Vorlesung aus dem Sommersemester 2011

Geometrie und Topologie von Flächen

Priv.-Doz. Dr. Hartmut Weiß

geTEXt von Viktor Kleen & Florian Stecker

Inhaltsverzeichnis

1	Kurven		
	1.1	Kurven in \mathbb{R}^n	2
	1.2	Ebene Kurven	3
	1.3	Raumkurven	9
2	Lok	ale Flächentheorie	11
	2.1	Untermannigfaltigkeiten in \mathbb{R}^n	11
	2.2	Flächen	13
	2.3	Erste und zweite Fundamentalform	15
	2.4	Krümmung	20
	2.5	Integration und Flächeninhalt	22
	2.6	Spezielle Klassen von Flächen	24
		2.6.1 Minimalflächen	24
3	Inne	ere Geometrie von Flächen	26
	3.1	Isometrien	26
	3.2	Vektorfelder und kovariante Ableitung	26
	3.3	Krümmungstensor & Theorema Egregium	
	3.4	Parallelverschiebung & Geodätische	
	3.5	Der Satz von Gauß-Bonnet	37

1 Kurven

1.1 Kurven in \mathbb{R}^n

Definition. Sei $I \subseteq \mathbb{R}$ ein Intervall. Eine stetige Abbildung $\gamma = (\gamma_1, \dots, \gamma_n) \colon I \to \mathbb{R}^n$ heißt (parametrisierte) Kurve. Das Bild im $\gamma \subseteq \mathbb{R}^n$ heißt Spur der Kurve. Ist I = [a, b] kompakt, so heißt γ rektifizierbar, falls

$$L(\gamma) := \sup_{a=t_0 < \dots < t_N = b} \sum_{i=1}^N d_2(\gamma(t_i), \gamma(t_{i-1})) < \infty.$$

 $L(\gamma)$ heißt die Länge von γ .

Definition. Sei (X, d) ein metrischer Raum. Ein $\phi: X \to X$ heißt *Isometrie* von X, falls $d(\phi(x), \phi(y)) = d(x, y)$ für alle $x, y \in X$ gilt. Eine Isometrie von (\mathbb{R}^n, d_2) heißt auch *Bewegung*.

Bemerkung. Jede Bewegung ist von der Form $\phi(x) = Ax + b$ für $A \in O(n)$ und $b \in \mathbb{R}^n$. Bemerkung. Ist $\gamma \colon [a,b] \to \mathbb{R}^n$ eine Kurve und ϕ eine Bewegung, so gilt $L(\phi \circ \gamma) = L(\gamma)$. Insbesondere ist $\phi \circ \gamma$ rektifizierbar, wenn γ rektifizierbar ist.

Definition. Eine Kurve $\gamma \colon I \to \mathbb{R}^n$ heißt

- (stetig) differenzierbar, wenn $\gamma_i \colon I \to \mathbb{R}$ für $i = 1, \dots, n$ (stetig) differenzierbar ist.
- Lipschitz oder Lipschitz-stetig, wenn ein L > 0 existiert mit $d_2(\gamma(t), \gamma(s)) \le L|t-s|$ für $t, s \in I$. Solch ein L heißt Lipschitz-Konstante.
- regulär, wenn γ differenzierbar und $\gamma'(t) = (\gamma'_1(t), \dots, \gamma'_n(t)) \neq 0$ ist.
- \mathscr{C}^k -Kurve, wenn γ k-mal stetig differenzierbar ist.
- \mathscr{C}^{∞} -Kurve, wenn γ beliebig oft differenzierbar ist.

Bemerkung. Ist $\gamma \colon [a,b] \to \mathbb{R}^n$ Lipschitz-stetig, so ist γ rektifizierbar mit $L(\gamma) \le L \cdot (b-a)$ für jede Lipschitz-Konstante L.

