximal connected submanifold of £ with p € L,. This is called the leaf through p.
The collection of all leaves formes a foliation of M.

Remark. The leaves of a foliation F are generally not closed subsets of M and the
subspace topology is not the same as the manifold topology of a leaf.

Definition. Let G be a Lie group, H C G a subset. H is a Lie subgroup of G if H has a
Lie group structure such that the inclusion i: H < G is a homomorphism of Lie groups
and an injective immersion.

Theorem. For any Lie group G, there is a bijection between connected Lie subgroups
H C G and Lie subalgebras ) C g.

Proof. Suppose H C G is a Lie subgroup. Then, since ¢ is an immersion,
D.i: T.H—T.,G and i.:h—g,

which are essentially the same maps, are injective. So i.(h) is a Lie subalgebra, which
can be identified with b.

Conversely, let h C g be a Lie subalgebra. Let E, := D.{,(ev(h)) C T,G for all g € G.
This is in fact the evaluation of h at g. For every g € G, £ is a k—dimensional subspace
of TyG with k£ = dim . The collection of all Fj is a smooth rank £ distribution & C T'G.

Step 1: E is involutive, and thus integrable by the Frobenius theorem. To see this, let
X1,...,X) be a basis for h. Then all X,Y € I'(E) are of the form

k
X=>fiXi Y= hX; fi,hieC™(G)
i=1 i
Then [X, Y] is a linear combination of the X; and the [X;, X;]. Since b is a Lie

subalgebra, [X;, X;] € h and so [X,Y] € I'(E).

Step 2: Let F be the foliation of G defined by the integral submanifolds of E, and
H = L.. Then L, = {,(H). Proof: Both sides are connected subsets containing
g. Lg is a leaf of F by definition. Once we prove that ¢,(H) is a leaf, we have
the conclusion by the uniqueness of leaves. For any a € G, b € H we have

Tabéa(H) = Dbga(TbH) = Dbga(Eb) = (Dbea (¢] Deéb)(ev(f))) = Deﬁab(ev(h)) = Eab

so {,(H) is an integral submanifold of E and thus g- H := {,(H) is the leaf of
F through g.



Step 3: Let a,b € H. Then aH = H 3 b, since aH is the leaf through a. But b € aH,
implies a='b € H, so H is a subgroup of G.

Step 4: The inclusion i: H — G makes H into a Lie subgroup. Since Dyi(T,H) =
Ey, i is an injective immersion, with the manifold structure of H given by its
construction as an integral submanifold for E.

Step 5: This H is the only connected Lie subgroup of G with Lie algebra . To prove
this, suppose H is another Lie subgroup with Lie algebra h. Both H, H are
injectively immersed in G with the same tangent space ev(h) at e. H will then
be an integral submanifold for £ through e. By uniqueness of the leaf through
e, we must have H = H. ]

Example. The 2-torus G = T? = R?/Z? is a connected Lie group with e = [(0,0)]. The
Lie algebra is g = R? with [X,Y] =0 for all X,Y € g. Every vector subspace h C g is a
Lie subalgebra in this case, giving rise to a Lie subgroup. If h = span(1,A), A € R\ Q,
then the corresponding connected Lie subgroup is

H = {exp(t(1,N)) | t € R}

This is densely immersed in 72, in particular it is not a closed subgroup.

1.2 Actions of Lie groups on manifolds
Definition. A (left) action of a Lie group G on a smooth manifold M is a smooth map
p:GxM—= M  u(g,p)=g-p=~Lyp)
such that for any p € M and g,h € G
e-p=p g-(h-p)=(gh)-p
A right action is a smooth map pu: G x M — M such that for any p € M and g,h € G
ple,p) =p  p(g,pu(h,p)) = p(hg,p)
For a right action, we write 11(g,p) = p- g = r4(p). Then the axioms become
p-e=p (p-h)-g=p-(hg)

Remark. If pi: G x M — M is a left action, we can define i(g, p) = u(g~—!, p). This is a
right action.

Definition. Let u: G x M — M be a an action of a Lie group on a smooth manifold.
(1) wis effective if for every g € G \ {e}, there exists p € M such that u(g,p) # p.

(2) For p € M, the subset
G(p) = {ulg,p) | g € G}

is the orbit of p under the action.



(3) The action is transitive if G(p) = M for some p € M (and thus for all p € M).

(4) The isotropy group of p € M is
Gp ={9€ G| g p)=p}

Proposition. Let f: G — H be a homomorphism of Lie groups and f.: g — b the
induced Lie algebra homomorphism. Then the following diagram commutes:

Proof. f(exp(tX)) is a C curve in H passing through e at time ¢ = 0. Since f is
a homomorphism, this is also a 1-parameter subgroup whose tangent vector at e is
D.f(ev(X)) = ev(f«(X)). So f(exp(tX)) is the unique 1-parameter subgroup of H
generated by f,.X =Y. We know that the 1-parameter subgroup generated by Y is
exp(tY’). Therefore

Flexp(tX)) = exp(tY) = exp(tf. X) == f(exp(X)) = exp(f.X) O

The isotropy group G, is a closed subgroup of G. This means that G, is actually a
Lie subgroup of G (not proved). If we restrict p from G to G, then p is a fixed point
for the action of G, on M.

Under an action p: G x M — M, every g € G gives a diffeomorphism

lby: M — M,p—g-p
with inverse (5)~! = £,-1.

Lemma. Ifp is a fived point of the action yu: Gx M — M, then G acts linearly on T, M,
so we have a representation G — GL(T,M). This is called the isotropy representation
of G at p.

Proof. Since p is a fixed point, we have {4(p) = p for all g € G, so Dply: T,M — T,M
is a linear isomorphism since /; is a diffeomorphism. We obtain a map

G — GL(T,M), g — Dyl,
which is smooth since u is smooth. It is also a homomorphism because of the chain rule:

Dply, g, = Dp(gsh oly,) = Dyly, o Dply, O

10



Example. The action
p: G x G — G,(g,p) = g-p=1Ly(p)
is effective, transitive, and G, = {e} for all p € G.

Let G act on itself by conjugation:

a:GxG =G, (g,p) = g-p-g " = ayp)
Note that g and p commute in G if and only if a4(p) = p. The isotropy group G, of
a point p € G under the conjugation action a is the centraliser of p in G. If G has a
non—trivial center, then the conjugation action a is not effective. One has G, = G since

geg~' = e for all g € G. By the Lemma, we obtain the isotropy representation of a at

p=e:
Ad: G — GL(T.G).

This is the adjoint representation of G (on g), whereas the map ad defined by

1.6 22N 1 GL(TLG)

GVTZ ZTGV

g——7 End(g)

with the identification End(g) = gl(T.G) is the adjoint representation of g. Since ad =
Ad,, it is a homomorhism of Lie algebras. By the proposition, we have the commutative
diagram:

G 24, GL(T.G)

eXpI Texp

g _ad End(g)

Also ay is a homomorphism of G to itself, so the following diagram commutes:

ev | X~ ~

ev

.G —— T.G
Deagy

Notation. Defineady: g = gbyadx(Y) = ad(X)(Y) forany X,Y € gand Ady: T.G —
T.G by Ady(X) = Ad(g)(X) for any g € G and X € T.G.



Then (ag)« = Adg = Ad(g), since (ag)« is defined by Deay, = Ad(g) by the definition
of Ad. Take a vector space V and G = GL(V). Then the above diagrams become:

GL(V) —24 GL(End(V)) GL(V) —2— GL(V)
End(V) —— End(End(V)) End(V) ——— End(V)

We claim that Ady(M) = gMg~!. This can be seen by
Adg(M) = Deag(M) =
(something is missing here)
Consider ry,-1: G — G, the right multiplication by g~ % Recall that TG = G x g is a
trivialization of T'G given by

Gxg—=TG (p,X)~ (p,Xp)

Lemma. Ad, € GL(T.G) is given by the composition of Der,—1 with the identification
of Ty—1G with TG via the trivialization of the tangent bundle by left-invariant vector
fields.

Ady

T

TeG qu} Tg—lG W TEG

g9
ev
X0—>Xg,1

g

Proof. Any tangent vector v € T,-1G can be identified with X, € TG for the unique
X € g such that X ;-1 = v. This identification is via Dy-1£,:

Dy-1ly(v) = Dy-1y(Xy-1) = Dy-1lg 0 Dely1(X.) = Xe
Using this, Adg we get the claim:
Dy-1lyo Derg1 = Deay = Ady O
Definition. Let G be a Lie group and g its Lie algebra.
C(GQ) ={g9 € G| gh=hgVh e G}
is the center of G and
Cg) ={Xeg|[X,)Y]=0VY €g}

is the center of g.

12



Lemma. Let G be a connected Lie group. Then ker Ad = C(G).

Proof. 1If g € C(G), then a4 = idy, so Ady = D.ay = idr,q, so g € ker Ad. Conversely,
suppose that g € ker Ad. Then

gexp(tX)g— = ay(exp(tX)) = exp(Ad,(tX)) = exp(tX)

for all X € T.G. So g commutes with all h € G containted in a small enough neighbour-
hood in G, because exp is a local diffeomorphism at 0 € T,G. Every open neighbourhood
of e in GG generates the connected component of e in G by taking products. Therefore,
if G is connected, then g € C(G). O

Corollary. Let G be a connected Lie group. Then C(G) is a closed Lie subgroup whose
Lie algebra is the center of g.

Proof. The center C(G) is a closed subgroup of G. So it is a Lie subgroup. The Lie
algebra of C'(G) is C(g). O

Corollary. If G is a connected Lie group, then G is abelian iff g has trivial Lie brackets.

1.3 Homogeneous spaces
Let G be a Lie group, H C G a closed Lie subgroup. Consider
G/H ={aH | a € G},
the set of left cosets of H. We denote by
ly: G/H - G/H aoH w— (ga)H

the action induced by left multiplication. For any two a,b € G, there exists g € G such
that {y(aH) = bH.

Theorem. G/H has a natural structure as a smooth manifold of dimension dim G —
dim H, such that
7:G—-G/H aw aH

is a smooth map that admits local smooth sections. m will actually be a submersion.
Proof. This proof will be added later
Corollary. The action
pw: GxG/H—G/H (g,aH) — (ga)H
defines a transitive smooth action of G on G/H. The isotropy group of H = eH is H.

