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1 Lie groups and Lie algebras
Definition. A smooth/differentiable manifoldM is a topological space with the property
that

(1) M is Hausdorff

(2) M is second countable, i.e. there is a countable basis of its topology

(3) There exists a covering of M by open Ui, i ∈ I, and homeomorphisms ϕi : Ui →
Rn such that when Ui ∩ Uj 6= ∅, then ϕj ◦ ϕ−1

i : ϕi(Ui ∩ Uj) → ϕj(Ui ∩ Uj) is a
diffeomorphism.

If f : M → N is a smooth map between smooth manifolds, then there is a derivative
Df : TM → TN . Df is linear on the fibers of TM , i.e. Dpf : TpM → Tf(p)N is linear,
and the following diagram commutes:

TM
Df
//

π
��

TN

π
��

M
f
// N

X(M) := {X : M → TM | X is smooth ∧ π ◦X = idM} is the set of smooth sections
of TM , i.e. vector fields on M . For f ∈ C∞(M) we have LXf ∈ C∞(M), the Lie
derivative of f in the direction of X. [X,Y ] is the unique vector field with the property
L[X,Y ]f = LXLY f − LY LXf .

Definition. A (real) Lie algebra is an R-vector space g together with a bilinear map
[−,−] : g× g→ g satisfying:

(1) [v, w] = −[w, v]

(2) [[x, y], z] + [[y, z], x] + [[z, x], y] = 0

Example.
(1) X(M) with [−,−] defined by the Lie bracket is an ∞-dimensional Lie algebra.

(2) Let V be any R-vector space. Then [−,−] = 0 defines a Lie algebra. These are
abelian Lie algebras.

(3) Mat(n× n,R) = gl(n,R), [A,B] = AB −BA.

Definition. A Lie group is a group which is also a smooth manifold and has the property
that G×G→ G, (a, b) 7→ ab−1 is smooth.

Example.
(1) Any finite dimensional R-vector space V with the group structure given by +.

(2) GL(n,R)
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(3) subgroups of GL(n,R): O(n), SO(n), GL(n,C), U(n), SU(n).
A Lie group G acts on itself by left multiplication. For any g ∈ G, `g : G→ G, a 7→ ga

is a smooth map. `g is a diffeomorphism with inverse (`g)−1 = `g−1 .
Definition. A vector fieldX ∈ X(G) is called left–invariant ifXga = X`g(a) = (Da`g)Xa.
Proposition. The subset of left–invariant vector fields in X(G) is a linear subspace
closed under the Lie bracket [−,−]. Thus it is a Lie algebra.
Proof. X left invariant means (D`g)X = X ◦ `g for all g ∈ G. Assume that X,Y are
both left invariant. Then [X,Y ] = [(D`g)X, (D`g)Y ] = (D`g)[X,Y ] for all g ∈ G. So
[X,Y ] is also left–invariant.

Definition. X(G) with the Lie bracket [−,−] is the Lie algebra g = L(G) of the Lie
group G.
Convention. From now on, G, H are always Lie groups and g = L(G), h = L(H) its
Lie algebras.
Definition. Let G be a Lie group with neutral element e ∈ G. Define ev : g→ TeG,X 7→
Xe.
Proposition. ev is an isomorphism of R–vector spaces.
Proof.
(1) ev is clearly linear.

(2) ev is injective: Suppose X,Y ∈ g and ev(X) = ev(Y ). This means Xe = Ye ⇒
(De`g)Xe = (De`g)Ye ⇒ Xg = Yg ⇒ X = Y .

(3) ev is surjective: Take v ∈ TeG. Define X ∈ X(G) by Xg := (De`g)(v). This is a
smooth vector field and Xga = (De`ga)(v) = (De(`g ◦ `a))(v) = (Da`g ◦De`a)(v) =
(Da`g)(Xa).

Corollary. The dimension of G is constant and equals the dimension of g as R–vector
space.
Proof. Denoting by Gg the connected component of G containing g ∈ G, `g : Ge → Gg
is a diffeomorphism for every g ∈ G. Thus all connected components have the same
dimension and dimG0 = dimTeG = dim g.

Corollary. The tangent bundle of G is globally trivial, i.e. G is parallelizable.
Proof. Consider G × g → TG, (g,X) 7→ Xg. This sends the fiber of G × g over g ∈ G
to TgG linearly. At the point e we have (e,X) 7→ Xe, which is an isomorphism by the
result about the evaluation map. For arbitrary g ∈ G we have:

{g} × g // TgG

{e} × g

' `g×idg

OO

// TeG

' De`g

OO

This implies that the top horizontal map is an isomorphism, as claimed.
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Definition. A one–parameter subgroup of G is a smooth map s : R → G with s(0) = e
and s(t1 + t2) = s(t1)s(t2).

Example. Consider G = U(1) = {z ∈ C | |z| = 1}. Then s : R → U(1), t 7→ e2πit is a
(not injective) one–parameter subgroup.

Proposition.
(1) Every left–invariant vector field on G is complete, i.e. it generates a global flow on

G.

(2) For every X ∈ g there is a unique one–parameter subgroup sX : R → G such that
ṡX(0) := D0sX(∂t) = Xe. The flow of X is given by ϕ : R × G → G, (t, g) 7→
gsX(t) = `g(sX(t)).

Notation. We write ϕt(g) := ϕ(t, g).

Proof. Given a left–invariant vector field, there is a local flow at e ∈ G:

ϕ : (−ε, ε)× U −→ G

where U is an open neighbourhood of e in G, ε > 0. For any g ∈ G consider

ψ : (−ε, ε)× `g(U) −→ G ψ := `g ◦ ϕ ◦ (idR×`−1
g ) ⇒ ψt = `g ◦ ϕt ◦ `−1

g

Claim: ψ is a local flow around g for X. Proof: `g(U) is an open neighbourhood of g in
G. First we check that ψ defines a local flow:

ψ0(h) = gϕ0(g−1h) = gg−1h = h

ψt1+t2 = `g ◦ ϕt1+t2 ◦ `−1
g = `g ◦ ϕt1 ◦ ϕt2 ◦ `−1

g = `g ◦ ϕt1 ◦ `−1
g ◦ `g ◦ ϕt2 ◦ `−1

g = ψt1 ◦ ψt2
So ψ is a flow generated by some vector field, which we can calculate by differentiating
the flow lines of ψ. To do this, consider the flow lines defined by

sh(t) := ψt(h) = gϕt(g−1h) = (`g ◦ sg−1h)(t)

Then

ṡg(0) = D0sg(∂t) = D0(`g ◦ se)(∂t) = (Dse(0)`g ◦D0se)(∂t) = (Dϕ0(e)`g ◦D0se)(∂t) =
= De`g(D0se(∂t)) = De`g(ṡe(0)) = De`g(Xe) = Xg

This proves the claim.
These local flows defined at different points in G are all defined for the same time

interval (−ε, ε), and so define a flow ϕ : (−ε, ε) × G → G for X. ϕ can be extended to
all t ∈ R, so X is complete.

To prove part (2) fix X ∈ g. By (1) we have a global flow ϕ : R×G→ G for X. Define
sX(t) := ϕt(e). Since

ϕt(g) = (`g ◦ ϕt ◦ `−1
g )(g) = `g(ϕt(e)) = gϕt(e)
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we have sX(0) = ϕ0(e) = e and

sX(t1 + t2) = ϕt1+t2(e) = ϕt2+t1(e) = ϕt2(ϕt1(e)) = ϕt1(e)ϕt2(e) = sX(t1)sX(t2)

Also ṡX(0) = Xe, since sX is the flow line at e, and the formula ϕt(g) = gsX(t) follows
from the claim above. One can easily check that ϕ defined by this formula is a global
flow for any one–parameter subgroup sX and thus sX is unique by the uniqueness of
global flows.

Definition. The map exp: g→ G,X 7→ sX(1) is the exponential map of G.

Example. Let G = GL(n,R) and g = gl(n,R) = Mat(n × n,R). Then exp is given by
the usual exponential function.

Lemma. sX(t) = exp(tX).

Proof. Clear.

Definition. A homomorphism of Lie groups is a smooth map f : G→ H which is also
a group homomorphism.

Proposition. Any homomorphism f : G→ H as above induces an R–linear homomor-
phism f∗ : g→ h such that f∗[X,Y ] = [f∗X, f∗Y ].

Proof of proposition. Since f is a smooth group homomorphism, it has a derivative at e
and f(e) = e.

TeG
Def
// TeH

g

ev'

OO

f∗
// h

ev'

OO

Under the homomorphism provided by ev, Def corresponds to a unique linear f∗.

Lemma. For any X ∈ g and g ∈ G we have (Dgf)(Xg) = (f∗X)f(g).

Proof. Direct calculation using the left–invariance of X and f(e) = e.

(Dgf)(Xg) = Dgf ◦De`g(Xe) = De(f ◦ `g)(Xe) = De(`f(g) ◦ f)(Xe) =
= De`f(g) ◦Def(Xe) = De`f(g)((f∗X)e) = (f∗X)f(g)

Using this lemma, we can show that f∗X(h) ◦ f = X(h ◦ f) for any X ∈ X(M) and
h ∈ C∞(H):

(f∗X)(h)(f(g)) = (f∗X)f(g)[h]f(g) = (Dgf)(Xg)[h]f(g) = Xg[h ◦ f ]g = X(h ◦ f)(g)

Thus, applying this successively:

[f∗X, f∗Y ](h) ◦ f = f∗X(f∗Y (h)) ◦ f − f∗Y (f∗X(h)) ◦ f =
= X(f∗Y (h) ◦ f)− Y (f∗X(h) ◦ f) =
= X(Y (h ◦ f))− Y (X(h ◦ f)) =
= [X,Y ](h ◦ f) = f∗[X,Y ](h) ◦ f
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Since this holds for any h ∈ C∞(H), we have [f∗X, f∗Y ]◦f = f∗[X,Y ]◦f , so in particular
[f∗X, f∗Y ] and f∗[X,Y ] coincide on e ∈ H, hence they are equal by left–invariance, which
proves the proposition.

1.1 Digression on integrability and the Frobenius theorem
Theorem. Let M be a smooth manifold and X1, . . . , Xk ∈ X(M) with [Xi, Xj ] = 0 for
all i, j. If X1(p), . . . , Xk(p) are linearly independent for some p ∈ M , then there is a
chart (U,ϕ) for M with p ∈ U and Dϕ(Xi|U) = ∂i for all i = 1, . . . , k.

Proof. The problem is local, so we may assume M is an open neighborhood of 0 in Rn
and p = 0. We may choose U open around 0 with X1, . . . , Xk linearly independent
throughout U . After a linear change of coordinates we may assume that

X1(0), . . . , Xk(0), ∂k(0), . . . ∂n(0)

form a basis of Rn. We may assume that the local flow ϕi for Xi is defined for all
t ∈ (−ε, ε), i = 1, . . . , k.

f : U → Rn f(x1, . . . , xn) = ϕ1
x1 ◦ · · · ◦ ϕ

k
xk

(0, . . . , 0, xk+1, . . . , xk)

is a smooth map. Moreover f(0) = 0 and D0f(∂i) = ∂i for i = k + 1, . . . , n. For all
x ∈ U we have, since the flows ϕi commute:

Dxf(∂i) = Xi(f(x)) i = 1, . . . , k

For x = 0 we see that D0f is an isomorphism, so f is a local diffeomorphism around 0
by the inverse function theorem. Set ϕ = f−1 after possibly shrinking U :

Dϕ(Xi|f(U)) = ∂i

Let M be a smooth manifold of dimension n.

Definition. A rank k distribution on M is a rank k subbundle E ⊂ TM .

What this means is that around every point p ∈ M there exists an open set U and
X1, . . . , Xk ∈ X(M) such that

Ex = {X1(x), . . . , Xk(x)}

Definition. An integral submanifold for E is a k–dimensional submanifold N ⊂M with
TN = E|N .

Definition. E is called integrable if for all p ∈M there exists an integrable submanifold
N with p ∈ N .

Definition. E is involutive if [X,Y ] ∈ Γ(E) whenever X,Y ∈ Γ(E).
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Theorem (Frobenius theorem). For a distribution E of rank k on M , the following are
equivalent:

(1) E is integrable.

(2) E is involutive.

(3) There is a covering of M by domains of charts (U,ϕ) with the property that

(Dϕ)(E) 3 ∂i ∀i = 1, . . . , k

Proof.
3 ⇒ 1 If E = span{∂1, . . . , ∂k}, then the equations

xk+1 = ck+1
...

xn = cn

define k–dimensional submanifolds for E.

1 ⇒ 2 Take X,Y ∈ Γ(E) and p ∈ M . By (1) we have a submanifold i : N ↪→ M with
p ∈ N and E|N = TN . The restrictions of X,Y to N are vector fields on N .
Furthermore, [X,Y ]p ∈ Ep.

2 ⇒ 3 Everything is local, so we work at 0 ∈ Rn.
Step 1: Consider the projection

π : Rn → Rk, (x1, . . . , xn) 7→ (x1, . . . , xk)

If for some point p, Dpπ is injective on Ep, then the same is true for all x in
an open neighbourhood of p.

Step 2: At every point p there is a chart so that w.r.t. the coordinates given by the
chart Dxπ is an isomorphism from Ex to Rn for all x in the domain of the
chart. To prove this, by step 1 it is enough to ensure Dpπ is injective. We
can choose local coordinates (x1, . . . , xk) in such a way that if

X1(p), . . . , Xk(p)

is a basis for Ep, then

X1(p), . . . , Xk(p), ∂k+1, . . . , ∂n

is a basis of TpRn.
Step 3: Let E, p, U, π be as above. Let Zi ∈ Γ(E) be the unique section such that

Dxπ(Zi(x)) = ∂i(x) for all x ∈ U , i = 1, . . . , k. So Z1, . . . , Zk span E through-
out U .
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Step 4:
Dπ[Zi, Zj ] = [DπZi, DπZj ] = [∂i, ∂j ] = 0

By involutivity, [Zi, Zj ] ∈ Γ(E|U). But Dπ is an isomorphism on E so
[Zi, Zj ] = 0. By the previous theorem, we can find a chart in which Dϕ(Zi) =
∂i for i = 1, . . . , k. This gives (3) in the Frobenius theorem.

Definition. If E satisfies the conditions in the theorem above and p ∈ M , let Lp be
the maximal connected submanifold of E with p ∈ Lp. This is called the leaf through p.
The collection of all leaves formes a foliation of M .

Remark. The leaves of a foliation F are generally not closed subsets of M and the
subspace topology is not the same as the manifold topology of a leaf.

Definition. Let G be a Lie group, H ⊂ G a subset. H is a Lie subgroup of G if H has a
Lie group structure such that the inclusion i : H ↪→ G is a homomorphism of Lie groups
and an injective immersion.

Theorem. For any Lie group G, there is a bijection between connected Lie subgroups
H ⊂ G and Lie subalgebras h ⊂ g.

Proof. Suppose H ⊂ G is a Lie subgroup. Then, since i is an immersion,

Dei : TeH → TeG and i∗ : h→ g,

which are essentially the same maps, are injective. So i∗(h) is a Lie subalgebra, which
can be identified with h.

Conversely, let h ⊂ g be a Lie subalgebra. Let Eg := De`g(ev(h)) ⊂ TgG for all g ∈ G.
This is in fact the evaluation of h at g. For every g ∈ G, Eg is a k–dimensional subspace
of TgG with k = dim h. The collection of all Eg is a smooth rank k distribution E ⊂ TG.

Step 1: E is involutive, and thus integrable by the Frobenius theorem. To see this, let
X1, . . . , Xk be a basis for h. Then all X,Y ∈ Γ(E) are of the form

X =
k∑
i=1

fiXi Y =
k∑
i=1

hiXi fi, hi ∈ C∞(G)

Then [X,Y ] is a linear combination of the Xi and the [Xi, Xj ]. Since h is a Lie
subalgebra, [Xi, Xj ] ∈ h and so [X,Y ] ∈ Γ(E).

Step 2: Let F be the foliation of G defined by the integral submanifolds of E, and
H := Le. Then Lg = `g(H). Proof: Both sides are connected subsets containing
g. Lg is a leaf of F by definition. Once we prove that `g(H) is a leaf, we have
the conclusion by the uniqueness of leaves. For any a ∈ G, b ∈ H we have

Tab`a(H)=Db`a(TbH) = Db`a(Eb)=(Db`a ◦De`b)(ev(h))=De`ab(ev(h))=Eab

so `a(H) is an integral submanifold of E and thus g ·H := `g(H) is the leaf of
F through g.
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Step 3: Let a, b ∈ H. Then aH = H 3 b, since aH is the leaf through a. But b ∈ aH,
implies a−1b ∈ H, so H is a subgroup of G.

Step 4: The inclusion i : H ↪→ G makes H into a Lie subgroup. Since Dgi(TgH) =
Eg, i is an injective immersion, with the manifold structure of H given by its
construction as an integral submanifold for E.

Step 5: This H is the only connected Lie subgroup of G with Lie algebra h. To prove
this, suppose H is another Lie subgroup with Lie algebra h. Both H,H are
injectively immersed in G with the same tangent space ev(h) at e. H will then
be an integral submanifold for E through e. By uniqueness of the leaf through
e, we must have H = H.

Example. The 2–torus G = T 2 = R2/Z2 is a connected Lie group with e = [(0, 0)]. The
Lie algebra is g = R2 with [X,Y ] = 0 for all X,Y ∈ g. Every vector subspace h ⊂ g is a
Lie subalgebra in this case, giving rise to a Lie subgroup. If h = span(1, λ), λ ∈ R rQ,
then the corresponding connected Lie subgroup is

H = {exp(t(1, λ)) | t ∈ R}

This is densely immersed in T 2, in particular it is not a closed subgroup.

1.2 Actions of Lie groups on manifolds
Definition. A (left) action of a Lie group G on a smooth manifold M is a smooth map

µ : G×M →M µ(g, p) = g · p = `g(p)

such that for any p ∈M and g, h ∈ G

e · p = p g · (h · p) = (gh) · p

A right action is a smooth map µ : G×M →M such that for any p ∈M and g, h ∈ G

µ(e, p) = p µ(g, µ(h, p)) = µ(hg, p)

For a right action, we write µ(g, p) = p · g = rg(p). Then the axioms become

p · e = p (p · h) · g = p · (hg)

Remark. If µ : G×M →M is a left action, we can define µ(g, p) = µ(g−1, p). This is a
right action.

Definition. Let µ : G×M →M be a an action of a Lie group on a smooth manifold.

(1) µ is effective if for every g ∈ Gr {e}, there exists p ∈M such that µ(g, p) 6= p.

(2) For p ∈M , the subset
G(p) := {µ(g, p) | g ∈ G}

is the orbit of p under the action.
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(3) The action is transitive if G(p) = M for some p ∈M (and thus for all p ∈M).

(4) The isotropy group of p ∈M is

Gp := {g ∈ G | µ(g, p) = p}

Proposition. Let f : G → H be a homomorphism of Lie groups and f∗ : g → h the
induced Lie algebra homomorphism. Then the following diagram commutes:

G
f

// H

g

exp

OO

ev '
��

f∗
// h

exp

OO

ev'
��

TeG
Def
// TeH.

Proof. f(exp(tX)) is a C∞ curve in H passing through e at time t = 0. Since f is
a homomorphism, this is also a 1–parameter subgroup whose tangent vector at e is
Def(ev(X)) = ev(f∗(X)). So f(exp(tX)) is the unique 1–parameter subgroup of H
generated by f∗X = Y . We know that the 1–parameter subgroup generated by Y is
exp(tY ). Therefore

f(exp(tX)) = exp(tY ) = exp(tf∗X) t=1===⇒ f(exp(X)) = exp(f∗X)

The isotropy group Gp is a closed subgroup of G. This means that Gp is actually a
Lie subgroup of G (not proved). If we restrict µ from G to Gp, then p is a fixed point
for the action of Gp on M .

Under an action µ : G×M →M , every g ∈ G gives a diffeomorphism

`g : M →M,p 7→ g · p

with inverse (`g)−1 = `g−1 .

Lemma. If p is a fixed point of the action µ : G×M →M , then G acts linearly on TpM ,
so we have a representation G → GL(TpM). This is called the isotropy representation
of G at p.

Proof. Since p is a fixed point, we have `g(p) = p for all g ∈ G, so Dp`g : TpM → TpM
is a linear isomorphism since `g is a diffeomorphism. We obtain a map

G→ GL(TpM), g 7→ Dp`g

which is smooth since µ is smooth. It is also a homomorphism because of the chain rule:

Dp`g1g2 = Dp(`g1 ◦ `g2) = Dp`g1 ◦Dp`g2
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Example. The action

µ : G×G→ G, (g, p) 7→ g · p = `g(p)

is effective, transitive, and Gp = {e} for all p ∈ G.

Let G act on itself by conjugation:

a : G×G→ G, (g, p) 7→ g · p · g−1 =: ag(p)

Note that g and p commute in G if and only if ag(p) = p. The isotropy group Gp of
a point p ∈ G under the conjugation action a is the centraliser of p in G. If G has a
non–trivial center, then the conjugation action a is not effective. One has Ge = G since
geg−1 = e for all g ∈ G. By the Lemma, we obtain the isotropy representation of a at
p = e:

Ad: G→ GL(TeG).

This is the adjoint representation of G (on g), whereas the map ad defined by

TeG
De Ad

// Te GL(TeG)

g

ev '

OO

ad
// End(g)

ev'

OO

with the identification End(g) = gl(TeG) is the adjoint representation of g. Since ad =
Ad∗, it is a homomorhism of Lie algebras. By the proposition, we have the commutative
diagram:

G
Ad // GL(TeG)

g

exp

OO

ad // End(g)

exp
OO

Also ag is a homomorphism of G to itself, so the following diagram commutes:

G
ag

// G

g

exp

OO

ev '
��

(ag)∗
// g

exp

OO

ev'
��

TeG
Deag

// TeG

Notation. Define adX : g→ g by adX(Y ) = ad(X)(Y ) for anyX,Y ∈ g and Adg : TeG→
TeG by Adg(X) = Ad(g)(X) for any g ∈ G and X ∈ TeG.
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Then (ag)∗ = Adg = Ad(g), since (ag)∗ is defined by Deag = Ad(g) by the definition
of Ad. Take a vector space V and G = GL(V ). Then the above diagrams become:

GL(V ) Ad // GL(End(V )) GL(V )
ag
// GL(V )

End(V )

exp
OO

ad
// End(End(V ))

exp
OO

End(V )

exp
OO

Adg
// End(V )

exp
OO

We claim that Adg(M) = gMg−1. This can be seen by

Adg(M) = Deag(M) =

(something is missing here)
Consider rg−1 : G→ G, the right multiplication by g−1. Recall that TG ∼= G× g is a

trivialization of TG given by

G× g→ TG (p,X) 7→ (p,Xp)

Lemma. Adg ∈ GL(TeG) is given by the composition of Derg−1 with the identification
of Tg−1G with TeG via the trivialization of the tangent bundle by left–invariant vector
fields.

TeG
Derg−1

//

Adg

))
Tg−1G

Dg−1`g
// TeG

g
X 7→Xg−1

gg

ev

OO

Proof. Any tangent vector v ∈ Tg−1G can be identified with Xe ∈ TeG for the unique
X ∈ g such that Xg−1 = v. This identification is via Dg−1`g:

Dg−1`g(v) = Dg−1`g(Xg−1) = Dg−1`g ◦De`g−1(Xe) = Xe

Using this, AdG we get the claim:

Dg−1`g ◦Derg−1 = Deag = Adg

Definition. Let G be a Lie group and g its Lie algebra.

C(G) := {g ∈ G | gh = hg ∀h ∈ G}

is the center of G and

C(g) := {X ∈ g | [X,Y ] = 0∀Y ∈ g}

is the center of g.
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Lemma. Let G be a connected Lie group. Then ker Ad = C(G).

Proof. If g ∈ C(G), then ag = idg, so Adg = Deag = idTeG, so g ∈ ker Ad. Conversely,
suppose that g ∈ ker Ad. Then

g exp(tX)g−1 = ag(exp(tX)) = exp(Adg(tX)) = exp(tX)

for all X ∈ TeG. So g commutes with all h ∈ G containted in a small enough neighbour-
hood in G, because exp is a local diffeomorphism at 0 ∈ TeG. Every open neighbourhood
of e in G generates the connected component of e in G by taking products. Therefore,
if G is connected, then g ∈ C(G).

Corollary. Let G be a connected Lie group. Then C(G) is a closed Lie subgroup whose
Lie algebra is the center of g.

Proof. The center C(G) is a closed subgroup of G. So it is a Lie subgroup. The Lie
algebra of C(G) is C(g).

Corollary. If G is a connected Lie group, then G is abelian iff g has trivial Lie brackets.

1.3 Homogeneous spaces
Let G be a Lie group, H ⊂ G a closed Lie subgroup. Consider

G/H := {aH | a ∈ G},

the set of left cosets of H. We denote by

`g : G/H → G/H aH 7→ (ga)H

the action induced by left multiplication. For any two a, b ∈ G, there exists g ∈ G such
that `g(aH) = bH.

Theorem. G/H has a natural structure as a smooth manifold of dimension dimG −
dimH, such that

π : G→ G/H a 7→ aH

is a smooth map that admits local smooth sections. π will actually be a submersion.

Proof. This proof will be added later

Corollary. The action

µ : G×G/H → G/H (g, aH) 7→ (ga)H

defines a transitive smooth action of G on G/H. The isotropy group of H = eH is H.

Proof. µ is a smooth map by the construction of the smooth structure on G/H. µ is a
left action of G. The action is transitive, and

GeH = {g ∈ G | µ(g, eH) = eH} = H

13



2 Principal bundles
Definition. A principal G–bundle over a smooth manifold M is a smooth manifold P ,
a smooth projection π : P →M and a right G–action · : P ×G→ P satisfying:

(a) There is a covering of M by open sets Uα, together with diffeomorphisms

π−1(Uα)→ Uα ×G p 7→ (π(p), ϕα(p))

(b) For all g ∈ G, p ∈ π−1(Uα), we have ϕα(rg(p)) = rg(ϕα(p)), i.e. ϕα(pg) = ϕα(p)g
(G–equivariance)

G is called the structure group of P .

Remark.
(1) π is a submersion because π−1(Uα) ∼= Uα ×G and π1 is a submersion.

(2) π−1(m) ∼= G for all m ∈M .

(3) The action of G on P maps π−1(m) to itself for all m ∈M .

(4) On each fiber π−1(m), the G–action is simply transitive, i.e. transitive and has
trivial stabilizers. It follows also that G is free on the whole principal bundle P .

Let X ∈ g, then exp(tX) is a one–parameter subgroup of G. By restricting the right
action P × G → P we obtain a flow on P , which is generated by some vector field
X∗ ∈ X(P ).

Definition. X∗ is the fundamental vector field generated by X. X∗ is tangent to the
fiber of π.