Proof. 1 is a smooth map by the construction of the smooth structure on G/H. p is a
left action of G. The action is transitive, and

Gen ={9€G|ulg.eH)=cH}=H O

13



2 Principal bundles

Definition. A principal G-bundle over a smooth manifold M is a smooth manifold P,
a smooth projection m: P — M and a right G—action -: P x G — P satisfying:

(a) There is a covering of M by open sets Uy, together with diffeomorphisms
7r_l<Ua) — Uy x G D (W(p)ﬂpa(p))

(b) For all g € G, p € w1 (Uy), we have pa(rg(p)) = r¢(0alp)), ie. ¢a(pg) = ¢a(p)g
(G—equivariance)

G is called the structure group of P.

Remark.

(1) 7 is a submersion because 7~ 1(Uy,) = U, x G and 7 is a submersion.
(2) 71 (m) = G for all m € M.

(3) The action of G on P maps 7~ 1(m) to itself for all m € M.

(4)

4) On each fiber 771(m), the G-action is simply transitive, i.e. transitive and has
trivial stabilizers. It follows also that G is free on the whole principal bundle P.

Let X € g, then exp(tX) is a one—parameter subgroup of G. By restricting the right
action P x G — P we obtain a flow on P, which is generated by some vector field
X* e X(P).

Definition. X* is the fundamental vector field generated by X. X™* is tangent to the
fiber of 7.

Lemma. For any g € G, X € g and p € P, we have
Dyrg(Xy) = (Adg—1 (X)),

Proof. We have the commutative diagram

G
expT
g

s0, defining Y := Ady-1(X): exp(tY) = exp(t Ady-1(X)) = exp(Ad,-1(tX)) = gt exp(tX)g
Next, we can define two smooth maps

ag
—

Q

exp

©—

-1
Adg,l

—

5,8 R— P s(t) = pexp(tX) s'(t) = pgexp(tY) = pexp(tX)g
Then
Dpry(X;) = (Dprg 0 Dos)(0) = Do(rg 0 5)(0) = Dos'(9) = Yy, = (Ady-1(X));, O

pg

14



Remark.
(1) The map
g — X(P) X — X"

is an injective homomorphism of Lie algebras, because G acts freely.

(2) For all p € P, ker D, is spanned by the values of the fundamental vector fields at
p: The map
g~ T,P X=X,

is a linear map of R-vector spaces. This map is injective because X* has no zeroes,
and its image is in ker Dpm. So by dimensional reasons, it is ker Dp.

Lemma. A principal G-bundle P admits a global smooth section s: M — P if and only
if it is isomorphic to the product bundle M x G = M.

Proof. The product bundle has a smooth section
s:M—-MxG m— (m,e)

If f: P— M x G is an isomorphism, then f~! o s is a smooth section of P.
Conversely, suppose P admits a smooth section s: M — P. Then define

fiMxG—P (m, g) — s(m)g
Clearly f is a smooth map. For any h € G,

(forn)(m,g) = f(m,gh) = s(m)gh = rp(s(m)g) = (rn o f)(m,g)

so f maps {m} x G to 7~ (m). This map f: {m} x G — 7~ 1(m) is bijective. To show
injectivity, assume s(m)g; = s(m)ga, then gi1gy ' € Stab(s(m)) = {e}, so g1 = go. It is
also surjective, since G acts transitively on 7=(m). So f~!. One can check smoothness
of =1 in the local trivialization for p. O

Example.

(0) For any smooth manifold M and any Lie group G, the trivial bundle M x G LM
is a principal bundle.

(1) Let H C G be a closed Lie subgroup. Then P = G is a principal H—bundle over
G/H with the action
GxH-—=G (g,h) — gh

The projection 7: G — G/H admits local smooth sections. Let U C G be open such
that there is a smooth s: U — G with 7 o s = idy and define

f:UxH—=G (m,h) — s(m)h
This is a diffeomorphism between U x H and 7~ !(U) and for any h' € H, we have
(rp o f)(m, h) = rp(s(m)h) = s(m)hh’ = f(m, hh')

So all the requirements are satisfied such that G is a principal H—bundle.
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(2) Let M be a smooth manifold and P the set of bases for tangent spaces of M. P
has a C*° manifold structure such that 7 is smooth and P is the total space of a
principal GL,,(R)-bundle over M, n = dim(M).

Let P > M be a principal G-bundle and M = |J, U, a covering by local trivialisa-
tions. Suppose U, NUg # @. Then the composition

—1

(Ua NUs) x G s -V, 1 Ug) 2% (Ua N U3) x G

forms a diffeomorphism from (U, NUg) x G to itself, which is the identity on the first
factor. We denote this map by (m,g) — (m,¥as(m, g)). By G-equivariance of the local
trivializations, ¥a5(m, gh) = as(m, g)h holds for any m € M, g,h € G, so we have
Yap(m, g) = Yas(m,e)g = ap(m)g. These transition maps s have the following
properties:

(1) f UoNUg # @, then 9a3: Uy NUg — G is a smooth map.

)
(2) Yaa(m) = e for all m € U,,.

(3) Yap(m) = pa(m)~! for all m € U, N Us.

(4) For all m € U, NUg N U, we have the following:
Yap(m)vgy(m) = thay(m)

The properties (2) — (4) are summarized by saying that the maps 1, satisfy the cocycle
conditions. Property (3) follows directly from (2) and (4).

Now suppose we are given a smooth manifold M, an open covering M = {J, U, and
smooth maps 1,3: UoNUg — G satisfying the cocycle conditions. Then we can construct
a principal G-bundle P = M trivial over each U, such that 1 are the transition maps

of P:
P=1]Ua ><G)/~

The equivalence relation ~ is given as follows:
Us X G 3 (m,g) ~ (m,ap(m)g) eUg x G <= melU,NUg

This really is an equivalence relation because 1,4 satisfy the cocycle conditions. P is a
smooth manifold that each U, x G projects to an open submanifold of P.

Now define a projection 7: P — M by 7([(m, g)]) = m. In the chart given by U, x G
this is 1 and so it is smooth. Also define an action

p: PxG =P ([(m,g)],h) = [(m,gh)]

It is well-defined and smooth. This definition of P,, u satisfies the properties (a) and
(b) in the definition of a principal bundle. So we do indeed have a principal G—bundle
defined from the ,g.
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Example. Let M be a smooth manifold, (U,, f,) an atlas for M and n = dim M. If
U, NUpg # @, then we have the transition map

faﬁ = foe Of,Eli fﬂ(Ua N Uﬁ) — fOé(UOé N Uﬁ)

between open sets in R”. This f,s is a diffeomorphism. Let 1¢,5: Uy N Us — GL,(R)
be defined as follows:

Yap(®) = Dy, (2) fap € GLn(R)
The 1,5 so defined are smooth and satisfy
Yaa(2) = Dy, (@) foa = Dy, (@) 1y ua) = € € GLa(R)
and, for any x € U, NUg N U,:
Yory(#) = Dy, (2) for = Dy @) (fap © 7)) = Dy fap © Dy, @) for = Yap(®)1p,(2)

We have checked that 1, satisfy (2) and (4) of the cocycle conditions and (3) fol-
lows. Therefore 1,5 define a principal GL,(R)-bundle over R™. This is the bundle of
bases/frames for tangent spaces to M.

Definition. Let P ™ M and P’ ™s M’ be principal G- resp. G’-bundles. A homo-
morphism f from P to P’ is a pair of smooth maps

fliP— P G —=q
such that f” is a homomorphism of Lie groups and
f'bg) = f'w)f"(9) VpePged

Notation. For a homomorphism f of principal bundles P and P’, we usually denote
both f’ and f” by f. We write

f:P—P f:G—=dG
and the equivariance is written

f(pg) = f(p)f(9)

Note that a homomorphism P — P’ sends the fibers of P to the fibers of P'. There
is a well-defined smooth f: M — M’ such that the following diagram commutes:
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Definition. Let P = M be a principal G-bundle and H C G a Lie subgroup. A
reduction of the structure group of P from G to H is an injective homomorphism f of a
principal H-bundle Q — M into P such that f = idyy.

Example. Let P = M x G be the product bundle. Let H = {e} C G, Q = M x H.
Define
f:H—Ge—e f:Q— P,(m,e) — (m,e)

This f is a homomorphism and defines a reduction of the structure group of P to {e}.

Proposition. Let P = M be a principal G-bundle and H C G a Lie subgroup. The
structure group of P can be reduced to H if and only if there is a system of local trivial-
izations for P such that the corresponding transition maps .g take values in H.

Proof. Assume there is a reduction f: @ — P, where () is a principal H-bundle. We
may assume f: H — G is the inclusion. The corresponding transition maps take values
in H. Conversely, suppose P admits local trivializations U, x G such that all transition
maps Y,g take values in H. Then we can construct a principal H-bundle Q) I M from
the ¥og. In each trivialization U, x G for P we have U, x H C U, x G. These inclusions
induce an injective homomorphism f: () — P giving a reduction of the structure group
of P from G to H. ]

2.1 Associated bundles

Definition. Let P =+ M be a principal G-bundle, F' a smooth manifold and p: Gx F —
F a left action of G on F. The associated bundle E ~2 M is defined as follows:

E:=PxgF:=(PxF)/~

where
(p.f)~ (pg.g7'f) VpeP feFgeG

and

me([(p, f)]) = 7(p)

Let U C M be an open set over which P is trivial and let

7' U) = UxG  pr(n(p),e(p))

be a local trivialization. Performing the construction of E with 7~1(U) in place of P,
we obtain

1 (U) = (" U)x F)/~ =2 (UxGxF)/~

with ~ defined as follows:
(m,h, f) =~ (m,hg,g~ " f)

We claim that
(UxGxF))~=UxF
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To prove this, define ¢1: (U x G x F)/~ — U x F by ¥1([(m,h, f)]) = (m,hf) and
Yo: UXF — (UxXxG X F)/ ~ Dby a(m, f) =[(m,e, f)]. Then v is well-defined and

11,19 are mutually inverse:
V2 0 h1([(m, h, f)]) = ta(m, hf) = [(m, e, hf)] = [(m, b, f)]
o ¢2(m7 f) = wl([(ma €, f)]) = (mv ef) = (m7 f)

The associated bundle E has a unique differentiable structure in which the open subsets
ng(U ) are open smooth submanifolds diffeomorphic to U x F. This shows that F is a
locally trivial smooth fiber bundle with fiber F' and structure group G.

Example.

(1) If u: G x F — F is the terminal action (g, f) — f then E = P X F' is diffeomorphic
to M x F such that mg corresponds to .