Lemma. For any g ∈ G, X ∈ g and p ∈ P , we have

Dprg(X∗p ) = (Adg−1(X))∗pg

Proof. We have the commutative diagram

G
ag−1

// G

g

exp

OO

Adg−1
// g

exp

OO

so, defining Y := Adg−1(X): exp(tY ) = exp(tAdg−1(X)) = exp(Adg−1(tX)) = g−1 exp(tX)g
Next, we can define two smooth maps

s, s′ : R→ P s(t) = p exp(tX) s′(t) = pg exp(tY ) = p exp(tX)g

Then

Dprg(X∗p ) = (Dprg ◦D0s)(∂) = D0(rg ◦ s)(∂) = D0s
′(∂) = Y ∗pg = (Adg−1(X))∗pg

14



Remark.
(1) The map

g→ X(P ) X 7→ X∗

is an injective homomorphism of Lie algebras, because G acts freely.

(2) For all p ∈ P , kerDpπ is spanned by the values of the fundamental vector fields at
p: The map

g→ TpP X 7→ X∗p

is a linear map of R-vector spaces. This map is injective because X∗ has no zeroes,
and its image is in kerDpπ. So by dimensional reasons, it is kerDpπ.

Lemma. A principal G–bundle P admits a global smooth section s : M → P if and only
if it is isomorphic to the product bundle M ×G π1−→M .

Proof. The product bundle has a smooth section

s : M →M ×G m 7→ (m, e)

If f : P →M ×G is an isomorphism, then f−1 ◦ s is a smooth section of P .
Conversely, suppose P admits a smooth section s : M → P . Then define

f : M ×G→ P (m, g) 7→ s(m)g

Clearly f is a smooth map. For any h ∈ G,

(f ◦ rh)(m, g) = f(m, gh) = s(m)gh = rh(s(m)g) = (rh ◦ f)(m, g)

so f maps {m} ×G to π−1(m). This map f : {m} ×G→ π−1(m) is bijective. To show
injectivity, assume s(m)g1 = s(m)g2, then g1g

−1
2 ∈ Stab(s(m)) = {e}, so g1 = g2. It is

also surjective, since G acts transitively on π−1(m). So f−1. One can check smoothness
of f−1 in the local trivialization for p.

Example.
(0) For any smooth manifold M and any Lie group G, the trivial bundle M ×G π1−→M

is a principal bundle.

(1) Let H ⊂ G be a closed Lie subgroup. Then P = G is a principal H–bundle over
G/H with the action

G×H → G (g, h) 7→ gh

The projection π : G→ G/H admits local smooth sections. Let U ⊂ G be open such
that there is a smooth s : U → G with π ◦ s = idU and define

f : U ×H → G (m,h) 7→ s(m)h

This is a diffeomorphism between U ×H and π−1(U) and for any h′ ∈ H, we have

(rh′ ◦ f)(m,h) = rh′(s(m)h) = s(m)hh′ = f(m,hh′)

So all the requirements are satisfied such that G is a principal H–bundle.
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(2) Let M be a smooth manifold and P the set of bases for tangent spaces of M . P
has a C∞ manifold structure such that π is smooth and P is the total space of a
principal GLn(R)–bundle over M , n = dim(M).

Let P π−→ M be a principal G–bundle and M =
⋃
α Uα a covering by local trivialisa-

tions. Suppose Uα ∩ Uβ 6= ∅. Then the composition

(Uα ∩ Uβ)×G
(π×ϕβ)−1

−−−−−−→ π−1(Uα ∩ Uβ) π×ϕα−−−−→ (Uα ∩ Uβ)×G

forms a diffeomorphism from (Uα ∩ Uβ) × G to itself, which is the identity on the first
factor. We denote this map by (m, g) 7→ (m,ψαβ(m, g)). By G–equivariance of the local
trivializations, ψαβ(m, gh) = ψαβ(m, g)h holds for any m ∈ M , g, h ∈ G, so we have
ψαβ(m, g) = ψαβ(m, e)g =: ψαβ(m)g. These transition maps ψαβ have the following
properties:

(1) If Uα ∩ Uβ 6= ∅, then ψαβ : Uα ∩ Uβ → G is a smooth map.

(2) ψαα(m) = e for all m ∈ Uα.

(3) ψαβ(m) = ψβα(m)−1 for all m ∈ Uα ∩ Uβ.

(4) For all m ∈ Uα ∩ Uβ ∩ Uγ we have the following:

ψαβ(m)ψβγ(m) = ψαγ(m)

The properties (2)− (4) are summarized by saying that the maps ψαβ satisfy the cocycle
conditions. Property (3) follows directly from (2) and (4).
Now suppose we are given a smooth manifold M , an open covering M =

⋃
α Uα and

smooth maps ψαβ : Uα∩Uβ → G satisfying the cocycle conditions. Then we can construct
a principal G–bundle P π−→M trivial over each Uα such that ψαβ are the transition maps
of P :

P =
∐
α

(Uα ×G)
/
∼

The equivalence relation ∼ is given as follows:

Uα ×G 3 (m, g) ∼ (m,ψαβ(m)g) ∈ Uβ ×G ⇐⇒ m ∈ Uα ∩ Uβ

This really is an equivalence relation because ψαβ satisfy the cocycle conditions. P is a
smooth manifold that each Uα ×G projects to an open submanifold of P .
Now define a projection π : P →M by π([(m, g)]) = m. In the chart given by Uα×G

this is π1 and so it is smooth. Also define an action

µ : P ×G→ P ([(m, g)], h) 7→ [(m, gh)]

It is well–defined and smooth. This definition of P, π, µ satisfies the properties (a) and
(b) in the definition of a principal bundle. So we do indeed have a principal G–bundle
defined from the ψαβ.
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Example. Let M be a smooth manifold, (Uα, fα) an atlas for M and n = dimM . If
Uα ∩ Uβ 6= ∅, then we have the transition map

fαβ := fα ◦ f−1
β : fβ(Uα ∩ Uβ)→ fα(Uα ∩ Uβ)

between open sets in Rn. This fαβ is a diffeomorphism. Let ψαβ : Uα ∩ Uβ → GLn(R)
be defined as follows:

ψαβ(x) = Dfβ(x)fαβ ∈ GLn(R)

The ψαβ so defined are smooth and satisfy

ψαα(x) = Dfα(x)fαα = Dfα(x) idfα(Uα) = e ∈ GLn(R)

and, for any x ∈ Uα ∩ Uβ ∩ Uγ :

ψαγ(x) = Dfγ(x)fαγ = Dfγ(x)(fαβ ◦ fβγ) = Dfβ(x)fαβ ◦Dfγ(x)fβγ = ψαβ(x)ψβγ(x)

We have checked that ψαβ satisfy (2) and (4) of the cocycle conditions and (3) fol-
lows. Therefore ψαβ define a principal GLn(R)–bundle over Rn. This is the bundle of
bases/frames for tangent spaces to M .

Definition. Let P π−→ M and P ′
π′−→ M ′ be principal G– resp. G′–bundles. A homo-

morphism f from P to P ′ is a pair of smooth maps

f ′ : P → P ′ f ′′ : G→ G′

such that f ′′ is a homomorphism of Lie groups and

f ′(pg) = f ′(p)f ′′(g) ∀p ∈ P, g ∈ G

Notation. For a homomorphism f of principal bundles P and P ′, we usually denote
both f ′ and f ′′ by f . We write

f : P → P ′ f : G→ G′

and the equivariance is written

f(pg) = f(p)f(g)

Note that a homomorphism P → P ′ sends the fibers of P to the fibers of P ′. There
is a well–defined smooth f : M →M ′ such that the following diagram commutes:

P

π
��

f
// P ′

π′

��

M
f

//M ′
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Definition. Let P π−→ M be a principal G–bundle and H ⊂ G a Lie subgroup. A
reduction of the structure group of P from G to H is an injective homomorphism f of a
principal H–bundle Q→M into P such that f = idM .

Example. Let P = M × G be the product bundle. Let H = {e} ⊂ G, Q = M × H.
Define

f : H → G, e 7→ e f : Q→ P, (m, e) 7→ (m, e)

This f is a homomorphism and defines a reduction of the structure group of P to {e}.

Proposition. Let P π−→ M be a principal G–bundle and H ⊂ G a Lie subgroup. The
structure group of P can be reduced to H if and only if there is a system of local trivial-
izations for P such that the corresponding transition maps ψαβ take values in H.

Proof. Assume there is a reduction f : Q → P , where Q is a principal H-bundle. We
may assume f : H → G is the inclusion. The corresponding transition maps take values
in H. Conversely, suppose P admits local trivializations Uα×G such that all transition
maps ψαβ take values in H. Then we can construct a principal H–bundle Q π−→M from
the ψαβ. In each trivialization Uα×G for P we have Uα×H ⊂ Uα×G. These inclusions
induce an injective homomorphism f : Q→ P giving a reduction of the structure group
of P from G to H.

2.1 Associated bundles
Definition. Let P π−→M be a principal G–bundle, F a smooth manifold and µ : G×F →
F a left action of G on F . The associated bundle E πE−−→M is defined as follows:

E := P ×G F := (P × F )/∼

where
(p, f) ∼ (pg, g−1f) ∀p ∈ P, f ∈ F, g ∈ G

and
πE([(p, f)]) := π(p)

Let U ⊂M be an open set over which P is trivial and let

π−1(U)→ U ×G p 7→ (π(p), ϕ(p))

be a local trivialization. Performing the construction of E with π−1(U) in place of P ,
we obtain

π−1
E (U) = (π−1(U)× F )/∼ ∼= (U ×G× F )/'

with ' defined as follows:
(m,h, f) ' (m,hg, g−1f)

We claim that
(U ×G× F )/' ∼= U × F

18



To prove this, define ψ1 : (U × G × F )/' → U × F by ψ1([(m,h, f)]) = (m,hf) and
ψ2 : U × F → (U × G × F )/ ' by ψ2(m, f) = [(m, e, f)]. Then ψ1 is well–defined and
ψ1, ψ2 are mutually inverse:

ψ2 ◦ ψ1([(m,h, f)]) = ψ2(m,hf) = [(m, e, hf)] = [(m,h, f)]

ψ1 ◦ ψ2(m, f) = ψ1([(m, e, f)]) = (m, ef) = (m, f)

The associated bundle E has a unique differentiable structure in which the open subsets
π−1
E (U) are open smooth submanifolds diffeomorphic to U × F . This shows that E is a

locally trivial smooth fiber bundle with fiber F and structure group G.

Example.
(1) If µ : G×F → F is the terminal action (g, f) 7→ f then E = P ×GF is diffeomorphic

to M × F such that πE corresponds to π1.

(2) Let ρ : G→ GLn(R) be a homomorphism of Lie groups. Then G acts on Rn via ρ:

µ : G× Rn → Rn (g, v) 7→ ρ(g)v

In this case, E = P ×G Rn =: P ×ρ Rn is a vector bundle over M .

(2’) Suppose V → M is a vector bundle of rank k. The basis for fibers of V form a
principal GLk(R)–bundle P π−→M . Take id: GLk(R)→ GLk(R). Then E = P×ρRn
is isomorphic to V .

(3) Let P π−→ M be a principal G–bundle and H ⊂ G a closed subgroup. Using the
action

µ : G×G/H → G/H (g, aH) 7→ (ga)H

we can form the associated bundle E with fiber G/H.

Lemma. In example (3), the associated bundle E with fiber G/H is diffeomorphic to
the orbit space P/H, where H acts on P by restricting the G–action.

Proof. We define to mutually inverse smooth maps ψ1 and ψ2 between E and P/H.

ψ2 : E → P/H, [(p, aH)] 7→ H(pa) ψ1 : P/H → E,H(p) 7→ [(p,H)]

These are indeed well–defined and smooth and ψ1 ◦ ψ2 = ψ2 ◦ ψ1 = id.

Proposition. Let P π−→ M be a principal G–bundle and H ⊂ G a closed Lie subgroup.
The structure group of P can be reduced to H if and only if the associated bundle E with
fiber G/H has a section.

Proof. Suppose the structure group of P can be reduced to H, so that there is a principal
H–bundle Q → M and an injective homomorphism f : Q → P . We claim that the
composition Q f−→ P → P/H is constant on every fiber of Q. To see this, let α, β ∈ Q

19



be in the same fiber of Q. Then there exists h ∈ H such that αh = β, so f(α)h = f(β)
and thus [f(α)] = [f(β)], i.e. the images in P/H agree.

Q

��

f
// P // P/H = E

M

55

By the claim, this map factors through the projection Q → M , and so gives a section
s : M → E. Conversely, suppose E πE−−→M admits a section s : M → E. Define Q as the
preimage of s(M) under the map P → P/H = E. The restriction to H of the G–action
on P preserves Q ⊂ P and is simply transitive on the fibers of Q→M . Q is a principal
H–bundle and the inclusion Q ⊂ P is a reduction of the structure group of P to H.

Definition. Suppose P π−→M is a principal G–bundle and f : N →M is a smooth map.
Then define

f∗P := {(n, p) ∈ N × P | f(n) = π(p)

f∗P

π1
��

π2 // P

π
��

N
f
//M

f∗P is a principal G–bundle. It is called the pullback bundle obtained by pulling back
P

π−→M via f .

2.2 Connections
Let P π−→M be a principal G–bundle. Then π is a submersion and Dpπ : TpP → Tπ(p)M
has as kernel the tangent space at p to the fiber π−1(π(p)). Moreover, ker(Dpπ) is
spanned by the fundamental vector fields X∗ generated by the G–action on P . We call
ker(Dpπ) =: Vp the vertical tangent space at p.

Definition. A connection on P is a choice of a complement Hp for Vp in TpP for all
p ∈ P such that

(1) Hp depends smoothly on p.

(2) Dprg(Hp) = Hpg for all p ∈ P , g ∈ G.

Remark. Property (1) is equivalent to saying that
⋃
p∈P Hp is a smooth subbundle H

of TP . If V =
⋃
p∈P Vp is the vertical subbundle in TP with V = ker(Dπ), then H

has to be a complement to V in TP , so that TP = V ⊕H. A connection H on P is a
G–invariant smooth complement to V .

If H is a connection on P , then

Dpπ : Hp → Tπ(p)M

is an isomorphism for all p ∈ P . Under this isomorphism, vector fields on M can be
lifted to horizontal vector fields on P .
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If α ∈ Ω1(P ) is a 1–form on P , then at every point p ∈ P with αp 6= 0, kerαp ⊂ TpP
is a hyperplane. If α is a 1–form with values in Rk, then at every point p ∈ P it defines
a linear map

αp : TpP → Rk

If αp is surjective onto Rk, then ker(αp) ⊂ TpP is a subspace of codimension k.

Definition. Given a connection H on P , we define a 1–form ω on P with values in g as
follows:

ωp(X) =
{

0 if X ∈ Hp

A if X = A∗p for any A ∈ g

where A∗ is the fundamental vector field on P generated by the right action of exp(tA).
Then ω is the connection 1–form corresponding to H.

At every point p ∈ P , we have TpP = Vp ⊕ Hp. Hp is in the kernel of ωp and Vp
contains only elements of the form A∗p and for those ω(A∗p) = A. So ω is well–defined
and kerωp = Hp, because ωp : TpP → g is surjective. ω is also smooth, since H and A∗
are smooth.

Lemma. For g ∈ G, we have
r∗gω = Adg−1 ω

where Adg−1 ω is the composition of ω : TP → g and Adg−1 : g→ g.

Proof. Let X ∈ TpP . Since (r∗gω)p(X) = ω(Dprg(X)), the claim of the lemma is equiv-
alent to

ω(Drg(X)) = Adg−1(ω(X))

Both sides are linar in X, therefore it is enough to check the claim for X ∈ V and
X ∈ H.

If X ∈ Hp, then ω(Drg(X)) ∈ ω(Hpg) = {0} by the G–invariance of H. Also
Adg−1(ω(X)) = Adg−1(0) = 0.
Now let X ∈ Vp. Since the fundamental vector fields span V , we can choose Y ∈ g

with Y ∗p = X. Then

ω(Drg(X)) = ω(Drg(Y ∗p )) = ω((Adg−1(Y ))∗pg) = (Adg−1(Y ))

and
Adg−1(ω(X)) = Adg−1(ω(Y ∗p )) = Adg−1(Y )

Proposition. Suppose ω is a g–valued 1–form on P with the property that r∗gω =
Adg−1 ω. Assume also that for fundamental vector fields A∗, we have ω(A∗) = A. Then
H := kerω is a connection on P .

Proof. The two requirements on ω are consistent. If A∗ is the fundamental vector field
generated by A, then Drg(A∗p) = (Adg−1(A))∗pg. This implies

(Adg−1(A))pg = ω((Adg−1(A))∗pg) = ω(Drg(A∗p)) = r∗gω(A∗p)
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For all p ∈ P , the map
ωp : TpP → g

is surjective, so kerωp = Hp is a subspace of TpP whose codimension is dim g. The
requirement ω(A∗) = A means that ωp|Vp : Vp → g is an isomorphism for all p ∈ P . So
Hp is a complement for Vp in TpP .

Suppose X ∈ Hp. To prove G–invariance of H, we have to show Dprg(X) ∈ Hpg. Now
X ∈ Hp means that ω(X) = 0. We have to prove ω(Drg(X)) = 0. Indeed,

ω(Drg(X)) = r∗gω(X) = Adg−1(ω(X)) = Adg−1(0) = 0

Proposition. Every principal G–bundle P π−→M admits a connection.

Proof. Let {Ui}i∈I be an open cover of M with the property that P restricted to each
Ui is trivial:

π−1(Ui)
∼−−−→ Ui ×G

On the product bundle Ui ×G, there is a connection with

H(m,g) = TmUi × {0} ⊂ TmUi ⊕ TgG = T(m,g)(Ui ×G)

Let ωi be the connection 1–form on π−1(Ui), whose kernel corresponds to H under
the trivialization π−1(Ui) → Ui × G. Let {ρj}j∈J be a smooth partition of unity on
M subordinate to the covering by the Ui, i.e. ρj : M → R are smooth non-negative
functions such that supp ρj are locally finite in M and

∑
j ρj = 1 and for all j ∈ J there

exists an i ∈ I such that supp ρj ⊂ Ui. Then define

ω :=
∑
j∈J

π∗ρj · ωj =
∑
j∈J

(ρj ◦ π) · ωj

where for all j ∈ J , ωj := ωi for some i ∈ I such that supp ρj ⊂ Ui, and the summands,
which are supported only inside π−1(Ui) are being extended by 0 to all of P .

We claim that ω is a connection 1–form on P . To see this, we need to check that
r∗gω = Adg−1 ω for all g ∈ G and ω(A∗p) = Ap for all A ∈ g, p ∈ P . Since π∗ρj is constant
under right G–action, the first equality follows by

r∗gω = r∗g

∑
j∈J

π∗ρj · ωj

 =
∑
j∈J

π∗ρj · r∗gωj =
∑
j∈J

π∗ρj ·Adg−1 ωj =

= Adg−1

∑
j∈J

π∗ρj · ωj

 = Adg−1 ω

and the second by

ω(A∗p) =

∑
j∈J

π∗ρj · ωj

 (A∗p) =
∑
j∈J

π∗ρj(p) · ωj(A∗p) =
∑
j∈J

π∗ρj(p) ·Ap = Ap
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Proposition. The set of connections on a principal G–bundle P π−→ M is naturally an
affine space whose vector space of translations is the space of 1–forms on M with values
in the vector bundle P ×Ad g −→M .
More precisely, for any difference of connection 1–forms ω̃ = ω1−ω2 on P , there is a

unique ω ∈ Γ((P ×Ad g)⊗ T ∗M) such that

π∗ω(Y ) = [(p, ω̃(Y ))] ∀Y ∈ TpP

Proof. By the previous proposition, the set of connections P is non–empty, so we can
choose a reference connection 1–form ω0. For any connection 1–form ω1, let ω̃ := ω1−ω0.
For all p ∈ P , Vp is spanned by the values of the fundamental vector fields A∗p with A ∈ g,
but

ω̃(A∗p) = ω1(A∗p)− ω0(A∗p) = A−A = 0

so ω̃ vanishes on V . Let E := P ×Ad g, then Ω1(M,E) = Γ(T ∗M ⊗E) is the vector space
of 1–forms on M with values in the vector bundle E. We want to define ω ∈ Ω1(M,E)
by

ω(X) = [(p, ω̃(Y ))]

for all X ∈ TmM , where Y ∈ TpP is a lift of X at some p ∈ π−1(m), i.e. Dπ(Y ) = X.
We can always choose such a lift since Dπ is surjective. For ω to be well–defined, we
have to check that

[(p, ω̃(Y ))] = [(q, ω̃(Z))]

for any lift Z ∈ TqP at q ∈ π−1(m). To see this, first let q = p and Z ∈ TpP be a lift of
X at p. Then

Dπ(Z − Y ) = Dπ(Z)−Dπ(Y ) = X −X = 0

so Z − Y ∈ V and therefore

ω̃(Z) = ω̃(Y )− ω̃(Z − Y ) = ω̃(Y )

Now let q ∈ π−1(m) be arbitrary and Z ∈ TqP a lift of X at q. There is a unique g ∈ G
such that q = pg. Since

Dπ(Drg(Y )) = D(π ◦ rg)(Y ) = Dπ(Y ) = X,

Drg(Y ) ∈ TqP is a lift of X at q, so ω̃(Z) = ω̃(Drg(Y )). But then we have

[(q, ω̃(Z))] = [(q, ω̃(Drg(Y )))] = [(q, r∗gω̃(Y ))] = [(pg,Adg−1 ω̃(Y ))] = [(p, ω̃(Y ))].

This shows that although ω is not well–defined as an ordinary g–valued 1–form on M ,
it is well–defined as a 1–form on M with values in E.

Conversely, let ω ∈ Ω1(M,E). We have to check that with ω̃ defined by

π∗ω(Y ) = [(p, ω̃(Y ))] ∀Y ∈ TpP

the g–valued 1–form ω1 = ω0 + ω̃ is a connection 1–form. First, we show ω1(X∗p ) = X
for all X ∈ g and p ∈ P : Since

[(p, ω̃(X∗p ))] = π∗ω(X∗p ) = ω(Dπ(X∗p )) = ωπ(p)(0) = ωπ(p)(Dpπ(0)) = (π∗ω)p(0)=[(p, 0)]
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and the first element uniquely determines the representative of the equivalence class, we
have

ω1(X∗p ) = ω0(X∗p ) + ω̃(X∗p ) = X + 0 = X.

Left to show is r∗gω1 = Adg−1 ω1 for g ∈ G, but for Y ∈ TpP ,

[(pg, r∗gω̃(Y ))] = [(pg, ω̃(Drg(Y )))] = π∗ω(Drg(Y )) = ω(Dπ(Drg(Y ))) =
= ω(D(π ◦ rg)(Y )) = ω(Dπ(Y )) = π∗ω(Y ) = [(p, ω̃(Y ))] =
= [(pg,Adg−1 ω̃(Y ))],

so r∗gω̃ = Adg−1 ω̃ and thus by linearity r∗gω1 = Adg−1 ω1.

Let P π−→M be a principal G–bundle, ω a connection 1–form on P , Ui, Uj ⊂M open
sets over which P is trivial. The trivializations

ψi : π−1(Ui)→ Ui ×G

correspond to sections

si : Ui → π−1(Ui) m 7→ ψ−1
i (m, e)

ωi := s∗iω is a g–valued 1–form on Ui ⊂M . Suppose Ui ∩Uj 6= ∅. Then on Ui ∩Uj both
ωi and ωj are defined. We have the smooth transition maps ψij : Ui ∩ Uj → G defined
by

ψi ◦ ψ−1
j : (Ui ∩ Uj)×G→ (Ui ∩ Uj)×G (m, g) 7→ (m,ψij(m)g)

and want to use them to find a formula for transition between ωj and ωi.
On G we have a canonical 1–form θ with values in g defined by

θ(Ag) = A ∀A ∈ g, g ∈ G

This is well–defined since it is equivalent to θ(X) = D`g−1(X) for X ∈ TgG.

Lemma. We have the following translation from ωi to ωj:

ωj(X) = Ad−1
ψij(m) ωi(X) + ψ∗ijθ(X) ∀X ∈ TmM

Proof. Differentiating the function

sj(m) = ψ−1
j (m, e) = ψ−1

i ◦ ψi ◦ ψ
−1
j (m, e) = ψ−1

i (m,ψij(m)) = si(m) · ψij(m)

gives for X ∈ TmM

Dsj(X) = D(µ ◦ (si × ψij) ◦∆)(X) = (Dµ ◦D(si × ψij) ◦D∆)(X) =
= Dµ(Dsi(X), Dψij(X)) = Drψij(m)(Dsi(X)) +D`si(m)(Dψij(X))
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where we can transform the last summand using A∗pg = D`p(Ag) like

D`si(m)(Dψij(X)) = (D`si(m) ◦D`ψij(m) ◦D`ψij(m)−1 ◦Dψij)(X) =
= D`si(m)((D`ψij(m)−1(Dψij(X)))ψij(m)) =
= (D`ψij(m)−1(Dψij(X)))∗si(m)ψij(m) =

= (θ(Dψij(X)))∗sj(m) =

= (ψ∗ijθ(X))∗sj(m)

Putting the above identities together we get the desired result

ωj(X) = ω(Dsj(X)) = ω(Drψij(m)(Dsi(X)) + ω((ψ∗ijθ(X))∗sj(m)) =

= r∗ψij(m)ω(Dsi(X)) + ψ∗ijθ(X) = Ad−1
ψij(m) ωi(X) + ψ∗ijθ(X)

2.3 Parallel transport
Let P π−→ M be a principal G–bundle, H = kerω a connection on P . For every p ∈ P ,
Dpπ|H is an isomorphism Hp → Tπ(p)M . Every X ∈ Tπ(p)M has a unique preimage
X∗ ∈ Hp under this isomorphism. Every vector field X ∈ X(M) gives rise to a unique
vector field X∗ on P such that

X∗p = (Dpπ)−1(Xπ(p))

This construction has the following simple properties: (fX)∗ = π∗f · X∗ for any f ∈
C∞(M,R) and (X + Y )∗ = X∗ + Y ∗. But [X,Y ]∗ 6= [X∗, Y ∗]: Although [X,Y ]π(p) =
Dπ([X∗, Y ∗]p) holds, [X∗, Y ∗] is not neccessarily horizontal. Denoting the projections
from to the horizontal and vertical subbundles of TP by

V : TP → V H : TP → H

the above equality shows that

H ([X∗, Y ∗]) = [X,Y ]∗

Remark. In general V ([X∗, Y ∗]) 6= 0, and is related to the curvature of H.

Definition. A smooth curve c : [0, 1] → P is horizontal (wrt H) if ċ(t) ∈ Hc(t) for all
t ∈ [0, 1].

Proposition. Let c : [0, 1] → M be a smooth curve and p ∈ π−1(c(0)). Then there is a
unique horizontal curve c : [0, 1]→ P with c(0) = p and π ◦c = c. c is called a horizontal
lift of c.