(2) Let p: G — GL,(R) be a homomorphism of Lie groups. Then G acts on R" via p:
p: GxR" =R (g,0) = p(g)v
In this case, £ = P xg R" = P x,R" is a vector bundle over M.

(2’) Suppose V. — M is a vector bundle of rank k. The basis for fibers of V form a
principal GLy(R)-bundle P =5 M. Take id: GLg(R) — GLg(R). Then E = Px ,R"
is isomorphic to V.

(3) Let P > M be a principal G-bundle and H C G a closed subgroup. Using the
action

pw: GxG/H — G/H (9,aH) — (ga)H
we can form the associated bundle E with fiber G/H.

Lemma. In example (3), the associated bundle E with fiber G/H is diffeomorphic to
the orbit space P/H, where H acts on P by restricting the G-action.

Proof. We define to mutually inverse smooth maps v and 1y between E and P/H.
V2: E— P/H,[(p,aH)] — H(pa)  ¢1: P/H — E, H(p) — [(p, H)]
These are indeed well-defined and smooth and 1 o 19 = 19 0 11 = id. O

Proposition. Let P = M be a principal G-bundle and H C G a closed Lie subgroup.
The structure group of P can be reduced to H if and only if the associated bundle E with
fiber G/H has a section.

Proof. Suppose the structure group of P can be reduced to H, so that there is a principal
H-bundle Q — M and an injective homomorphism f: Q — P. We claim that the

composition () i> P — P/H is constant on every fiber of Q. To see this, let a, 8 € Q
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be in the same fiber of ). Then there exists h € H such that ah = 3, so f(a)h = f(p)
and thus [f(«)] = [f(B)], i.e. the images in P/H agree.

ot .pP _PH=E

| _—

M

By the claim, this map factors through the projection ) — M, and so gives a section
s: M — E. Conversely, suppose E ~2» M admits a section s: M — E. Define Q as the
preimage of s(M) under the map P — P/H = E. The restriction to H of the G-action
on P preserves () C P and is simply transitive on the fibers of Q — M. @ is a principal
H-bundle and the inclusion ) C P is a reduction of the structure group of P to H. [

Definition. Suppose P =+ M is a principal G-bundle and f: N — M is a smooth map.
Then define

[P ={(n,p) € N x P f(n) =n(p)

P2, p

N4f>M

f*P is a principal G-bundle. It is called the pullback bundle obtained by pulling back
P 5 M via f.

2.2 Connections

Let P 5 M be a principal G-bundle. Then 7 is a submersion and Dpm: TpP — T )M
has as kernel the tangent space at p to the fiber 7=!(m(p)). Moreover, ker(D,m) is
spanned by the fundamental vector fields X* generated by the G—action on P. We call
ker(Dpm) =: V), the vertical tangent space at p.

Definition. A connection on P is a choice of a complement H,, for V,, in T),P for all
p € P such that

(1) H, depends smoothly on p.

(2) Dpry(Hp) = Hpg forallpe P, g € G.

Remark. Property (1) is equivalent to saying that Upep Hp is a smooth subbundle H
of TP. If V.= Upep Vp is the vertical subbundle in TP with V' = ker(D7), then H
has to be a complement to V in TP, so that TP =V @& H. A connection H on P is a

G—invariant smooth complement to V.
If H is a connection on P, then

DPTI'Z Hp — Tﬂ.(p)M

is an isomorphism for all p € P. Under this isomorphism, vector fields on M can be
lifted to horizontal vector fields on P.
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If @ € QY(P) is a 1-form on P, then at every point p € P with a,, # 0, ker o, C T, P
is a hyperplane. If a is a 1-form with values in R¥, then at every point p € P it defines
a linear map

ap: T,P — R*

If o, is surjective onto R¥, then ker(ay,) C T, P is a subspace of codimension k.

Definition. Given a connection H on P, we define a 1-form w on P with values in g as

follows:
0 ifXeH
wp(X) = . I;
A it X =AJ forany A€ g

where A* is the fundamental vector field on P generated by the right action of exp(tA).
Then w is the connection 1-form corresponding to H.

At every point p € P, we have T,P =V, ® H,. H, is in the kernel of w, and V,
contains only elements of the form A} and for those w(A;) = A. So w is well-defined
and kerw, = Hj, because wy,: T,P — g is surjective. w is also smooth, since H and A*
are smooth.

Lemma. For g € G, we have
row=Adg1w

where Adg—1 w is the composition of w: TP — g and Adg-1: g — g.

Proof. Let X € T),P. Since (r;w),(X) = w(Dypry(X)), the claim of the lemma is equiv-
alent to
w(Dry(X)) = Ady-1(w(X))

Both sides are linar in X, therefore it is enough to check the claim for X € V and
Xed.

If X € Hp, then w(Dry(X)) € w(Hpy) = {0} by the G-invariance of H. Also
Ady-1(w(X)) = Ad,-1(0) = 0.

Now let X € V. Since the fundamental vector fields span V', we can choose Y € g
with V' = X. Then

w(Dry(X)) = w(Drg(Yy)) = w((Adg-1(Y)),) = (Adg-1(Y))

and

Ady 1 (@(X)) = Ady1 (w(Yy)) = Ady-1 (Y) 0

Proposition. Suppose w is a g-valued 1-form on P with the property that rjw =
Ad,-1w. Assume also that for fundamental vector fields A*, we have w(A*) = A. Then
H =kerw s a connection on P.

Proof. The two requirements on w are consistent. If A* is the fundamental vector field
generated by A, then Dry(Ay) = (Adg—1(A)),,- This implies

(Adg-1(A))pg = w((Adg-1(A))g) = w(Dry(Ap)) = rgw(4})
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For all p € P, the map

wp: TP — g
is surjective, so kerw, = H), is a subspace of T,P whose codimension is dimg. The
requirement w(A*) = A means that wy|y,: V, — g is an isomorphism for all p € P. So
H, is a complement for V), in T,,P.

Suppose X € H,. To prove G-invariance of H, we have to show Dy,r,(X) € Hpy. Now
X € Hp means that w(X) = 0. We have to prove w(Dry(X)) = 0. Indeed,

w(Dry(X)) = riw(X) = Ady1 (w(X)) = Ady1(0) = 0 O

Proposition. Every principal G-bundle P 5> M admits a connection.

Proof. Let {U;}icr be an open cover of M with the property that P restricted to each
U; is trivial:
7T71(UZ') —— U; x G

On the product bundle U; x G, there is a connection with

Let w; be the connection 1-form on 7~ !(U;), whose kernel corresponds to H under
the trivialization 7=1(U;) — U; x G. Let {p;}jes be a smooth partition of unity on
M subordinate to the covering by the U;, i.e. pj: M — R are smooth non-negative
functions such that supp p; are locally finite in M and }_; p; = 1 and for all j € J there
exists an ¢ € I such that supp p; C U;. Then define

W= Z?T*pj cwj = Z(pj o) - wj
jeJ jeJ

where for all j € J, w; = w; for some 7 € I such that supp p; C U;, and the summands,
which are supported only inside 7~!(U;) are being extended by 0 to all of P.

We claim that w is a connection 1-form on P. To see this, we need to check that
row = Adg,1 w for all g € G and w(Ay) = Ay for all A € g, p € P. Since 7" p; is constant
under right G—action, the first equality follows by

Tow =Ty, (Z ™ p; - wj) = Zﬂ*pj STowj = Zﬂ*pj cAdy1 wj =

jeJ jeJ jeJ

= Ady (Z ™ p; - wj) =Adj1w

jeJ

and the second by

w(Ap) = (Z T pj '%‘) (A3) = D7 pi(p) - wi(A) = > 7pi(p) - Ap = 4y O

= jeJ jeJ
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Proposition. The set of connections on a principal G-bundle P = M is naturally an
affine space whose vector space of translations is the space of 1-forms on M with values
in the vector bundle P xpaq g — M.

More precisely, for any difference of connection 1-forms & = w1 —wq on P, there is a
unique w € T'((P xaq 9) ® T*M) such that

Tw() =[p,w))] VW eTP

Proof. By the previous proposition, the set of connections P is non—empty, so we can
choose a reference connection 1-form wy. For any connection 1-form wq, let @ == wy —wy.
For all p € P, V), is spanned by the values of the fundamental vector fields A} with A € g,
but

wW(Ay) =wi(A)) —wo(4;) =A—-A=0

so @ vanishes on V. Let E := P xqg, then Q' (M, E) = I'(T*M ® E) is the vector space
of 1-forms on M with values in the vector bundle E. We want to define w € Q'(M, E)
by

w(X) = [(p,&(Y))]
for all X € T,,,M, where Y € T,P is a lift of X at some p € 7=(m), i.e. Dr(Y) = X.
We can always choose such a lift since D7 is surjective. For w to be well-defined, we
have to check that

[(p,@(Y))] = [(¢,0(2))]
for any lift Z € T, P at ¢ € m1(m). To see this, first let ¢ = p and Z € T,,P be a lift of

X at p. Then
Dn(Z-Y)=Dn(Z)-Dr(Y)=X-X=0

so Z — Y €V and therefore
wZ)y=wlY)—-w(Z-Y)=w((Y)

Now let ¢ € 7=1(m) be arbitrary and Z € T, P alift of X at ¢. There is a unique g € G
such that ¢ = pg. Since

Dr(Dry(Y)) = D o y)(Y) = Dr(Y) = X,
Dry(Y) € TP is a lift of X at ¢, so @(Z) = &(Dry(Y)). But then we have
[(q,@0(2))] = [(¢;@(Dry(Y)))] = [(¢;rg@(Y))] = [(pg, Adg-1 ©(Y))] = [(p,@(Y))].

This shows that although w is not well-defined as an ordinary g—valued 1-form on M,
it is well-defined as a 1-form on M with values in F.
Conversely, let w € Q' (M, E). We have to check that with & defined by

m'w(Y) = [(p,@(Y))] VY e T, P

the g—valued 1-form w; = wp + w is a connection 1-form. First, we show w;(X;) = X
for all X € g and p € P: Since

[(p, 0(Xp))] = Tw(Xp) = w(Dm(X})) = wr(p)(0) = wr(p) (Dpm(0)) = (7°w)p(0) =[(p, 0)]
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and the first element uniquely determines the representative of the equivalence class, we
have

wi(X2) = wo(X2) +B(X5) = X +0=X.

Left to show is rjw1 = Adg-1w; for g € G, but for Y € T),P,

[(pg, rg(Y))] = [(pg, w(Dry(Y)))] = m*w(Dry(Y)) = w(Dn(Dry(Y))) =
=w(D(morg)(Y)) =w(Dn(Y)) = 7w(Y) = [(p,0(Y))] =
= [(pgaAdg*I ‘:}(Y))L

so ryw = Adg-1 w and thus by linearity rjw; = Adg-1 w;. O

Let P 5 M be a principal G-bundle, w a connection 1-form on P, U;, U. 7 C M open
sets over which P is trivial. The trivializations

Py Wﬁl(Ui) —U; xG
correspond to sections
s;: U, — Wﬁl(Ui) m 1/1;1(m, e)

w; = s;jw is a g—valued 1-form on U; C M. Suppose U;NU; # &. Then on U; NU; both
w; and w; are defined. We have the smooth transition maps ¢;;: U; N U; — G defined
by

pioy ! (UinU;) x G — (UiNUj) x G (m,g) = (m, Pij(m)g)

and want to use them to find a formula for transition between w; and w;.
On G we have a canonical 1-form 6 with values in g defined by

6(Ag) =A VAeg,geG
This is well-defined since it is equivalent to 6(X) = D{ -1 (X) for X € T,G.
Lemma. We have the following translation from w; to w;j:
w;(X) = Ad;jj (my @i X) FU50(X) VX € T, M
Proof. Differentiating the function
53(m) = 7 (m, €) = 971 o 1 0 7 (m, €) = 7 (1, g () = si(m) - i3 (m)
gives for X € T,, M

Dsj(X) = D(po (si X ¥ij) o A)(X) = (Dpo D(si X 9ij) o DA)(X) =
= Du(Dsi(X), Dij(X)) = Dry,.m)(Dsi(X)) + DL, (m) (D (X))
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where we can transform the last summand using A5, = D{,(A,) like

DAy (D3 (X)) = (Dllyymy © Dby ) © Dl (my-1 © Ditbig) (X) =
= Dl m) (DL, () -1 (Di (X)) py(m)) =
= (Dly; ()= (DVig (X)) 5, (myss (m) =
= (0(Dvi(X)))5, (m) =
= (V50(X))5, (m)

Putting the above identities together we get the desired result

w;j(X) = w(Ds;j(X)) = w(Dry,;m)(Dsi(X)) + w((¥56(X))5, (m)) =

;
= 17 @ (Dsi(X)) + U50(X) = Ay wi(X) +456(X) =
2.3 Parallel transport

Let P 55 M be a principal G-bundle, H = kerw a connection on P. For every p € P,
Dyr|pg is an isomorphism H), — T, ,yM. Every X € Ty, M has a unique preimage
X* € H, under this isomorphism. Every vector field X € X(M) gives rise to a unique
vector field X* on P such that

Xy = (Dpm) "N (Xn(p)

This construction has the following simple properties: (fX)* = n*f - X* for any f €
C*(M,R) and (X +Y)* = X* +Y*. But [X,Y]* # [X*,Y*]: Although [X, Y], =
Dn([X*,Y*],) holds, [X*,Y™] is not neccessarily horizontal. Denoting the projections
from to the horizontal and vertical subbundles of T'P by

V:TP—=V H: TP — H
the above equality shows that
(X5 YT]) = [X YT
Remark. In general 7 ([X*,Y*]) # 0, and is related to the curvature of H.

Definition. A smooth curve c: [0,1] — P is horizontal (wrt H) if ¢(t) € Hcqy for all
te[0,1].

Proposition. Let c: [0,1] = M be a smooth curve and p € m—*(c(0)). Then there is a
unique horizontal curve ¢: [0,1] — P with ¢(0) = p and mo¢ = c. ¢ is called a horizontal
lift of c.

Proof. Given c and p € 7~ 1(¢(0)), there exists some smooth ¢: [0,1] — P with ¢(0) = p
and 7o ¢ = ¢ (by local triviality). Any other lift of ¢ to P with starting point p is of the
form ¢ - g where g: [0,1] — G is a smooth map with ¢g(0) = e. We need to find a g such
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that ¢- g is horizontal. This is the case iff &(2(t) - g(t)) € H, i.e. w(L(2-g)) =0 for all
t € [0,1]. As in the lemma above, we get
%(5 ~9) = Di(¢-9)(0) = (Dpo D(e- g) o DiA)(9) = Derg(Dic(9)) + Dyle(Dig(9))
and
Dyle(Drg(9)) = (Dglz o Dely 0 Dylg—1 0 Dig)(8) = Dyle(((Dyglg-1 0 Dig)(9))g) =
= ((Dglg-1 © Dtg)(9))eg = (Dgly-1(9))z4
d _ - : . :
w (dt(c . g)) = w(Dery(c)) + Dylyg1(g) = ryw(c) + Dly-1(g) =
= Ady-1w(¢) + Dl,-1(g) = DLly—1(Dry(w(€))) + Dl,-1(9) =
= (Dly-10 Drg)(w(é) + Drg-1(9))

Since D{;-1 o Dry is an isomorphism, this is 0 if and only if

Dryw-1(9(t)) = —w(e(t))

So the statement of the proposition is just that this differential equation has a unique
solution with ¢g(0) = e. This is shows by the following lemma. O

Lemma. Let X: [0,1] — g be smooth. There exists a unique g: [0,1] — G with g(0) = e
and

Dryp-1(9(t)) = X (1)
Proof. On G x [0,1], X defines a time—independent vector field X with

Xy = (Xy(1),0)

The flow of X is defined for all t (see the proof of completeness of left-invariant vector
fields on G). Under the flow ¢ of X we have

(pt(ev 0) = (g(t)v t)
for a g(t) which solves our equation. This is the only solution with g(0) = e. O

Let ¢: [0,1] = M be a smooth curve. Define
P.: 7 1c(0)) = 7 1(e(1)) p > ¢(1)

where € is the unique horizontal lift of ¢ with ¢(0) = p.

The map P, is the parallel transport map defined by c. P, is invertible by running
back along c¢. Except from change of direction, it is independent of the parametrization
of ¢. The parallel transport map can also be defined for a piecewise smooth curve ¢ by
concatenating the P, for ¢; obtained by restricting ¢ to subintervals of [0, 1] where it is
smooth.

Fix a basepoint mg € M. For every closed piecewise smooth curve c: [0, 1] — M with
¢(0) = ¢(1) = mo we have

P.: W_l(mo) — W_l(mo)
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Claim. The set of all these P. is a group with composition as group operation.

Proof. {P.} has id;—1(me) as an element obtained as P for ¢ the constant path at mo.
If ¢; and cp are two closed paths beginning and ending at myg, then P, o P, = P, ,,
where c¢jco denotes the concatenation of ¢; and cy. This is associative and PC_1 =P
where ¢ is ¢ parametrized backwards. ]

Fix a basepoint py € P with m(pg) = mg. If P. is one of the parallel transport maps
defined above, then P.(pg) € 7 !(mg). Since G acts simply transitively on the fiber,
there exists a unique g(c) € G such that P.(pg) = pog(c).

Claim. The map
h:{P.} - G P.— g(c)
s an injective homomorphism of groups.

Proof. Since h(P., o P.,) = h(P.y,) = g(cac1) and h(P.,)h(P.,) = g(c1)g(c2) need to
prove that g(cac1) = g(e1)g(ca).

For any curve c: [0,1] — M, the curve ¢ from p € P to P.(p) is horizontal, since it is
a horizontal lift of ¢. Since H is G-invariant, the G—-action maps horizontal curves to
horizontal curves, so for any g € G, ¢ - ¢ is a horizontal curve from pg to P.(p)g. This
means P.(pg) = P.(p)g, i.e. P.is G—equivariant. So

pog(cac1) = Peye, (po) = Pey © Pey(po) = Pey(pog(c2)) = Pey(po)g(c2) = pog(c1)g(ca)

and thus g(cac1) = g(c1)g(c2). We have proved that h is a homomorphism. Now suppose
P. € kerh, ie. g(c) = h(P.) = e. Then P.(py) = po. Every p € n 1(pg) is of the
form p = pog for some g € G. But Fe(p) = Pe(pog) = FPe(po)g = pog = p by the
G-equivariance of I, so P = id;-1(,,). Thus h is injective. O

Definition. The holonomy group Hol(H, py) = Hol(pg) of the connection H wrt pg € P
is the subgroup of G obtained by parallel transport along closed loops based at pg, i.e.
Hol(H,po) = Im h.

The restricted holonomy group Holy(H,py) = Holg(pg) is the subgroup obtained by
considering only parallel transports P, for closed loops ¢ which are contractible or null-
homotopic.

Properties.

(1) Hol(H,p1) = g~ ' Hol(H, po)g if p1 = pog.

(2) Hol(H,p1) = Hol(H, py) if p; is obtained from py by parallel transport.

(3) If M is connected, Hol(H, pg) and Hol(H, p1) are conjugate in G for any pg,p1 € H.
These properties also hold for Holy.

Proof.
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(1) Consider hy € Hol(H, pg) and hy € Hol(H, p1) defined by P.(py) = poho and P.(p1) =
p1hy for the same curve c on M. Then

poghi = p1h1 = P.(p1) = Pe(pog) = Pe(po)g = pohog
so gh1 = hog and hy = g~ 'hog.

(2) Let ¢ be a smooth curve on M such that p; = P.(pp) and let hy € Hol(H,p1) =
Hol(H, P.(po)). There exists a closed curve ¢; on M such that P, (P.(po)) =
P.(pg)h1. The curve ccic is a closed curve in M based at 7(pp), so there exists
ho € Hol(H, pp) such that P..,z(po) = poho. But

P.(po)h1 = P.o P, 0 P.y 0 Pe(po) = Po(Peeye(po)) = Pe(poho) = Pe(po)ho

so h1 = hg and thus hy € Hol(H,py). By using ¢ instead of ¢, we get the other
inclusion.

(3) Since M is connected, there is a smooth curve ¢ from 7(pg) to 7(p1), which has a
horizontal lift from pg to P.(po) € 7~ (w(p1)), Hol(H, P.(po)) = Hol(H,po) by (2).
By (1), this is conjugate to Hol(H, p1). O

Theorem. The restricted holonomy group Holg(H,py) is a connected Lie subgroup of

G.