Proof. Given c and p ∈ π−1(c(0)), there exists some smooth c : [0, 1]→ P with c(0) = p
and π ◦ c = c (by local triviality). Any other lift of c to P with starting point p is of the
form c · g where g : [0, 1]→ G is a smooth map with g(0) = e. We need to find a g such
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that c · g is horizontal. This is the case iff d
dt(c(t) · g(t)) ∈ H, i.e. ω( d

dt(c · g)) = 0 for all
t ∈ [0, 1]. As in the lemma above, we get

d
dt(c · g) = Dt(c · g)(∂) = (Dµ ◦D(c · g) ◦Dt∆)(∂) = Dcrg(Dtc(∂)) +Dg`c(Dtg(∂))

and

Dg`c(Dtg(∂)) = (Dg`c ◦De`g ◦Dg`g−1 ◦Dtg)(∂) = Dg`c(((Dg`g−1 ◦Dtg)(∂))g) =
= ((Dg`g−1 ◦Dtg)(∂))∗c·g = (Dg`g−1(ġ))∗c·g

so

ω

( d
dt(c · g)

)
= ω(Dcrg(ċ)) +Dg`g−1(ġ) = r∗gω(ċ) +D`g−1(ġ) =

= Adg−1 ω(ċ) +D`g−1(ġ) = D`g−1(Drg(ω(ċ))) +D`g−1(ġ) =
= (D`g−1 ◦Drg)(ω(ċ) +Drg−1(ġ))

Since D`g−1 ◦Drg is an isomorphism, this is 0 if and only if

Drg(t)−1(ġ(t)) = −ω(ċ(t))

So the statement of the proposition is just that this differential equation has a unique
solution with g(0) = e. This is shows by the following lemma.

Lemma. Let X : [0, 1]→ g be smooth. There exists a unique g : [0, 1]→ G with g(0) = e
and

Drg(t)−1(ġ(t)) = X(t)

Proof. On G× [0, 1], X defines a time–independent vector field X with

X(g,t) = (Xg(t), ∂)

The flow of X is defined for all t (see the proof of completeness of left–invariant vector
fields on G). Under the flow ϕ of X we have

ϕt(e, 0) = (g(t), t)

for a g(t) which solves our equation. This is the only solution with g(0) = e.

Let c : [0, 1]→M be a smooth curve. Define

Pc : π−1(c(0))→ π−1(c(1)) p 7→ c(1)

where c is the unique horizontal lift of c with c(0) = p.
The map Pc is the parallel transport map defined by c. Pc is invertible by running

back along c. Except from change of direction, it is independent of the parametrization
of c. The parallel transport map can also be defined for a piecewise smooth curve c by
concatenating the Pci for ci obtained by restricting c to subintervals of [0, 1] where it is
smooth.
Fix a basepoint m0 ∈M . For every closed piecewise smooth curve c : [0, 1]→M with

c(0) = c(1) = m0 we have
Pc : π−1(m0)→ π−1(m0)

26



Claim. The set of all these Pc is a group with composition as group operation.

Proof. {Pc} has idπ−1(m0) as an element obtained as Pc for c the constant path at m0.
If c1 and c2 are two closed paths beginning and ending at m0, then Pc2 ◦ Pc1 = Pc1c2 ,
where c1c2 denotes the concatenation of c1 and c2. This is associative and P−1

c = Pc
where c is c parametrized backwards.

Fix a basepoint p0 ∈ P with π(p0) = m0. If Pc is one of the parallel transport maps
defined above, then Pc(p0) ∈ π−1(m0). Since G acts simply transitively on the fiber,
there exists a unique g(c) ∈ G such that Pc(p0) = p0g(c).

Claim. The map
h : {Pc} → G Pc 7→ g(c)

is an injective homomorphism of groups.

Proof. Since h(Pc1 ◦ Pc2) = h(Pc2c1) = g(c2c1) and h(Pc1)h(Pc2) = g(c1)g(c2) need to
prove that g(c2c1) = g(c1)g(c2).
For any curve c : [0, 1]→M , the curve c from p ∈ P to Pc(p) is horizontal, since it is

a horizontal lift of c. Since H is G–invariant, the G–action maps horizontal curves to
horizontal curves, so for any g ∈ G, c · g is a horizontal curve from pg to Pc(p)g. This
means Pc(pg) = Pc(p)g, i.e. Pc is G–equivariant. So

p0g(c2c1) = Pc2c1(p0) = Pc1 ◦ Pc2(p0) = Pc1(p0g(c2)) = Pc1(p0)g(c2) = p0g(c1)g(c2)

and thus g(c2c1) = g(c1)g(c2). We have proved that h is a homomorphism. Now suppose
Pc ∈ kerh, i.e. g(c) = h(Pc) = e. Then Pc(p0) = p0. Every p ∈ π−1(p0) is of the
form p = p0g for some g ∈ G. But Pc(p) = Pc(p0g) = Pc(p0)g = p0g = p by the
G–equivariance of Pc, so Pc = idπ−1(p0). Thus h is injective.

Definition. The holonomy group Hol(H, p0) = Hol(p0) of the connection H wrt p0 ∈ P
is the subgroup of G obtained by parallel transport along closed loops based at p0, i.e.
Hol(H, p0) = Im h.

The restricted holonomy group Hol0(H, p0) = Hol0(p0) is the subgroup obtained by
considering only parallel transports Pc for closed loops c which are contractible or null–
homotopic.

Properties.

(1) Hol(H, p1) = g−1 Hol(H, p0)g if p1 = p0g.

(2) Hol(H, p1) = Hol(H, p0) if p1 is obtained from p0 by parallel transport.

(3) If M is connected, Hol(H, p0) and Hol(H, p1) are conjugate in G for any p0, p1 ∈ H.

These properties also hold for Hol0.

Proof.
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(1) Consider h0 ∈ Hol(H, p0) and h1 ∈ Hol(H, p1) defined by Pc(p0) = p0h0 and Pc(p1) =
p1h1 for the same curve c on M . Then

p0gh1 = p1h1 = Pc(p1) = Pc(p0g) = Pc(p0)g = p0h0g

so gh1 = h0g and h1 = g−1h0g.

(2) Let c be a smooth curve on M such that p1 = Pc(p0) and let h1 ∈ Hol(H, p1) =
Hol(H,Pc(p0)). There exists a closed curve c1 on M such that Pc1(Pc(p0)) =
Pc(p0)h1. The curve cc1c is a closed curve in M based at π(p0), so there exists
h0 ∈ Hol(H, p0) such that Pcc1c(p0) = p0h0. But

Pc(p0)h1 = Pc ◦ P−1
c ◦ Pc1 ◦ Pc(p0) = Pc(Pcc1c(p0)) = Pc(p0h0) = Pc(p0)h0

so h1 = h0 and thus h1 ∈ Hol(H, p0). By using c instead of c, we get the other
inclusion.

(3) Since M is connected, there is a smooth curve c from π(p0) to π(p1), which has a
horizontal lift from p0 to Pc(p0) ∈ π−1(π(p1)), Hol(H,Pc(p0)) = Hol(H, p0) by (2).
By (1), this is conjugate to Hol(H, p1).

Theorem. The restricted holonomy group Hol0(H, p0) is a connected Lie subgroup of
G.

Proof. By definition, Hol0(H, p0) ⊂ G is a subgroup. We claim that Hol0(H, p0) is
connected, more precisely for any g ∈ Hol0(H, p0) there is a piecewise smooth curve
g̃ : [0, 1] → G with g̃(0) = e, g̃(1) = g and g̃(s) ∈ Hol0(H, p0) for all s ∈ [0, 1]. The
property g ∈ Hol0(H, p0) means that there is a piecewise smooth curve c : [0, 1] → M
with c(0) = c(1) = m0 such that Pc(p0) = p0g and c is contractible as a curve based at
m0. There exists a piecewise smooth map

H : [0, 1]× [0, 1]→M

such that

H(t, 0) = m0, H(t, 1) = c(t), H(0, s) = H(1, s) = m0 ∀s, t ∈ [0, 1]

For every s ∈ [0, 1],
cs : [0, 1]→M t 7→ H(t, s)

is a piecewise smooth curve in M based at m0. Define g̃ by p0g̃(s) = Pcs(p0). This is
piecewise smooth in s. We have g̃(0) = e since c0 is constant and g̃(1) = g since c1 = c.
g̃(s) ∈ Hol0(H, p0) because each cs is a closed loop based at m0 and is contractible. The
proof of the theorem is completed by the following proposition.

Proposition. Let G be a Lie group and H ⊂ G a subgroup with the property that every
g ∈ H can be connected to e by a piecewise smooth curve in H. Then H is a Lie subgroup
of G.
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Proof. Let

h = {ċ(0) | c : [0, 1]→ G piecewise smooth, c(0) = e, ∀t : c(t) ∈ H} .

We claim that h is a Lie subalgebra of g = L(G). If X ∈ g is in h, then so is λX by
reparametrizing c with ċ(0) = E. If c1 and c2 are two curves with ċ1(0) = X ∈ h and
ċ2 = Y ∈ h, then, with

c : [0, 1]→ G, t 7→ c1(t)c2(t),

we have ċ(0) = X+Y , so h ∈ g is a linear subspace. It remains to prove that for X,Y ∈ h
we have [X,Y ] ∈ h. Let c1, c2 be as above. Consider c(t2) = c1(t)c2(t)c1(−t)c2(−t).
Without loss of generalit, we may take c1, c2 defined on (−ε, 1] for some small ε > 0.
The defining formula for c makes sense for small positive t. We have ċ(0) = [X,Y ] and
c satisfies c(t) ∈ H for all t, so [X,Y ] ∈ h.

Now we define a subbundle E ⊂ TG by Eg := D`g(h) ⊂ TgG forall g ∈ G. We prove
that E is integrable: Since h is closed under [−,−], E is involutive. By the Frobenius
theorem, E is integrable, i.e. there exists an integral submanifold through every point.
Let K ⊂ G be the maximal connected integral submanifold of E through e ∈ G. K is a
connected Lie subgroup with Lie algebra h.

Next, we show that H ⊂ K. By assumption, every h ∈ H is connected to e ∈ G by a
piecewise smooth c : [0, 1]→ G with c(t) ∈ H for all t. Suppose c is smooth. For a fixed
t0 define c(t) = c(t0)−1c(t) ∈ H. We have c(t0) = e and ċ(t0) = Dc(t0)`c(t0)−1(ċ(t0)) ∈ h,
so ċ(t0) = De`c(t0)(ċ(t0)) ∈ Ec(t0) for all t0. Hence c is contained in K and in particular
h = c(1) ∈ K. For piecewise smooth c we repeat this argument for each subinterval of
[0, 1] where c is smooth. So H ⊂ K.
To prove that K ⊂ H, pick a basis X1, . . . , Xk for h. For each i we can choose a curve

ci with ci(0) = e, ci(t) ∈ H ∀t and ċi(0) = Xi. Define

f : (−ε, ε)k → G, (t1, . . . , tk) 7→ c1(t1)c2(t2) · · · ck(tk).

Since each ci is contained in H and H ⊂ G is a subgroup, f(t1, . . . , tk) ∈ H for all ti and
f(0, . . . , 0) = e. The linear map D(0,...,0)f is an isomorphism between Rk and h. So, for
ε > 0 small enough, f is an immersion. We obtain an immersed submanifold through e
which is an integral submanifold for E, since Im(Df) is contained in E at every point.
The maximal integral submanifold of E through e is K, so Im f ⊂ K. In fact, Im f
and K have the same dimension, so Im f is an open neighbourhood of e in K. Since
Im f ⊂ H by definition of f , K ⊂ H is true locally near e. Since K is a connected Lie
subgroup, each element of K is a product of finitely many elements of Im f ⊂ H. since
H is also a subgroup, H ⊂ K.

2.4 Curvature
Definition. The curvature of H is the following g–valued 2–form on P :

Ω(X,Y ) = dω(H X,H Y ) ∀X,Y ∈ TpP, p ∈ P
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For X,Y ∈ TpP , p ∈ P , we have

(r∗gΩ)(X,Y ) = Ω(Drg(X), Drg(Y )) = dω(H Drg(X),H Drg(Y )) =
= dω(Drg(H X), Drg(H Y )) = (r∗gdω)(H X,H Y ) =
= d(r∗gω)(H X,H Y ) = (d Adg−1 ω)(H X,H Y ) =
= Adg−1 dω(H X,H Y ) = Adg−1 Ω(X,Y ),

so r∗gΩ = Adg−1 Ω.

Proposition (Structure equation). Ω(X,Y ) = dω(X,Y ) + [ω(X), ω(Y )].

Proof. Both sides of the claim are bilinear and skew–symmetric, so we may assume that
each X,Y is either in V or in H. In the case X,Y ∈ H, we have ω(X) = ω(Y ) = 0, and
Ω(X,Y ) = dω(X,Y ) by definition of Ω. If instead X,Y ∈ Vp with p ∈ P , we may assume
X = A∗p and Y = B∗p for A,B ∈ g. Since H X = H Y = 0, we have Ω(X,Y ) = 0. The
structure equation then holds since

dω(A∗, B∗) = A∗(ω(B∗))−B∗(ω(A∗))− ω([A∗, B∗]) =
= A∗(B)−B∗(A)− ω([A,B]∗) = 0− 0− [A,B] =
= −[ω(A∗), ω(B∗)]

so in particular dω(X,Y ) + [ω(X), ω(Y )] = 0 = Ω(X,Y ). In the third case, Xp ∈ Hp

and Yp ∈ V , where X is a vector field and Yp = B∗p for some B ∈ g. Again,

Ω(X,Y ) = dω(H X,H Y ) = dω(X, 0) = 0.

Then we have

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ]) =
= X(B)− 0− ω([X,B∗]) = −ω([X,B∗]) = 0

by the following lemma. Since also [ω(X), ω(Y )] = [0, B] = 0, this completes the proof
of case 3 and of the proposition.

Lemma. Let X be a vector field with Xp ∈ Hp. Then [X,B∗p ] ∈ Hp.

Proof. For any two vector fields X and Y we have

[X,Y ] = LXY = − d
dtDϕt(Y )

∣∣∣
t=0

With this we have for X horizontal and Y = B∗p :

[X,B∗p ] = −[B∗p , X] = d
dtDrexp(tB)(X)

∣∣∣
t=0
∈ H

since H is invariant under right G–action.
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Definition. Let α be a differential k–form on P . Then D is defined by

Dα = dα ◦H , i.e. Dα(X1, . . . , Xk+1) = dα(H X1, . . . ,H Xk+1).

D depends on the connection H and is called the covariant derivative defined by H.

Proposition (Bianchi identity). DΩ = 0, in other words dΩ(H X,H Y,H Z) = 0 for
all X,Y, Z ∈ TpP .

Proof. Let X,Y, Z ∈ Hp, then

dΩ(X,Y, Z) = LX(Ω(Y,Z)) + LY (Ω(Z,X)) + LZ(Ω(X,Y ))
− Ω([X,Y ], Z)− Ω([Z,X], Y )− Ω([Y,Z], X)
= LX(dω(Y,Z)) + LY (dω(Z,X)) + LZ(dω(X,Y )
− dω([X,Y ], Z)− dω([Z,X], Y )− dω([Y, Z], X)
= ddω(X,Y, Z) = 0

Proposition. Let P π−→ M be a principal G–bundle an H a connection of P with cur-
vature Ω. The following conditions are equivalent:

(1) Ω = 0.

(2) H is involutive, i.e. closed under [−,−].

(3) H is integrable.

Proof. Conditions (2) and (3) are equivalent by the Frobenius theorem. Assume X,Y ∈
H. Then

Ω(X,Y ) = dω(X,Y ) = LX(ω(Y ))− LY (ω(X))− ω([X,Y ]) = −ω([X,Y ]),

so Ω = 0 iff [X,Y ] ∈ H whenever X,Y ∈ H. This shows the equivalence of (1) and
(2).

Let L ⊂ P be the maximal connected integral submanifold for H with p0 ∈ L. If c is
any loop in M based at m0 = π(p0), then the horizontal lift c of c with initial value p0
is contained in L. Note that L is a covering space of M .

π|L : L→M D(π|L) : TpL = Hp → Tπ(p)M

D(π|L) is an isomorphism, so π|L is a local diffeomorphism.

Definition. The connection H = kerω is flat if Ω = 0.

Now let H be arbitrary, not neccessarily flat. For p0 ∈ P let

H(p0) = {p ∈ P | p is obtained from p0 by parallel transport}

Note that Hol0(H, p0) is a connected Lie subgroup of G. Moreover, Hol0(H, p0) is
the connected compontent of e in Hol(H, p0). Hol(H, p0) has at most countable many
connected components, each diffeomorphis to Hol0(H, p0). So Hol(H, p0) ⊂ G is a Lie
subgroup as well.
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Proposition. If M is connected, then H(p0) is a principal Hol(H, p0)–bundle.

Proof. H(p0) is a subset of P , so we have a projection π : H(p0) → M by restricting
π : P →M . Consider

H(p0) ∩ π−1(m0) = {p0g(c) | c is a closed loop based at m0}.

Since g(c) ∈ Hol(H, p0), this shows that Hol(H, p0) acts simply transitively on the fiber
of H(p0) over m0. G acts on P on the right, and we restrict this action to the subgroup
Hol(H, p0) ∈ G.

We claim that the restricted action maps H(p0) to itself. To prove this, let p ∈ H(p0)
and c be a horizontal curve connecting p0 to p. Assume g ∈ Hol(H, p0). Then rg ◦ c is
a horizontal curve connecting p0g to pg. Because g ∈ Hol(H, p0), there is a horizontal
curve from p0 to p0g. Concatenating with rg ◦ c gives a piecewise smooth horizontal
curve from p0 to pg, so pg ∈ H(p0).
Next, we want to show that the action of Hol(H, p0) on H(p0) is simply transitive

on every fiber of H(p0) π−→ M . Let p ∈ H(p0) and c be a horizontal curve from p0
to p. For every g ∈ Hol(H, p0), pg ∈ H(p0) by the previous paragraph. Suppose
p′ ∈ H(p0) ∩ π−1(π(p)). There exists a horizontal curve c′ from p0 to p′. Since both p
and p′ are connected to p0 by horizontal curves, there is a horizontal curve from p to
p′. So there exists g′ ∈ Hol(H, p) such that p′ = pg′. Since there is a horizontal curve
between p0 and p, we have Hol(H, p) = Hol(H, p0). We have shown that Hol(H, p0) acts
transitively on H(p0) ∩ π−1(π(p)) for all p ∈ H(p0). Since the action of G on P has
trivial stabilizers, the restricted action of Hol(H, p0) on H(p0) has trivial stabilizers.
By connectedness of M , H(p0) intersects every fiber of P . Take local trivializations

for P :
ψ : π−1(U)→ U ×G

Since Hol0(H, p0) ⊂ G is a Lie subgroup, U × Hol0(H, p0) is a smooth manifold and
so is U × Hol(H, p0). Using the restriction of ψ to π−1(U) ∩ H(p0), we can identify
π−1(U) ∩ H(p0) with U × Hol(H, p0). H(p0) has a unique smooth structure for which
these identifications are diffeomorphisms. With respect to this smooth structure on
H(p0), the action of Hol(H, p0) on H(p0) discussed before is smooth.

Definition. Let p0 ∈ P and H be a connection on P . The principal Hol(H, p0)–bundle
H(p0) is the holonomy bundle of H through p0.

Remark. Consider H(p0) ↪→ P . This is a homomorphism of principal bundles where the
corresponding homomorphism of Lie groups is Hol(H, p0) ↪→ G.
A reduction of the structure group of P to H is a principal H–bundle Q→M together

with a homomorphism Q→ P with respect to the inclusion H ↪→ G such that

Q //

��

P

~~

M
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commutes.
The existence of such a reduction is equivalent to a section of the bundle

G/H // P/H

��

H

Extending this definition slightly, we have proved that if H is a connection of P and
Q := H(p0) is the holonomy bundle through a basepoint p0 ∈ P , then Q ↪→ P defines a
reduction of the structure group of P to Hol(H, p0) ⊂ G.

Suppose Q is a reduction of the structure group G of P to a subgroup G′ ⊂ G. Let
H be a connection on Q.

Claim. H extends uniquely to P .

Proof. For p ∈ P consider some p′ ∈ Q ∩ π−1(π(p)). The connection H on Q defines
Hp′ ⊂ Tp′Q. Hp′ is a complement to the vertical subspace at p′ in Q and also in P .
There exists g ∈ g such that p′g = p. Define Hp := Drg(Hp′). This is a horizontal
subspace at p in P .
This defines a connection on P ! H is clearly horizontal. It is also smooth, so we only

have to check G–invariance. Let p ∈ π−1(π(p)). There exists g ∈ G such that p = pg.
We have to check that

Drg(Hp) = Hp

There exist p′ ∈ Q ∩ π−1(π(p)) and g′ ∈ G such that p′ = pg′. Then p = p′g′−1 and
p = pg = p′g′−1g, so

Hp = Drg′−1g(Hp′) = Drg(Drg′−1(Hp′)) = Drg(Hp).

Suppose H is a connection on P which restricts to the given H on Q, i.e. Hp = Hp if
p ∈ Q. Then H is the connection defined above, because every fiber of P contains a
point in Q and the connection H on P is completely determined by G–invariance and
H at a single point in every fiber.

Definition. Let H be a connection on a principal G–bundle P π−→M and G′ ⊂ G a Lie
subgroup. H is reducible to the subgroup G′ if there is a reduction Q → M of P to a
principal G′–bundle and a connection H on Q whose extension to P is H.

Proposition. Every connection H on P is reducible to Hol(H, p0).

Proof. Set Q = H(p0) and H the restriction of H to Q.

Theorem (Ambrose–Singer). Le P π−→ M be a principal G–bundle with a connection
H = kerω and curvature Ω, where M is connected, and let p ∈ P . Define

g′ := {Ω(Xp, Yp) | Xp, Yp ∈ TpP} ⊂ g

Then g′ is the Lie algebra of Hol(H, p).
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Proof. We replace P by the hononomy bundle Q = H(p) through P . We work on Q
whose structure group is G′ = Hol(H, p). We have to prove that the values of Ω span
the full Lie algebra of G′.
Take a basis A1, . . . , Ak for the subspace g′. The Ai induce fundamental vector fields

A∗i on Q. Let X1, . . . , Xn be a basis for Hp and X∗1 , . . . , X
∗
n extensions of the Xi to

horizontal vector fields. Let S ⊂ TpQ be the span of the (A∗i )p and (X∗j )p = Xj . We
extend S to a smooth distribution on Q by setting

Sq := span{(A∗1)q, . . . , (A∗k)q} ⊕Hq.

We claim that S is integrable as a distribution on Q. To check that S is closed
under [−,−], we can check at p: First, [A∗i , A∗j ] = [Ai, Aj ]∗, so we need to check that
g′ = span{A1, . . . , Ak} is a Lie subalgebra. Second, [A∗i , X∗j ] is horizontal by a previous
Lemma, so it is in H ⊂ S. And third,

[X∗i , X∗j ] = H ([X∗i , X∗j ]) + V ([X∗i , X∗j ]).

Since the horizontal part is in S, we only need to prove that V ([X∗i , X∗j ]) ∈ S. Since the
fundamental vector fields span the vertical subspace, we can write

V ([X∗i , X∗j ](p)) = B∗p for some B ∈ g,

so ω(V ([X∗i , X∗j ](p))) = B. Then

Ω(X∗i (p), X∗j (p)) = dω(X∗i (p), X∗j (p)) = LX∗i (ω(X∗j ))− LX∗j (ω(X∗i ))− ω([X∗i , X∗j ]) =

= −ω([X∗i , X∗j ](p)) = −ω(V ([X∗i , X∗j ](p))) = −B

soB ∈ span{A1, . . . , Ak}. The equation V ([X∗i , X∗j ](p)) = B∗p then shows that V ([X∗i , X∗j ](p)) ∈
span{(A∗1)p, . . . , (A∗k)p} ⊂ S.

We have proved that S is closed under [−,−], so it is integral by the Frobenius theorem.
Let L be the maximal connected integral submanifold of S through the point p ∈ Q.

Every point in Q can be reached from p by parallel transport of p. The correspoinding
horizontal curve is tangent to H and therefore tangent to S. Therefore the whole curve
is contained in L and so L = Q. Since

k + dimM = rankS = dimL = dimQ = dimG′ + dimM,

we have dim g′ = k = dimG′ = dimL(G′), so g′ = L(G′).

By definition, H is G–invariant. So, since r∗gω = Adg−1 ω, we also have r∗gΩ = Adg−1 Ω,
i.e. Ω(Drg(X), Drg(Y )) = Adg−1 Ω(X,Y ) for all X,Y ∈ TpP . Since Adg−1 is a linear
isomorphism, there is as much curvature at pg as there is at p for all g ∈ G.

With E = P ×Ad g = P × g/ ' where (p,A) ' (pg,Adg−1 A) for all g ∈ G, the bundle
πE : E →M, [(p,A)]→ π(p) is a vector bundle on M whose fiber at every point m ∈M
is isomorphic to g. We interpret the curvature Ω of a connection H on P as a 2–form
on M with values in E, i.e.

Ω ∈ Ω2(M)⊗ E = Γ(Λ2T ∗M ⊗ E)
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For X,Y ∈ TmM we should have Ω(X,Y ) ∈ Em = π−1
E (m). Given X,Y ∈ TmM , choose

preimages X̃, Ỹ ∈ TpP with π(p) = m and Dpπ(X̃) = X, Dpπ(Ỹ ) = Y . Then

Ω(X,Y ) = [(p,Ω(X̃, Ỹ ))] ∈ Eπ(p) = Em

If we replace X̃ by X̃ ′ ∈ TpP with Dpπ(X̃ ′) = X, then X̃ − X̃ ′ ∈ kerDpπ = Vp, so

Ω(X̃ ′, Ỹ ) = Ω(X̃ ′ − X̃, Ỹ ) + Ω(X̃, Ỹ ) = Ω(X̃, Ỹ )

This shows that Ω(X,Y ) is independent of the choice of X̃ at p and similarily for Ỹ at
p.
Any p′ ∈ P with π(p′) = m is of the form p′ = pg for some g ∈ G. Then

(p,Ω(X̃, Ỹ )) ' (pg,Adg−1 Ω(X̃, Ỹ )) = (p′, r∗gΩ(X̃, Ỹ )) = (p′,Ω(Drg(X̃), Drg(Ỹ )))

and Dπ(Drg(X̃)) = X, Dπ(Drg(Ỹ )) = Y . This shows that Ω(X,Y ) := [(p,Ω(X̃, Ỹ ))] is
well–defined as an element of Em.

2.5 Global gauge transformations
Definition. An automorphism (or global gauge transformation) of P is a diffeomorphism
φ : P → P such that π ◦ φ = π ad φ(pg) = φ(p)g for all g ∈ G.

Every such φ has an inverse φ−1 which is a diffeomorphism. Moreover, π ◦ φ−1 = π
and φ−1(pg) = φ−1(p)g for all g ∈ G. So the automorphisms of P form a group.

Definition. The group of automorphisms of P is called the gauge group G of P .

Proposition. G is the space of sections of the bundle F → M with fiber G associated
to P by the conjugation action of G on itself.