Proof. By definition, Holy(H,py) C G is a subgroup. We claim that Holg(H, pg) is
connected, more precisely for any g € Holg(H,pg) there is a piecewise smooth curve
g:10,1] - G with g(0) = e, g(1) = g and g(s) € Holy(H,pg) for all s € [0,1]. The
property g € Holy(H,po) means that there is a piecewise smooth curve c: [0,1] — M
with ¢(0) = ¢(1) = mg such that P.(pg) = pog and c is contractible as a curve based at
mg. There exists a piecewise smooth map

H:[0,1] % [0,1] = M
such that
H(t,0) =mgy, H(t,1)=c(t), H(0,s)=H(1,s)=mp Vs, t € [0,1]

For every s € [0, 1],
cs: [0,1] = M t— H(t,s)

is a piecewise smooth curve in M based at mg. Define g by pog(s) = P..(po). This is
piecewise smooth in s. We have g(0) = e since ¢g is constant and g(1) = g since ¢; = c.
g(s) € Holp(H, po) because each c; is a closed loop based at mg and is contractible. The
proof of the theorem is completed by the following proposition. O

Proposition. Let G be a Lie group and H C G a subgroup with the property that every
g € H can be connected to e by a piecewise smooth curve in H. Then H is a Lie subgroup

of G.
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Proof. Let
h = {¢(0) | c: [0,1] — G piecewise smooth, ¢(0) =e, Vt: c(t) € H}.

We claim that b is a Lie subalgebra of g = L(G). If X € g is in b, then so is AX by
reparametrizing ¢ with ¢(0) = E. If ¢; and ¢ are two curves with ¢;(0) = X € h and
ca =Y €0, then, with

c: [0,1] = G, t~ ci(t)ea(t),

we have ¢(0) = X+Y, so h € gis a linear subspace. It remains to prove that for X, Y € b
we have [X,Y] € h. Let c1,c2 be as above. Consider c(t?) = c¢;(t)ca(t)cr(—t)ca(—t).
Without loss of generalit, we may take c1,co defined on (—¢, 1] for some small € > 0.
The defining formula for ¢ makes sense for small positive t. We have ¢(0) = [X, Y] and
c satisfies ¢(t) € H for all ¢, so [X,Y] € b.

Now we define a subbundle £ C TG by E, := D{4(h) C TG forall g € G. We prove
that E is integrable: Since b is closed under [—, —], E is involutive. By the Frobenius
theorem, F is integrable, i.e. there exists an integral submanifold through every point.
Let K C G be the maximal connected integral submanifold of E through e € G. K is a
connected Lie subgroup with Lie algebra b.

Next, we show that H C K. By assumption, every h € H is connected to e € G by a
piecewise smooth c: [0,1] — G with ¢(t) € H for all t. Suppose ¢ is smooth. For a fixed
to define ¢(t) = ¢(to) " '¢(t) € H. We have ¢(tg) = e and &(to) = De(yy)le(t)-1 (é(t0)) € b,
50 ¢(to) = Delery) (€(t)) € Eqty) for all tg. Hence c is contained in K and in particular
h = ¢(1) € K. For piecewise smooth ¢ we repeat this argument for each subinterval of
[0, 1] where ¢ is smooth. So H C K.

To prove that K C H, pick a basis X1,..., Xy for . For each ¢ we can choose a curve
¢ with ¢;(0) = e, ¢;(t) € HVt and ¢;(0) = X;. Define

fI (*€,€)k — G, (tl, e tk) — Cl(tl)CQ(tQ) s Ck(tk).

Since each ¢; is contained in H and H C G is a subgroup, f(t1,...,tx) € H for all t; and
f(0,...,0) = e. The linear map Dyq_. ¢y f is an isomorphism between R* and b. So, for
€ > 0 small enough, f is an immersion. We obtain an immersed submanifold through e
which is an integral submanifold for F, since Im(Df) is contained in E at every point.
The maximal integral submanifold of E through e is K, so Im f C K. In fact, Im f
and K have the same dimension, so Im f is an open neighbourhood of e in K. Since
Im f C H by definition of f, K C H is true locally near e. Since K is a connected Lie
subgroup, each element of K is a product of finitely many elements of Im f C H. since
H is also a subgroup, H C K. ]

2.4 Curvature

Definition. The curvature of H is the following g—valued 2—form on P:

OX,Y) = dw(H#X, #Y) VXY €eT,P,peP
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For X,Y € T,,P, p € P, we have
(rg)(X,Y) = Q(Dry(X), Dry(Y)) = dw (A Dry(X), 2 Dry(Y)) =
= dw(Dry(HX), Dry(HY)) = (rpdw)(HX, Y ) =
= d(ryw)(HX, HY) = (dAdg w) (X, HY) =
= Ady-1 dw( X, AY) = Ady1 Q(X, ),
so ryQd = Adg-1 Q.
Proposition (Structure equation). Q(X,Y) = dw(X,Y) + [w(X),w(Y)].

Proof. Both sides of the claim are bilinear and skew—symmetric, so we may assume that
each XY is either in V or in H. In the case X,Y € H, we have w(X) = w(Y) =0, and
Q(X,Y) = dw(X,Y) by definition of 2. If instead X,Y € V), with p € P, we may assume
X =A and Y = B} for A, B € g. Since X = Y = 0, we have Q(X,Y) = 0. The
structure equation then holds since

dw(A*, B*) = A*(w(B*)) — B*(w(A")) —w([4", B*]) =

(
(B) = B*(A) —w([4, B]") =0-0—[A,B] =

so in particular dw(X,Y) + [w(X),w(Y)] = 0 = Q(X,Y). In the third case, X, € H)
and Y, € V, where X is a vector field and Y}, = B}, for some B € g. Again,
QUX,Y) =dw(HZX,#Y) =dw(X,0) = 0.

Then we have

dw(X,Y) = X (w(Y)) = Y(w(X)) —w([X,Y]) =
= X(B) — 0 — w([X, B*]) = —w([X,B*]) = 0

by the following lemma. Since also [w(X),w(Y)] = [0, B] = 0, this completes the proof
of case 3 and of the proposition. O

Lemma. Let X be a vector field with X, € Hy. Then [X, B)] € H,.

Proof. For any two vector fields X and Y we have

[X.¥] = LxY = —< Doy (¥)]

dt t=0
With this we have for X horizontal and Y = By:
* * d
[Xa Bp] = _[Bp)X] = aDrexp(tB)(X)‘t:O €H
since H is invariant under right G—action. O
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Definition. Let a be a differential k—form on P. Then D is defined by
Da=dao s, ie Da(Xi,...,Xp41)=da(HXy,...,Xk11)-

D depends on the connection H and is called the covariant derivative defined by H.

Proposition (Bianchi identity). DQ = 0, in other words A X, Y, #Z) =0 for
all XY, Z € T,P.

Proof. Let XY, Z € Hy, then
AQ(X, Y, Z) = Lx(Q(Y, 2)) + Ly(Q(Z, X)) + L(Q(X,Y))
-QX,Y],Z2) - QZ,X],Y) - QY, Z], X)
=Lx(dw(Y,Z)) + Ly (dw(Z, X)) + Lz(dw(X,Y)
—dw([X,Y],Z2) — dw([Z, X],Y) — dw(]Y, Z], X)
=ddw(X,Y,Z) =0 O

Proposition. Let P = M be a principal G-bundle an H a connection of P with cur-
vature 2. The following conditions are equivalent:

(1) @ =0.
(2) H is involutive, i.e. closed under [—, —].
(8) H is integrable.

Proof. Conditions (2) and (3) are equivalent by the Frobenius theorem. Assume X,Y €
H. Then

Q<X7 Y) - dLU(X, Y) = LX(W(Y» - LY(W<X>) - (.U([X, Y]) - —W([X, Y])?
so Q@ = 0iff [X,Y] € H whenever X,Y € H. This shows the equivalence of (1) and
(2). O

Let L C P be the maximal connected integral submanifold for H with pg € L. If ¢ is
any loop in M based at mg = 7(po), then the horizontal lift € of ¢ with initial value pg
is contained in L. Note that L is a covering space of M.

7T’L2L—>M D(7T|L)2TPL:HP—>T7T(I,)M

D(x|p) is an isomorphism, so 7|z, is a local diffeomorphism.
Definition. The connection H = kerw is flat if Q2 = 0.
Now let H be arbitrary, not neccessarily flat. For pg € P let
H(po) = {p € P | p is obtained from py by parallel transport}

Note that Holg(H,po) is a connected Lie subgroup of G. Moreover, Holy(H, pg) is
the connected compontent of e in Hol(H,py). Hol(H,py) has at most countable many
connected components, each diffeomorphis to Holy(H,pg). So Hol(H,py) C G is a Lie
subgroup as well.

31



Proposition. If M is connected, then H(poy) is a principal Hol(H, pg)-bundle.

Proof. H(pg) is a subset of P, so we have a projection 7: H(pg) — M by restricting
m: P — M. Consider

H(po) N7 (mg) = {pog(c) | ¢ is a closed loop based at my}.

Since g(c) € Hol(H, po), this shows that Hol(H, pg) acts simply transitively on the fiber
of H(pg) over mgy. G acts on P on the right, and we restrict this action to the subgroup
Hol(H, po) € G.

We claim that the restricted action maps H (po) to itself. To prove this, let p € H(po)
and ¢ be a horizontal curve connecting py to p. Assume g € Hol(H,pp). Then r, o€ is
a horizontal curve connecting pog to pg. Because g € Hol(H,pp), there is a horizontal
curve from py to ppg. Concatenating with 7, o € gives a piecewise smooth horizontal
curve from py to pg, so pg € H(pp).

Next, we want to show that the action of Hol(H,pg) on H(pg) is simply transitive
on every fiber of H(py) -+ M. Let p € H(po) and ¢ be a horizontal curve from pg
to p. For every g € Hol(H,py), pg € H(py) by the previous paragraph. Suppose
p' € H(po) N7 1 (m(p)). There exists a horizontal curve & from pg to p’. Since both p
and p’ are connected to py by horizontal curves, there is a horizontal curve from p to
p'. So there exists ¢’ € Hol(H, p) such that p’ = pg’. Since there is a horizontal curve
between py and p, we have Hol(H, p) = Hol(H, pg). We have shown that Hol(H, py) acts
transitively on H(pg) N 7~ !(m(p)) for all p € H(pp). Since the action of G on P has
trivial stabilizers, the restricted action of Hol(H, pg) on H (pg) has trivial stabilizers.

By connectedness of M, H(pg) intersects every fiber of P. Take local trivializations
for P:

Y N(U) - U x @

Since Holg(H,pp) C G is a Lie subgroup, U x Holp(H,pp) is a smooth manifold and
so is U x Hol(H,pg). Using the restriction of ¥ to 7=1(U) N H(py), we can identify
71 (U) N H(po) with U x Hol(H,pg). H(po) has a unique smooth structure for which
these identifications are diffeomorphisms. With respect to this smooth structure on
H(po), the action of Hol(H, py) on H(pp) discussed before is smooth. O

Definition. Let py € P and H be a connection on P. The principal Hol(H, py)-bundle
H(pg) is the holonomy bundle of H through py.

Remark. Consider H(pg) < P. This is a homomorphism of principal bundles where the
corresponding homomorphism of Lie groups is Hol(H, py) — G.

A reduction of the structure group of P to H is a principal H-bundle Q — M together
with a homomorphism Q — P with respect to the inclusion H — G such that

Q——P

v

M
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cominutes.
The existence of such a reduction is equivalent to a section of the bundle

G/H——P/H

|

H

Extending this definition slightly, we have proved that if H is a connection of P and
Q@ = H(pp) is the holonomy bundle through a basepoint py € P, then Q < P defines a
reduction of the structure group of P to Hol(H, py) C G.

Suppose @ is a reduction of the structure group G of P to a subgroup G’ C G. Let
H be a connection on Q.

Claim. H extends uniquely to P.

Proof. For p € P consider some p’ € Q N7~ !(n(p)). The connection H on @ defines
Hy C TyQ. Hy is a complement to the vertical subspace at p’ in @ and also in P.
There exists g € g such that p'g = p. Define H, := Dry(H,s). This is a horizontal
subspace at p in P.

This defines a connection on P! H is clearly horizontal. It is also smooth, so we only
have to check G-invariance. Let p € 7~ !(m(p)). There exists § € G such that p = pg.
We have to check that

Drg(Hyp) = Hyp
There exist p’ € QN7 (w(p)) and ¢’ € G such that p’ = pg’. Then p = p'g’~! and

/ 1—1=

P=pg=pg g, so
Hﬁ = DT'nglg(Hp/) = DTE(DT’glfl(Hp/)) = DT’E(Hp).

Suppose H is a connection on P which restricts to the given H on Q, i.e. H, = H), if
p € Q. Then H is the connection defined above, because every fiber of P contains a
point in @ and the connection H on P is completely determined by G-invariance and
H at a single point in every fiber. O

Definition. Let H be a connection on a principal G-bundle P 5> M and G’ C G a Lie
subgroup. H is reducible to the subgroup G’ if there is a reduction Q — M of P to a
principal G’-bundle and a connection H on @ whose extension to P is H.

Proposition. Every connection H on P is reducible to Hol(H, pp).

Proof. Set Q = H(po) and H the restriction of H to Q. O

Theorem (Ambrose-Singer). Le P = M be a principal G-bundle with a connection
H = kerw and curvature 2, where M is connected, and let p € P. Define

o ={2X,, V) | XY, €T,P} C g

Then g’ is the Lie algebra of Hol(H,p).
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Proof. We replace P by the hononomy bundle @ = H(p) through P. We work on Q
whose structure group is G’ = Hol(H,p). We have to prove that the values of  span
the full Lie algebra of G’.

Take a basis Aq,..., Ay for the subspace g’. The A; induce fundamental vector fields
A7 on Q. Let Xy,...,X, be a basis for H, and X7,..., X} extensions of the X; to
horizontal vector fields. Let S C T,@Q be the span of the (A]), and (X]), = X;. We
extend S to a smooth distribution on @) by setting

Sq = Span{(AT)q, CI (A;:;)q} ® Hq'

We claim that S is integrable as a distribution on . To check that S is closed
under [—, —], we can check at p: First, [A], A7] = [A;, 4j]", so we need to check that
g’ =span{A;,..., A} is a Lie subalgebra. Second, [A}, X 7] is horizontal by a previous
Lemma, so it is in H C S. And third,

X7, X5) = (X7, X5) + 7 (X7 X)),

Since the horizontal part is in S, we only need to prove that ¥'([X}, X7]) € S. Since the
fundamental vector fields span the vertical subspace, we can write

V(X7 X51(p) = By

, for some B € g,

so w(¥([X7,X7)(p))) = B. Then
QXF (p), X5 (p)) = dw(X[(p), X7 (p)) = Lx; (w(X})) — Lx: (w(X])) — w([X, Xj]) =
= —w([X7, Xj](p)) = —w(¥([X7, Xj](p))) = —B

so B € span{Ay,..., Ax}. The equation ¥ ([X], X7](p)) = B, then shows that ¥ ([X], X7](p)) €
span{(A7)p, ..., (4p)p} C S.

We have proved that S is closed under [—, —], so it is integral by the Frobenius theorem.

Let L be the maximal connected integral submanifold of S through the point p € Q.
Every point in @ can be reached from p by parallel transport of p. The correspoinding
horizontal curve is tangent to H and therefore tangent to S. Therefore the whole curve
is contained in L and so L = (). Since

k4 dim M = rank S = dim L = dim Q = dim G’ + dim M,
we have dimg’ = k = dim G’ = dim L(G’), so ¢’ = L(G"). O

By definition, H is G-invariant. So, since ryw = Ad,-1 w, we also have r;Q = Adg-1 €,
i.e. Q(Dry(X),Dry(Y)) = Ad,—1 Q(X,Y) for all X,Y € T,P. Since Ad,-: is a linear
isomorphism, there is as much curvature at pg as there is at p for all g € G.

With E = P xaq g = P x g/ ~ where (p, A) ~ (pg, Ad,-1 A) for all g € G, the bundle
mp: E— M,[(p,A)] — 7(p) is a vector bundle on M whose fiber at every point m € M
is isomorphic to g. We interpret the curvature  of a connection H on P as a 2—form
on M with values in F, i.e.

Qe Q*(M)®E=T(A*T*"M ® E)
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For X,Y € T,,M we should have Q(X,Y) € E,, = 7' (m). Given X,Y € T,,M, choose
preimages X,Y € T),P with 7(p) = m and Dpn(X) = X, Dyn(Y) =Y. Then

Q(X> Y) = [(p7ﬂ()?7}~/))] € E7r( Enm

p) —
If we replace X by X’ € T, P with D,m(X’) = X, then X — X’ € ker D, =V}, s0
QX Y) =X - X,Y)+Q(X,Y) =Q(X,Y)

This shows that (X,Y") is independent of the choice of X at p and similarily for Y at

.
Any p' € P with 7(p') = m is of the form p’ = pg for some g € G. Then

(1, AX,Y)) =~ (pg, Ady—1 Q(X,Y)) = (¢, r;QUX,Y)) = (), UDry(X), Dry(Y)))

and Dr(Dr,(X)) = X, Dn(Dry(Y)) =Y. This shows that Q(X,Y) := [(p, Q(X,Y))] is
well-defined as an element of F,,.

2.5 Global gauge transformations

Definition. An automorphism (or global gauge transformation) of P is a diffeomorphism
¢: P — P such that m o ¢ = m ad ¢(pg) = ¢(p)g for all g € G.

Every such ¢ has an inverse ¢~ which is a diffeomorphism. Moreover, 7o ¢~ = 7
and ¢~ 1(pg) = ¢~ 1(p)g for all g € G. So the automorphisms of P form a group.

Definition. The group of automorphisms of P is called the gauge group 4 of P.

Proposition. ¥ is the space of sections of the bundle F — M with fiber G associated
to P by the conjugation action of G on itself.

Proof. F is defined by F = P x G/ ~ where (p,h) ~ (pg,g 'hg) for all g € G. Let
¢ € 9. Then ¢(p) = pu(p) for some smooth u: P — G. The definition of automorphisms
gives

(pg)u(pg) = pul(p)g = gu(pg) = u(p)g = u(pg) = g "u(p)g

Define a section s: M — F by s(m) = [(p,u(p))] for any p € 77 (m). Since

(p, u(p)) ~ (pg. g "u(p)g) = (pg, u(pg)),

s is well-defined and so it is a smooth section of F.
Conversely, suppose s: M — F' is a smooth section of F'. Define u: P — G by p — ¢
if [(p, 9)] = s(7(p)). Then ¢(p) = pu(p) is a gauge transformation of P. O

The gauge group ¢ acts on connections. If w is a connection 1-from defining a
connection H on P, then ¢*w is also a connection 1-form defining the pulled—back
connection:

(¢"H)p = (Dp¢)_1H¢(p)
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For every H we can think of its curvature © as a section of A2T*M ® E, equivalently
a 2—form on M with values in E, where E = P xaq g. The action of 4 on P by
automorphisms induces an action on E:

YxXE—=E, (¢[pA]) (o)A

If [q, B] = [p, A], then there exists g € G such that ¢ = pg and B = Ad,-1(4), so

[¢(q), B] = [6(pg), B] = [6(p), Ady(B)] = [¢(p), Al.

This shows that the action of ¢ on FE is well-defined. ¢ maps ¢*H to H and so it maps
the curvature Q of ¢*H to the curvature €2 of H, i.e.

HQX,Y)) =QX,Y) VXY eT,M

Choosep € 7~ (m) and write Q(X,Y) = [p, A] for some A € g. Then

¢Q(X>Y) = [gb(p),A] = [pu(p),A] = [pa Adu(p) (A)]

So if A € g represents the curvature of ¢*H, then Ad,(A) represents the curvature of
H itself. If ¢(p) = pu(p), then the curvature Q2 of ¢*H is Q = Ad,-1 Q where Q is the
curvature of H. (The same formula holds for the curvature as a 2—form).

Corollary. If ¢ € 4 and H is a connection on P, then ¢*H 1is flat if and only if H is
flat.

Definition. Two connections Hy, Hy on P are called gauge equivalent if there isa ¢ € ¢
with ¢*Hy = Ho.

The corollary says that if Hi, Ho are gauge equivalent, then H; is flat if and only if
Hs is flat.

Let (—, —) be a Riemannian metric on M. If M is oriented, then (—, —) induces a
volume form dvol on M characterized by

dvol(eg,...,e,) =1

if er,..., ey, is a positively oriented orthonormal basis for (7,, M, (—, —)). Assume that g
is equipped with an Ad-invariant, positive definite scalar product. (—, —) together with
the Ad-invariant scalar product in g induces a smooth fiber-wise metric on A2T*M ® E.

Definition. If H is a connection on P — M with curvature €2, where M is an oriented
compact manifold, we define the Yang—Mills—functional

YM(H) = /M 192J2 dvol

Lemma. YM(¢*H) = YM(H), i.e. YM is G —invariant.