Proof. F is defined by F = P × G/ ' where (p, h) ' (pg, g−1hg) for all g ∈ G. Let
φ ∈ G . Then φ(p) = pu(p) for some smooth u : P → G. The definition of automorphisms
gives

(pg)u(pg) = pu(p)g ⇒ gu(pg) = u(p)g ⇒ u(pg) = g−1u(p)g

Define a section s : M → F by s(m) = [(p, u(p))] for any p ∈ π−1(m). Since

(p, u(p)) ' (pg, g−1u(p)g) = (pg, u(pg)),

s is well–defined and so it is a smooth section of F .
Conversely, suppose s : M → F is a smooth section of F . Define u : P → G by p 7→ g

if [(p, g)] = s(π(p)). Then φ(p) = pu(p) is a gauge transformation of P .

The gauge group G acts on connections. If ω is a connection 1–from defining a
connection H on P , then φ∗ω is also a connection 1–form defining the pulled–back
connection:

(φ∗H)p = (Dpφ)−1Hφ(p)
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For every H we can think of its curvature Ω as a section of Λ2T ∗M ⊗ E, equivalently
a 2–form on M with values in E, where E = P ×Ad g. The action of G on P by
automorphisms induces an action on E:

G × E → E, (φ, [p,A]) 7→ [φ(p), A)]

If [q,B] = [p,A], then there exists g ∈ G such that q = pg and B = Adg−1(A), so

[φ(q), B] = [φ(pg), B] = [φ(p),Adg(B)] = [φ(p), A].

This shows that the action of G on E is well–defined. φ maps φ∗H to H and so it maps
the curvature Ω̃ of φ∗H to the curvature Ω of H, i.e.

φ(Ω̃(X,Y )) = Ω(X,Y ) ∀X,Y ∈ TmM

Choosep ∈ π−1(m) and write Ω̃(X,Y ) = [p,A] for some A ∈ g. Then

φΩ̃(X,Y ) = [φ(p), A] = [pu(p), A] = [p,Adu(p)(A)]

So if A ∈ g represents the curvature of φ∗H, then Adu(A) represents the curvature of
H itself. If φ(p) = pu(p), then the curvature Ω̃ of φ∗H is Ω̃ = Adu−1 Ω where Ω is the
curvature of H. (The same formula holds for the curvature as a 2–form).

Corollary. If φ ∈ G and H is a connection on P , then φ∗H is flat if and only if H is
flat.

Definition. Two connections H1, H2 on P are called gauge equivalent if there is a φ ∈ G
with φ∗H1 = H2.

The corollary says that if H1, H2 are gauge equivalent, then H1 is flat if and only if
H2 is flat.

Let 〈−,−〉 be a Riemannian metric on M . If M is oriented, then 〈−,−〉 induces a
volume form dvol on M characterized by

dvol(e1, . . . , en) = 1

if e1, . . . , en is a positively oriented orthonormal basis for (TmM, 〈−,−〉). Assume that g
is equipped with an Ad–invariant, positive definite scalar product. 〈−,−〉 together with
the Ad–invariant scalar product in g induces a smooth fiber–wise metric on Λ2T ∗M⊗E.

Definition. If H is a connection on P →M with curvature Ω, where M is an oriented
compact manifold, we define the Yang–Mills–functional

YM(H) :=
∫
M
‖Ω‖2 dvol

Lemma. YM(φ∗H) = YM(H), i.e. YM is G –invariant.

Proof. Let Ω̃ be the curvature of φ∗H. Since the scalar product on the fiber of E is
Ad–invariant, we have

‖Ω̃‖2 = ‖Ω‖2
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Remark. We have YM(H) ≥ 0 with equality if and only if H is flat.

Theorem. There is a 1:1 correspondence between the flat connections on all possible
principal G–bundles P → M up to gauge equivalence and the set Hom(π1(M), G)/G
where G acts on homomorphisms by conjugation.

Lemma. Let P π−→ M be a principal G–bundle and H a connection on P . If H is flat,
then Pc (with respect to H) depends only on the homotopy class of c.

Proof. If H is flat, then by the Ambrose–Singer theorem, Hol0 is trivial, so Pc is the
identity if c is a closed loop which is null–homotopic through closed loops.
Let c1, c2 be paths from m1 to m2. Then c1 travelled backwards followed by c2 is a

closed loop based at m2. Parallel transport along this loop maps Pc1(p) to Pc2(p) for all
p ∈ π−1(m2). If c1 and c2 are homotopic with fixed endpoints, then this loop at m2 is
null–homotopic as a loop. Since H is flat, this implies Pc1(p) = Pc2(p).

If H is a flat connection on P π−→M and p0 ∈ π−1(m0), define the holonomy represen-
tation

hol : πi(M,m0)→ G, [γ] 7→ g(γ)−1

where Pγ(p0) = p0g(γ). This is well–defined by the lemma and is a group homomorphism
g(γ)g(γ′) = g(γ′γ) since

p0g(γ)−1g(γ′)−1 = Pγ′(Pγ(p0)) = Pγγ′(p0) = p0g(γγ′)−1.

Suppose we use p1 ∈ π−1(m0) instead of p0 to define hol. Then we get g1 defined by
Pγ(p1) = p1g1(γ). There exists a unique h ∈ G such that p1 = p0h, so

p0g(γ)h = Pγ(p0)h = Pγ(p0h) = p0hg1(γ).

This implies g1(γ)−1 = h−1g(γ)−1h, so the conjugacy class of hol is independent of the
choice of basepoint p0 ∈ π−1(m0).

Lemma. If H1, H2 are gauge equivalent flat connections on P π−→M , then their holon-
omy representations are conjugate.

Proof. Let φ : P → P be a gauge transformation with Dφ(H1) = H2. Pick a basepoint
p1 ∈ π−1(m0) to define hol1, the holonomy representation of H1. To define hol2, the
holonomy representation of H2, use the basepoint p2 = φ(p1). Then hol1([γ]) = g1(γ)−1

and hol2([γ]) = g2(γ)−1 where g1 and g2 are defined by P 1
γ (p1) = p1γ1(γ) and P 2

γ =
p2γ2(γ) where P 1 is the parallel transport with respect to H1 and P 2 is the parallel
transport with respect to H2. We have

p2g2(γ) = P 2
γ (p2) = φ(p1g1(γ)) = φ(p1)g1(γ) = p2g1(γ)

so g1(γ) = g2(γ), meaning that hol1 = hol2 if we use p1 respectively p2 = φ(p1) as
basepoints for the definition of hol.
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Let ρ : π1(M,m0)→ G be a representation. Consider the universal covering M̃ →M .
Definie P : M̃ ×ρ G = M̃ ×G/ ' where

(x, g) ' (γx, ρ(γ)g) ∀γ ∈ π1(M,m0)

P is the quotient of M̃ ×G by the action of π1(M,m0) given by

π1(M,m0)× M̃ ×G→ M̃ ×G (γ, x, g) 7→ (γx, ρ(γ)g)

The equivalence class of (x, g) is denoted by [x, g]. Define π : P →M, [x, g] 7→ [x] where
M̃ →M,x 7→ [x] comes from the covering. This is well–defined and smooth. G acts on
P on the right as follows:

P ×G→ P, ([x, h], g) 7→ [x, hg] =: [x, h]g

For any γ ∈ π1(M,m0), we have [x, h] = [γx, ρ(γ)h]. Since also

[γx, ρ(γ)h]g = [γx, ρ(γ)hg] = [x, hg]

this right G–action on P is well–defined.
The P constructed in this way from ρ is a principal G–bundle over M . M̃ × G has

a natural connection whose horizontal subspaces are tangent spaces to M̃ × {g}. This
distribution is tautologically integrable, so the connection is flat. π1(M,m0) acts on
M̃ × G preserving the flat product connection, which therefore descends to P as a flat
connection.
Suppose ρ is defined by ρ(γ) = αρ(γ)α−1 for all γ and some fixed α ∈ G. Then ρ

gives rise to a principal G–bundle P with a flat connection H.

Lemma. There is an isomorphism of principal bundles φ : P → P with Dφ(H) = H.

Proof. We have P = M̃ ×G/ ' with

(x, g) ' (γx, ρ(γ)g) = (γx, αρ(γ)α−1g) ∀γ ∈ π1(M,m0)

Now define
φ : P → P [x, g]ρ 7→ [x, α−1g]ρ

This φ is well–defined since [x, g]ρ = [γx, αρ(γ)α−1g]ρ is mapped to [x, α−1g]ρ = [γx, ρ(γ)α−1g]ρ.
φ is also smooth. We have πP ◦ φ = πP and

φ([x, g]ρh) = φ([x, gh]ρ) = [x, α−1gh]ρ = [x, α−1g]ρh = φ([x, g]ρ)h.

This shows that φ is an automorphism of principal G–bundles. φ preserves the local
product structures in which H, H are given by the tangent spaces to the first factor in
U ×G, U ⊂M open. So Dφ(H) = H.
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For the theorem, it remains to prove that the composition of these two maps. in both
directions is the identity. Start with a representation ρ : π1(M,m0) → G and consider
the corresponding principal G–bundle P and the flat connection H on P . Choose a
basepoint x0 ∈ M with [x0] = m0. Let γ be a loop in M based at m0 Then γ has a
unique lift γ̃ to M with starting point x0 and endpoint [γ]x0.
Define γ(t) := [γ̃(t), e], where e ∈ G is the neutral element. If π : P → M is the

projection, then
π(γ) = π([γ̃(t), e]) = [γ̃(t)] = γ(t)

so γ is a lift of γ fromM to P . The starting point of γ is [x0, e]. This lift is horizontal for
the flat connection H because the curve (γ̃(t), e) in M̃ × G has tangent vector tangent
to the first factors.
We use p0 = [x0, e] as a basepoint in P to define hol.

hol : π1(M,m0)→ G, [γ] 7→ g(γ)−1

where Pγ(p0) = p0g(γ). Since γ is the unique horizontal lift of γ,

p0g(γ) = Pγ(p0) = γ(1) = [γ̃(1), e] = [[γ]x0, e] = [x0, ρ([γ])−1] = [x0, e]ρ([γ])−1 = p0g(γ)−1

so hol = ρ.
Finally, start with a flat connection H on some principal G–bundle P π−→ M . Fix

p0 ∈ π−1(m0) and define hol : π1(M,m0) → G using the basepoint p0. Define P by
M̃ × G/ ' where (x, g) ' (γx,hol(γ)g) for all γ ∈ π1(M,m0). P has an obvious flat
connection H. We need to find an isomorphism φ : P → P with Dφ(H) = H.
Let H(p) be the holonomy bundle of p ∈ P . So H(p) = M̃/Γ where Γ ⊂ π1(M,m0) is

a subgroup. In fact, Γ = ker(hol). Define

φ : H(p)→ P , [x] 7→ [x, e]

If γ ∈ Γ, then [x] = [γx]. Since

[γx, e] = [x, hol(γ)−1] = [x, e],

φ is well–defined and smooth. If q ∈ P r H(p), there exists g such that qg ∈ H(p).
Define φ(q) := φ(qg)g−1. We will leave out the check that this is well–defined. This φ
defined on all of P is then an isomorphism P → P mapping H to H.

Proposition. Let ϕ be a g–valued 1–form on P satisfying r∗gϕ = Adg−1 ϕ and ϕ(X) = 0
if X is vertical. Then

Dϕ(X,Y ) = dϕ(X,Y ) + [ω(X), ϕ(Y )] + [ϕ(X), ω(Y )] ∀X,Y ∈ TP

Proof. Both sides of the equation are bilinear and skew–symmetric. It suffices to check
the three cases that X,Y are both horizontal, both vertical or one horizontal and the
other vertical.

If both X and Y are horizontal, ω(X) = 0 = ω(Y ) and Dϕ(X,Y ) = dϕ(X,Y ) by the
definition of the covariant deriviative.

39



If X and Y are vertical, ϕ(X) = 0 = ϕ(Y ) and Dϕ(X,Y ) = 0 since H X = 0 = H Y .
Extend X,Y to fundamental vector fields A∗p = X, B∗p = Y , then

dϕ(A∗, B∗) = LA∗(ϕ(B∗))− LB∗(ϕ(A∗))− ϕ([A∗, B∗]) = 0

since [A∗, B∗] is vertical and ϕ vanishes on fundamental vector fields, so dϕ(X,Y ) =
(dϕ(A∗, B∗))(p) = 0.
Given X ∈ Vp and Y ∈ Hp we choose extensions to vector fields on P as follows: X is

extended by A∗ with A ∈ g, such that A∗p = X. Y is extended to a G–invariant horizontal
vector field Ỹ on P . This is possible since: Dpπ : Hp → Tπ(p)M is an isomorphism. We
extend Dpπ(Y ) to a vector field on M with support in a neighbourhood of π(p) over
which P is trivial. Choosing a section s : U → P , U containing the support of the vector
field in M , we can an isomorphism Dπ : Hs(U) → TU . We lift the vector field on M
under this isomorphism and use the G–action to extend it to a G–invariant horizontal
vector field on P extending the original Y .
Now X is vertical, so ϕ(X) = 0 and Dϕ(X,Y ) = 0 since H X = 0. To check the

claim in this case, we have to prove dϕ(X,Y ) = −[ω(X), ϕ(Y )].