Proof. Let Q be the curvature of ¢*H. Since the scalar product on the fiber of F is
Ad-invariant, we have

120> = J12y? 0
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Remark. We have YM(H) > 0 with equality if and only if H is flat.

Theorem. There is a 1:1 correspondence between the flat connections on all possible
principal G-bundles P — M wup to gauge equivalence and the set Hom(m (M),G)/G
where G acts on homomorphisms by conjugation.

Lemma. Let P 5 M be a principal G-bundle and H a connection on P. If H is flat,
then P, (with respect to H) depends only on the homotopy class of c.

Proof. 1f H is flat, then by the Ambrose—Singer theorem, Holy is trivial, so P, is the
identity if ¢ is a closed loop which is null-homotopic through closed loops.

Let c1,co be paths from my to mo. Then c¢; travelled backwards followed by cs is a
closed loop based at my. Parallel transport along this loop maps P, (p) to P, (p) for all
p € 7 Y(mgz). If ¢; and ¢y are homotopic with fixed endpoints, then this loop at ms is
null-homotopic as a loop. Since H is flat, this implies P., (p) = P, (p)- O

If H is a flat connection on P = M and pg € 7~ (myg), define the holonomy represen-
tation
hol: m;(M,mg) — G, [y] — g(7)~*

where P, (pg) = pog(7). This is well-defined by the lemma and is a group homomorphism
9(v)g(v") = g(v'v) since

1 1 1

Pog(7) " g(Y) T = Py (Py(po)) = Pyy(po) = pog(vy') ™

Suppose we use p; € 7 '(mg) instead of py to define hol. Then we get g1 defined by
P, (p1) = p191(7y). There exists a unique h € G such that p; = poh, so

pog(V)h = Py(po)h = Py(poh) = pohgi (7).

This implies g1(v)~! = h~'g(y)~th, so the conjugacy class of hol is independent of the
choice of basepoint py € 71 (myg).

Lemma. If Hy, Hy are gauge equivalent flat connections on P = M, then their holon-
omy representations are conjugate.

Proof. Let ¢: P — P be a gauge transformation with D¢(H;) = Hs. Pick a basepoint
p1 € 7 1(mg) to define holy, the holonomy representation of H;. To define holy, the
holonomy representation of Hy, use the basepoint ps = ¢(p1). Then holi([y]) = g1(y)~!
and holy([7]) = ga(y)~' where g1 and gy are defined by PJ(p1) = pim(y) and P2 =
p2y2(7) where P! is the parallel transport with respect to H; and P? is the parallel
transport with respect to Hy. We have

p292(7) = P}(p2) = ¢(p191(7)) = ¢(p1)g1(7) = p2g1(7)

so g1(7) = g2(7), meaning that hol; = holy if we use p; respectively po = ¢(p1) as
basepoints for the definition of hol. O
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Let p: 71 (M, mg) — G be a representation. Consider the universal covering M — M.
Definie P: M x, G = M x G/ ~ where

(z,9) ~ (vz,p(v)g) Vv € m(M,mo)
P is the quotient of MxG by the action of 71 (M, mg) given by
T (M,mo) x M x G = M x G (v,2,9) = (yz,p(7)9)

The equivalence class of (z, g) is denoted by [z, g]. Define 7: P — M, [z, g] = [z] where
M — M,z — [z] comes from the covering. This is well-defined and smooth. G acts on
P on the right as follows:

PxG—= P, ([x,h],g) = [z, hg] = [z, h]g
For any v € m (M, myg), we have [z, h] = [yx, p(v)h]. Since also

[vz, p(v)hlg = [vx, p(v)hg] = [z, hg]

this right G—action on P is well-defined. -

The P constructed in this way from p is a principal G-bundle over M. M X G has
a natural connection whose horizontal subspaces are tangent spaces to M x {g}. This
distribution is tautologically integrable, so the connection is flat. m1(M,mp) acts on
M x G preserving the flat product connection, which therefore descends to P as a flat
connection.

Suppose 7 is defined by p(vy) = ap(y)a~! for all v and some fixed & € G. Then 5
gives rise to a principal G-bundle P with a flat connection H.

Lemma. There is an isomorphism of principal bundles ¢: P — P with D¢(H) = H.

Proof. We have P = M x G/ ~ with

(2,9) = (v, p()9) = (vz,ap(y)ag) Vv € m(M,mq)

Now define o
Qb: P—P [xvg]ﬁ'_) [337a_1g]p

This ¢ is well-defined since [, g]7 = [yz, ap(y)a~ gl is mapped to [z, o~ 1g], = [yz, p(v)a"1g],.
¢ is also smooth. We have mp o ¢ = 75 and

([, glsh) = ¢([z, ghlp) = [z, 0" ghl, = [z, a7 g]oh = ¢([z, glp)h.

This shows that ¢ is an automorphism of principal G-bundles. ¢ preserves the local
product structures in which H, H are given by the tangent spaces to the first factor in
UxG,U C M open. So Dp(H) = H. O
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For the theorem, it remains to prove that the composition of these two maps. in both
directions is the identity. Start with a representation p: w1 (M, mp) — G and consider
the corresponding principal G-bundle P and the flat connection H on P. Choose a
basepoint zg € M with [xo] = mo. Let y be a loop in M based at my Then « has a
unique lift 5 to M with starting point 2o and endpoint [v]zo.

Define 7(t) = [J(t),e], where e € G is the neutral element. If 7: P — M is the
projection, then

m(7) = 7([7(t), e]) = [F(1)] = (1)
so 7 is a lift of 7y from M to P. The starting point of 7 is [xg, €]. This lift is horizontal for
the flat connection H because the curve (3(t),e) in M x G has tangent vector tangent
to the first factors.

We use py = [z, €] as a basepoint in P to define hol.

hol: m (M, mp) = G, [y]— 9(7)_1

where P, (po) = pog(7y). Since 7 is the unique horizontal lift of -,

pog(y) = Py(po) = 7(1) = [3(1), €] = ["]zo, €] = [wo, p([7]) '] = [wo, e]p([3]) ™ = pog() ™"
so hol = p.

Finally, start with a flat connection H on some principal G-bundle P = M. Fix
po € 7 1(mg) and define hol: 71(M,my) — G using the basepoint pg. Define P by
M x G/ ~ where (z,g) ~ (yz,hol(y)g) for all v € m (M, mg). P has an obvious flat
connection H. We need to find an isomorphism ¢: P — P with D¢(H) = H.

Let H(p) be the holonomy bundle of p € P. So H(p) = M /T where I’ C (M, mg) is

a subgroup. In fact, I' = ker(hol). Define

¢: H(p) > P, [a] = [,€]
If v € T, then [z] = [yz]. Since

[y, €] = [2,hol(y) '] = [z, ¢],

¢ is well-defined and smooth. If ¢ € P~ H(p), there exists g such that qg € H(p).
Define ¢(q) == ¢(qg)g~'. We will leave out the check that this is well-defined. This ¢
defined on all of P is then an isomorphism P — P mapping H to H.

Proposition. Let ¢ be a g-valued 1-form on P satisfying rye = Adg-1 ¢ and (X)=0
if X is vertical. Then

Do(X,Y) =dp(X,Y) + [w(X), p(Y)] + [¢(X),w(Y)] VX,Y €TP

Proof. Both sides of the equation are bilinear and skew—symmetric. It suffices to check
the three cases that X,Y are both horizontal, both vertical or one horizontal and the
other vertical.

If both X and Y are horizontal, w(X) =0 =w(Y) and Dp(X,Y) = de(X,Y) by the
definition of the covariant deriviative.
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If X and Y are vertical, p(X) =0 = (YY) and Dp(X,Y) = 0 since X =0= 7Y
Extend X,Y to fundamental vector fields A} = X, Bj =Y, then

dp(A%, BY) = La-(¢(B")) — Lp-(p(A")) — ¢([A%, B"]) = 0

since [A*, B*] is vertical and ¢ vanishes on fundamental vector fields, so dp(X,Y) =
(dp(A*, B*))(p) = 0.

Given X € V,, and Y € H,, we choose extensions to vector fields on P as follows: X is
extended by A* with A € g, such that A} = X. Y is extended to a G-invariant horizontal
vector field Y on P. This is possible since: Dy Hp — Tr(,)yM is an isomorphism. We
extend D,7m(Y’) to a vector field on M with support in a neighbourhood of m(p) over
which P is trivial. Choosing a section s: U — P, U containing the support of the vector
field in M, we can an isomorphism D7: Hyqy — TU. We lift the vector field on M
under this isomorphism and use the G—action to extend it to a G—invariant horizontal
vector field on P extending the original Y.

Now X is vertical, so ¢(X) = 0 and Dp(X,Y) = 0 since X = 0. To check the
claim in this case, we have to prove dp(X,Y) = —[w(X), o(Y)]. O

Let wp be a connection 1-form on P and w is a 1-form on P with values in g satisfying
row = Adg-1w and wly = 0. Let wp = wp + tw with ¢ € R. This is a smoothly varying
familiy of connection 1-forms defining H; = kerw;. Let €y be the curvature of H;. Then

Q = dw; + [w, wy] = dwy + tdw + [wo + tw, wy + tw] =
= dwp + [wo, wo] + t(dw + [wo, w] + [w, wo]) + t2w,w] =
=0+ tDyw + t2[w, W)

where Dy is the derivative with respect to wg or Hy.

d

&Qt‘ = Dow

t=0

With the Yang—Mills—functional

YM: Comn(P) - R, Hr—>/ 192]12 dvol
M

where we think of Q as a section of A2T*M ® (P x aq g) and choose a Riemannian metric
on M and an Ad—invariant scalar product on g, we have

d d
v H = — [ (Q, Q) dvol
SyM)| =& /M< Q) dvo
d

= &/M«)O+tD0w+t2[wvw]vQO+tD0w+t2[w,w])dvo1

—9 / (Qo, Dow) dvol = 2 / (D00, w) dvol
M M

Proposition. Hy = kerwy is a critical point of Y M if and only if Di = 0.
Remark. We always have D)y = 0 by the Bianchi identity.
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2.6 Principal S'-bundles

We consider principal S'-bundles over M. g-valued forms on P or M are ordinary
forms. Because G is Abelian, Ad: G — Aut(g) sends G to idg. A connection 1-form w
on a principal S'-bundle P 5 M is an ordinary S'-invariant 1-form on P, since

o _
Tow = Adgq w = w.

The curvature  is an S'-invariant ordinary 2-form on P which vanishes on vertical
vectors. We can think of € as an ordinary 2—form on M. By the structure equation

Dw=Q=dw+ [w,w] = dw

on P since G is Abelian. On M, ) is closed but not neccessarily exact, because w is
not defined on M, only on P. In this case D = d. The Yang-Mills—equation Dj{2y =0
becomes d*)g = 0. Since Q) is closed, Hy is a Yang—Mills—connection if and only if
Qo is a harmonic 2—form. Let wgy,w; be 2 different connection 1-forms on a principal
Sl-bundle P — M and w = w; — wp. Then

Q) =dw; = d(wp +w) =dwy + dw = Qy + dw

with w defined on M. So [2] € H3g (M) is independent of the connection whose curvature
we take.

Definition. [2] € H3z (M) is the Euler class of P — M (or first Chern class if G =
U(1)).

Given a principal S'-bundle P = M, let C(P) € H3z (M) be its Euler class and 6p
the space of closed 2—forms on M whose cohomology class is C'(P).

Lemma. Every o € €p is the curvature of some connection on P.

Proof. Choose some connection wy on P with curvature €. Then Qy — « is exact and
we can write o = Qg + dw for some 1-form w on M. Then wy + 7*w is a connection
1-form with curvature «. O

Let A be the affine space of connections on P and define the map
c: A— %p, kerw=Hw— Q.
Then by the above lemma, c is surjective.

Lemma. For every Q € €p, the preimage c=1(Q) can be identified with C', the space of
closed forms on M.

Proof. Let Hy = kerwg € ¢~1(Q). Every other connection 1-form w; on P is defined by
w1 = wg + m*w for some 1-form w on M. The curvature €7 of H; = kerw is

Q1 =dwy =dwy +drn*w = Q + 7' dw

so Hy € ¢~ 1(Q) if and only if 7*dw = 0, which is equivalent to dw = 0, i.e. w € Ct. O
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The gauge group ¢ is, since S' is Abelian,
G = Aut(P) = {u: P - 5" | u(pg) = g "u(p)g} = {u: P — S" | u(pg) = u(p)}
={u: M — S'}.
4 acts on A by
¢ wo = Ady,-1 wo +u'0 = wo + w0 = wy + 7 (T*0).
The curvature of ¢*wq is
d¢*wo = dwp + dn* (©*0) = dwo + 7*w*d0 = dwy.
The map c¢: A — €p descends to
A/9 —— €p

which is again surjective and C! surjects onto ¢~ ().

Let YHy = 9 kerwy € ¢ 1(2). Then every other gauge equivalence class in ¢ () is
represented by wg + 7*w for some closed w. What is the condition on w and w’ to ensure
that wy + 7w and wy + 7*wW’ are gauge equivalent?

wo + 7w = ¢ (wo + Tw) = wp + Tw + T (W) = W =w + T

The map exp: R — St — €>™ is a universal cover of S'. We lift w: M — S' to
u: M — R such that
R

M2 51
commutes. So uw*0 = u*exp*d = u*(dt) = du, i.e. if u = expou, then uw*0 = du.
Conversely, for every exact 1-form o« on M, we can choose a u € C°°(M) such that

o = du and consider expou = U as a gauge transformation of P. So C'/&' = H}, (M)
surjects onto ¢ 1(£2).

(M, SY] — HY(M,Z), [a] — [a0] =a*[6)]

Lemma. For any Q0 € €p, the preimage ¢ () € A/Y can be parametrized by the
quotient
H'(M,R)/H'(M,Z),

i.e. the sequence C' — A — €p induces

HYM,R)/H"(M,Z) — A)Y — Cp.
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A connection Hy = kerwy is a critical point of the Yang—Mills—functional if and only
if d*Q¢ = 0. We know that d2g = 0. If M is compact without boundary, the pair of
equations

A =0 d*Q =0

Is equivalent to AQy = 0, where A = dd* + d*d. By Hodge theory, there is a unique
harmonic 2—form in €p. All Yang—Mills—connections on P map to the unique harmonic
2—form in 6p.

The gauge equivalence classes of Yang—Mills—connections on P are parametrized by
HY(M,R)/HY(M,Z). 1f H'(M,R) = 0, then there is a unique gauge equivalence class
of Yang-Mills—connections on every principal S'-bundle P — M.

2.7 The Yang—Mills—equations

Fix a Lie group G with the property that g as a positive definite scalar product (e.g. G
is compact). We fix once and for all such a (—, —). Let (M, g) be a compact Riemannian
manifold, oriented without boundary.

If P 5 M is a principal G-bundle, then the space of connections A on P is an affince
space for QY (M, E) = T'(T*M ® E) where E = P xq g. We have metrics on 7*M and
E.

More generally, we can look at k—forms on M with values in E.

QF(M,E) =T(A*T*M @ E)

Example. The curvature form of a connection on P is an element of Q!(M, E).

Elements of QF(M, E) correspond to k—forms a on P with the following properties:
(1) a(Xy,...,Xk) =0 if one of the X7,..., X} is vertical.
(2) rpa=Adg1a forall g € G.

We define the following operations on Q¥(M, E):

[—,—]: Q¥ (M, E) x Q"(M, E) — Q" M, E), (a®v,f@w)~ (@A B)® [v,w],

A QF (M E) x QM E) — QN (M), (a®v,8Qw)— (v,w)aAB

A connection H = kerw on P defines a covariant derivative D on g—valued k—forms
on P by
Da =dao J2.

If o has values in g and satisfies (1) and (2), then so does Da. Therefore, D can be
thought of as
D: Q"M E) — Q*Y(M, E)

D is compatible with the metric and with [—, —] and A. That means: Let V' — M be
a vector boundle with scalar product (—,—). A covariant derivative D: QF(M,V) —
QFFL(M, V) is compatible with (—, —) if

d(s1, s2) = (Ds1, s2) + (s1, Dsa).
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For w* € QF(M, E) and ' € QY(M, E), we have
d(wf Awh) = Dw® A w! £ Wk A D!

Let V' be a real vector space with an orientation, and (—, —) a positive definit scalar
product on V. The volume form dvol € A"V* where n = dim V' is defined by dvol(ey, ..., e,) =
lifey,..., ey is a positively oriented orthonormal basis of V. The scalar product induces
a scalar product V* by the requirement that the isomorphism V- — V* v +— (v, —) should
be isometric. This also gives rise to a scalar product (—, —) on A¥V* where vectors of
the form A;; A--- AN, with Aq,..., A, an orthonormal basis of V* and i; < -+ < i
have length 1.

If (—,—)o and (—, —); are two different scalar products on V, such that (—, —); =
A2(—, =)o with A > 0, then (—, —); = A=2*(—, —)g on A*V* and dvol; = A\"dvol.

We define the Hodge operator

oo AMVE — ARV

by o A %8 = (a, B)dvol for all o, 3 € A¥V*. One can check that xx = (—1)¥"=k),
If again (—, —); = A%(—, =)o on V, then

a Axiff = (o, B)1 dvoly = A#{a, F)oA" dvolg = A" a Ao

for all o, B € A*V*, s0 %1 = N2k on AFV*.
Let M be an oriented Riemannian manifold. Then the Hodge star

5 QFOM) = @ (M)
where n = dim M is defined fiberwise as above, i.e.
a/\*/@ - <Oé”6> dVOl * K% = (—1)n(n7k) va’ﬁ c Qk(M)

Let P — M be a principal G-bundle, fix an Ad-invariant positive definit scalar product
on the Lie algebra g and define E := P x q g. We can extend % to a map Q¥(M, E) —
Q"=k(M, E) using the same formula with the above defined operation A: QF(M, E) x
Q" k(M,E) — Q" (M).

Lemma. Let M be a compact oriented Riemannian manifold without boundary. On

QOF (M, E), k > 1, we have D* = (—=1)""="*1 % Dx, where D is the covariant derivative
defined b a connection on P.

Proof. Let a € QF1(M, E) and 3 € QF(M, E). Then by Stokes’ theorem,
0:/ d(a A %) :/ Doz/\*,@—i—(—l)k_l/ aANDxf
M M M
= / (Da, B) dvol + (—1)’f—1/ (o, 1D % 3) dvol
M M

So we have, for 8 € QF(M, E):

D*B _ _(_1>k—1<_1)(k—1)(n—k+1) xDxf3= (_l)nk-‘rn-i-l * D * 3 0
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Now for w; = wp + tw with ¢t € R and w € QY(M, E), if wp is a critical point of the
Yang—Mills—functional, we have

d
0= —y/\/l(wt)‘ = 2/ (Q0, Dow) dvol = (—1)"“2/ (*Dg * Qp,w) dvol.
dt t=0 M M

So
Do*QOZO

which is the Yang—Mills—equation for wg. The Yang—Mills—equation is a second order
differential equation.

Assume n = dim M = 4. Then £y is a 2—form just like g itself. By the Bianchi
identity, Do€2g = 0. We want to know when ¢ = x{)g holds. In the case n =4, k =2,
is an endomorphism of the 6-dimensional vector space A?V. It has eigenvalues 1 and
this splits A%V:

AV = A2V @ A2V
where x acts as = on A1V. A2V is called the self-dual (SD) and A%V the anti-self-dual

(ASD) part of A%V,
If a1,. .., is an orthonormal basis for V*, then we have a basis for A% given by

a1 Aag £ az Aoy
a1 ANag £ ag Aas

a1 ANayg £ as Aag
Ifw EAiV and n € A2V, then
WwAN=xwAn=nA*w=(nw)dvol =0

A2V are orthogonal for (—, —) and for A. If a connection wy has self-dual or anti-self-
dual curvature, then x2y = £y and Dy x 29 = 0 because of the Bianchi identity.

The equation *Qy = £ is the (anti-)self-duality equation for wy. It implies the
Yang—Mills equation.

Lemma. On a 4—manifold M, the Yang—Mills—equation and the (anti-)self-duality equa-
tion are conformally invariant.

Proof. Two metrics (—, —); and (—, —)o on M are conformally invariant if (—, —); =
A2{—, =)o for some X # 0, A € C>°(M).

We calculated that on k—forms, x; = A" 2Fxg, so in our case % = *o for 2—forms
and so the (A)SD equations for 2-forms with respect to the two metrics agree. The
Yang-Mills equation is Dg * €9 = 0. Since the metric enters only in *, this is the same
for both metrics. O
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