Let ω0 be a connection 1–form on P and ω is a 1–form on P with values in g satisfying
r∗gω = Adg−1 ω and ω|V = 0. Let ωt = ω0 + tω with t ∈ R. This is a smoothly varying
familiy of connection 1–forms defining Ht = kerωt. Let Ωt be the curvature of Ht. Then

Ω = dωt + [ωt, ωt] = dω0 + tdω + [ω0 + tω, ω0 + tω] =
= dω0 + [ω0, ω0] + t(dω + [ω0, ω] + [ω, ω0]) + t2[ω, ω] =
= Ω0 + tD0 ω + t2[ω, ω]

where D0 is the derivative with respect to ω0 or H0.

d
dtΩt

∣∣∣
t=0

= D0ω

With the Yang–Mills–functional

YM : Conn(P )→ R, H 7→
∫
M
‖Ω‖2 dvol

where we think of Ω as a section of Λ2T ∗M⊗ (P ×Ad g) and choose a Riemannian metric
on M and an Ad–invariant scalar product on g, we have

d
dtYM(Ht)

∣∣∣
t=0

= d
dt

∫
M
〈Ωt,Ωt〉 dvol

= d
dt

∫
M
〈Ω0 + tD0ω + t2[ω, ω],Ω0 + tD0ω + t2[ω, ω]〉 dvol

= 2
∫
M
〈Ω0, D0ω〉dvol = 2

∫
M
〈D∗0Ω0, ω〉dvol

Proposition. H0 = kerω0 is a critical point of YM if and only if D∗0Ω0 = 0.

Remark. We always have D0Ω0 = 0 by the Bianchi identity.
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2.6 Principal S1–bundles
We consider principal S1–bundles over M . g–valued forms on P or M are ordinary
forms. Because G is Abelian, Ad: G → Aut(g) sends G to idg. A connection 1–form ω

on a principal S1–bundle P π−→M is an ordinary S1–invariant 1–form on P , since

r∗gω = Adg−1 ω = ω.

The curvature Ω is an S1–invariant ordinary 2–form on P which vanishes on vertical
vectors. We can think of Ω as an ordinary 2–form on M . By the structure equation

Dω = Ω = dω + [ω, ω] = dω

on P since G is Abelian. On M , Ω is closed but not neccessarily exact, because ω is
not defined on M , only on P . In this case D = d. The Yang–Mills–equation D∗0Ω0 = 0
becomes d∗Ω0 = 0. Since Ω0 is closed, H0 is a Yang–Mills–connection if and only if
Ω0 is a harmonic 2–form. Let ω0, ω1 be 2 different connection 1–forms on a principal
S1–bundle P →M and ω := ω1 − ω0. Then

Ω1 = dω1 = d(ω0 + ω) = dω0 + dω = Ω1 + dω

with ω defined onM . So [Ω] ∈ H2
dR(M) is independent of the connection whose curvature

we take.

Definition. [Ω] ∈ H2
dR(M) is the Euler class of P → M (or first Chern class if G =

U(1)).

Given a principal S1–bundle P π−→ M , let C(P ) ∈ H2
dR(M) be its Euler class and CP

the space of closed 2–forms on M whose cohomology class is C(P ).

Lemma. Every α ∈ CP is the curvature of some connection on P .

Proof. Choose some connection ω0 on P with curvature Ω0. Then Ω0 − α is exact and
we can write α = Ω0 + dω for some 1–form ω on M . Then ω0 + π∗ω is a connection
1–form with curvature α.

Let A be the affine space of connections on P and define the map

c : A → CP , kerω = H 7→ Ω.

Then by the above lemma, c is surjective.

Lemma. For every Ω ∈ CP , the preimage c−1(Ω) can be identified with C1, the space of
closed forms on M .

Proof. Let H0 = kerω0 ∈ c−1(Ω). Every other connection 1–form ω1 on P is defined by
ω1 = ω0 + π∗ω for some 1–form ω on M . The curvature Ω1 of H1 = kerω1 is

Ω1 = dω1 = dω0 + dπ∗ω = Ω + π∗dω

so H1 ∈ c−1(Ω) if and only if π∗dω = 0, which is equivalent to dω = 0, i.e. ω ∈ C1.
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The gauge group G is, since S1 is Abelian,

G = Aut(P ) = {u : P → S1 | u(pg) = g−1u(p)g} = {u : P → S1 | u(pg) = u(p)}
= {u : M → S1}.

G acts on A by

φ∗ω0 = Adu−1 ω0 + u∗θ = ω0 + u∗θ = ω0 + π∗(u∗θ).

The curvature of φ∗ω0 is

dφ∗ω0 = dω0 + dπ∗(u∗θ) = dω0 + π∗u∗dθ = dω0.

The map c : A → CP descends to

A/G c−−−−→ CP

which is again surjective and C1 surjects onto c−1(Ω).
Let GH0 = G kerω0 ∈ c−1(Ω). Then every other gauge equivalence class in c−1(Ω) is

represented by ω0 +π∗ω for some closed ω. What is the condition on ω and ω′ to ensure
that ω0 + π∗ω and ω0 + π∗ω′ are gauge equivalent?

ω0 + π∗ω′ = φ∗(ω0 + π∗ω) = ω0 + π∗ω + π∗(u∗θ)⇐⇒ ω′ = ω + u∗θ

The map exp: R → S1, t 7→ e2πit is a universal cover of S1. We lift u : M → S1 to
ũ : M → R such that

R

e2πit
��

M

ũ

>>

u // S1

commutes. So u∗θ = ũ∗ exp∗ θ = ũ∗(dt) = dũ, i.e. if u = exp ◦ ũ, then u∗θ = dũ.
Conversely, for every exact 1–form α on M , we can choose a ũ ∈ C∞(M) such that
α = dũ and consider exp ◦ ũ = u as a gauge transformation of P . So C1/E1 = H1

dR(M)
surjects onto c−1(Ω).

[M,S1]→ H1(M,Z), [u] 7→ [u∗θ] = u∗[θ]

Lemma. For any Ω ∈ CP , the preimage c−1(Ω) ∈ A/G can be parametrized by the
quotient

H1(M,R)/H1(M,Z),

i.e. the sequence C1 → A→ CP induces

H1(M,R)/H1(M,Z) −→ A/G −→ CP .
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A connection H0 = kerω0 is a critical point of the Yang–Mills–functional if and only
if d∗Ω0 = 0. We know that dΩ0 = 0. If M is compact without boundary, the pair of
equations

dΩ0 = 0 d∗Ω0 = 0
Is equivalent to ∆Ω0 = 0, where ∆ = dd∗ + d∗d. By Hodge theory, there is a unique
harmonic 2–form in CP . All Yang–Mills–connections on P map to the unique harmonic
2–form in CP .
The gauge equivalence classes of Yang–Mills–connections on P are parametrized by

H1(M,R)/H1(M,Z). If H1(M,R) = 0, then there is a unique gauge equivalence class
of Yang–Mills–connections on every principal S1–bundle P →M .

2.7 The Yang–Mills–equations
Fix a Lie group G with the property that g as a positive definite scalar product (e.g. G
is compact). We fix once and for all such a 〈−,−〉. Let (M, g) be a compact Riemannian
manifold, oriented without boundary.
If P π−→M is a principal G–bundle, then the space of connections A on P is an affince

space for Ω1(M,E) = Γ(T ∗M ⊗ E) where E = P ×Ad g. We have metrics on T ∗M and
E.
More generally, we can look at k–forms on M with values in E.

Ωk(M,E) = Γ(ΛkT ∗M ⊗ E)

Example. The curvature form of a connection on P is an element of Ω1(M,E).

Elements of Ωk(M,E) correspond to k–forms α on P with the following properties:

(1) α(X1, . . . , Xk) = 0 if one of the X1, . . . , Xk is vertical.

(2) r∗gα = Adg−1 α for all g ∈ G.

We define the following operations on Ωk(M,E):

[−,−] : Ωk(M,E)× Ωl(M,E)→ Ωk+l(M,E), (α⊗ v, β ⊗ w) 7→ (α ∧ β)⊗ [v, w]g

∧ : Ωk(M,E)× Ωl(M,E)→ Ωk+l(M), (α⊗ v, β ⊗ w) 7→ 〈v, w〉α ∧ β
A connection H = kerω on P defines a covariant derivative D on g–valued k–forms

on P by
Dα = dα ◦H .

If α has values in g and satisfies (1) and (2), then so does Dα. Therefore, D can be
thought of as

D : Ωk(M,E)→ Ωk+1(M,E)
D is compatible with the metric and with [−,−] and ∧. That means: Let V → M be
a vector boundle with scalar product 〈−,−〉. A covariant derivative D : Ωk(M,V ) →
Ωk+1(M,V ) is compatible with 〈−,−〉 if

d〈s1, s2〉 = 〈Ds1, s2〉+ 〈s1, Ds2〉.
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For ωk ∈ Ωk(M,E) and ωl ∈ Ωl(M,E), we have

d(ωk ∧ ωl) = Dωk ∧ ωl ± ωk ∧Dωl

Let V be a real vector space with an orientation, and 〈−,−〉 a positive definit scalar
product on V . The volume form dvol ∈ ΛnV ∗ where n = dimV is defined by dvol(e1, . . . , en) =
1 if e1, . . . , en is a positively oriented orthonormal basis of V . The scalar product induces
a scalar product V ∗ by the requirement that the isomorphism V → V ∗, v 7→ 〈v,−〉 should
be isometric. This also gives rise to a scalar product 〈−,−〉 on ΛkV ∗ where vectors of
the form λi1 ∧ · · · ∧ λik with λ1, . . . , λn an orthonormal basis of V ∗ and i1 < · · · < ik
have length 1.
If 〈−,−〉0 and 〈−,−〉1 are two different scalar products on V , such that 〈−,−〉1 =

λ2〈−,−〉0 with λ > 0, then 〈−,−〉1 = λ−2k〈−,−〉0 on ΛkV ∗ and dvol1 = λndvol0.
We define the Hodge operator

? : ΛkV ∗ → Λn−kV ∗

by α ∧ ?β = 〈α, β〉dvol for all α, β ∈ ΛkV ∗. One can check that ?? = (−1)k(n−k).
If again 〈−,−〉1 = λ2〈−,−〉0 on V , then

α ∧ ?1β = 〈α, β〉1 dvol1 = λ−2k〈α, β〉0λn dvol0 = λn−2kα ∧ ?0β

for all α, β ∈ ΛkV ∗, so ?1 = λn−2k?0 on ΛkV ∗.
Let M be an oriented Riemannian manifold. Then the Hodge star

? : Ωk(M)→ Ωn−k(M)

where n = dimM is defined fiberwise as above, i.e.

α ∧ ?β = 〈α, β〉 dvol ? ? = (−1)n(n−k) ∀α, β ∈ Ωk(M)

Let P →M be a principal G–bundle, fix an Ad–invariant positive definit scalar product
on the Lie algebra g and define E := P ×Ad g. We can extend ? to a map Ωk(M,E)→
Ωn−k(M,E) using the same formula with the above defined operation ∧ : Ωk(M,E) ×
Ωn−k(M,E)→ Ωn(M).

Lemma. Let M be a compact oriented Riemannian manifold without boundary. On
Ωk(M,E), k ≥ 1, we have D∗ = (−1)nk−n+1 ? D?, where D is the covariant derivative
defined b a connection on P .

Proof. Let α ∈ Ωk−1(M,E) and β ∈ Ωk(M,E). Then by Stokes’ theorem,

0 =
∫
M

d(α ∧ ?β) =
∫
M
Dα ∧ ?β + (−1)k−1

∫
M
α ∧D ? β

=
∫
M
〈Dα, β〉 dvol + (−1)k−1

∫
M
〈α, ?−1D ? β〉dvol

So we have, for β ∈ Ωk(M,E):

D∗β = −(−1)k−1(−1)(k−1)(n−k+1) ? D ? β = (−1)nk+n+1 ? D ? β

44



Now for ωt = ω0 + tω with t ∈ R and ω ∈ Ω1(M,E), if ω0 is a critical point of the
Yang–Mills–functional, we have

0 = d
dtYM(ωt)

∣∣∣
t=0

= 2
∫
M
〈Ω0, D0ω〉 dvol = (−1)n+12

∫
M
〈?D0 ? Ω0, ω〉dvol.

So
D0 ? Ω0 = 0

which is the Yang–Mills–equation for ω0. The Yang–Mills–equation is a second order
differential equation.
Assume n = dimM = 4. Then ?Ω0 is a 2–form just like Ω0 itself. By the Bianchi

identity, D0Ω0 = 0. We want to know when Ω0 = ?Ω0 holds. In the case n = 4, k = 2, ?
is an endomorphism of the 6–dimensional vector space Λ2V . It has eigenvalues ±1 and
this splits Λ2V :

Λ2V = Λ2
+V ⊕ Λ2

−V

where ? acts as ± on Λ2
±V . Λ2

+V is called the self–dual (SD) and Λ2
−V the anti–self–dual

(ASD) part of Λ2V .
If α1, . . . , α4 is an orthonormal basis for V ∗, then we have a basis for Λ2

± given by

α1 ∧ α2 ± α3 ∧ α4

α1 ∧ α3 ± α4 ∧ α2

α1 ∧ α4 ± α2 ∧ α3

If ω ∈ Λ2
+V and η ∈ Λ2

−V , then

ω ∧ η = ?ω ∧ η = η ∧ ?ω = 〈η, ω〉 dvol = 0

Λ2
±V are orthogonal for 〈−,−〉 and for ∧. If a connection ω0 has self–dual or anti–self–

dual curvature, then ?Ω0 = ±Ω0 and D0 ? Ω0 = 0 because of the Bianchi identity.
The equation ?Ω0 = ±Ω0 is the (anti–)self–duality equation for ω0. It implies the

Yang–Mills equation.

Lemma. On a 4–manifoldM , the Yang–Mills–equation and the (anti–)self–duality equa-
tion are conformally invariant.

Proof. Two metrics 〈−,−〉1 and 〈−,−〉0 on M are conformally invariant if 〈−,−〉1 =
λ2〈−,−〉0 for some λ 6= 0, λ ∈ C∞(M).
We calculated that on k–forms, ?1 = λn−2k?0, so in our case ?1 = ?0 for 2–forms

and so the (A)SD equations for 2–forms with respect to the two metrics agree. The
Yang–Mills equation is D0 ? Ω0 = 0. Since the metric enters only in ?, this is the same
for both metrics.
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