Bemerkung. Ist $\gamma \colon [a,b] \to \mathbb{R}^n$ eine \mathscr{C}^1 -Kurve, so ist γ rektifizierbar mit

$$L(\gamma) = \int_a^b \|\gamma'(t)\|_2 dt.$$

Definition. Ist $\gamma \colon I \to \mathbb{R}^n$ eine Kurve und $\varphi \colon J \to I$ ein Homöomorphismus, so ist $\gamma \circ \varphi \colon J \to \mathbb{R}^n$ eine Kurve und $\operatorname{im}(\gamma \circ \varphi) = \operatorname{im} \gamma$. φ heißt Parametertransformation. φ heißt orientierungserhaltend, wenn φ monoton wachsend, und orientierungsumkehrend, wenn φ monoton fallend ist.

Bemerkung. Ist $\gamma \colon [a,b] \to \mathbb{R}^n$ rektifizierbar, so ist auch $\gamma \circ \varphi$ für jede Parametertransformation φ rektifizierbar mit $L(\gamma \circ \varphi) = L(\gamma)$.

Definition. Eine Kurve $\gamma \colon I \to \mathbb{R}^n$ heißt nach Bogenlänge parametrisiert, falls $\gamma | [a, b]$ für jedes $[a, b] \subseteq I$ rektifizierbar mit $L(\gamma | [a, b]) = b - a$ ist.

Bemerkung. Ist $\gamma\colon [a,b]\to \mathbb{R}^n$ eine reguläre \mathscr{C}^1 -Kurve, so existiert eine Parametrisierung nach Bogenlänge: Setze

$$\psi(t) = L(\gamma|[a, t]) = \int_a^t \underbrace{\|\gamma'(s)\|_2}_{>0} ds.$$

Dann ist $\psi'(t) = \|\gamma'(t)\|_2 > 0$, also ψ streng monoton wachsend mit $\psi(a) = 0$ und $\psi(L) = L(\gamma)$. Also ist $\varphi := \psi^{-1} : [0, L(\gamma)] \to [a, b]$ eine orientierungserhaltende Parametertransformation. Es gilt

$$(\gamma \circ \varphi)'(\tau) = \gamma'(\varphi(\tau))\varphi'(\tau) = \frac{\gamma'(\varphi(\tau))}{\psi'(\varphi(\tau))} = \frac{\gamma'(\varphi(\tau))}{\|\gamma'(\varphi(\tau))\|_2},$$

also folgt

$$L((\gamma \circ \varphi)|[\tau_0, \tau_1]) = \int_{\tau_0}^{\tau_1} \|(\gamma \circ \varphi)'(\tau)\|_2 d\tau = \tau_1 - \tau_0$$

für alle $[\tau_0, \tau_1] \subseteq [a, b]$. Insbesondere gilt: Ist $\gamma \colon [a, b] \to \mathbb{R}^n$ eine nach Bogenlänge parametrisierte \mathscr{C}^1 -Kurve, so ist $\|\gamma'(t)\|_2 = 1$ für alle $t \in [a, b]$.

Definition. Eine nichtkonstante Kurve $\gamma \colon \mathbb{R} \to \mathbb{R}^n$ heißt periodisch, falls ein T > 0 existiert mit $\gamma(t+T) = \gamma(t)$ für alle $t \in \mathbb{R}$. Die kleinste solche Zahl heißt Periode von γ . Eine periodische Kurve heißt auch geschlossen. Ist γ periodisch mit Periode T > 0 und $\gamma[0,T)$ injektiv, so heißt γ einfach geschlossen.

1.2 Ebene Kurven

Eine Kurve $\gamma\colon I\to\mathbb{R}^2$ heißt ebene Kurve. Ab jetzt sei γ eine reguläre \mathscr{C}^2 -Kurve. $v(t):=\gamma'(t)=\left(\gamma_1'(t),\gamma_2'(t)\right)\in\mathbb{R}^2\smallsetminus\{0\}$ heißt Geschwindigkeitsvektor, n(t):=Jv(t) mit $J=\begin{pmatrix} 0&-1\\1&0\end{pmatrix}\in SO(2)$ heißt Normalenvektor. Ist γ nach Bogenlänge parametrisiert, so gilt $\|v(t)\|_2=\|n(t)\|_2=1$. Weiterhin gilt in diesem Fall

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \langle \gamma'(t), \gamma'(t) \rangle = 2 \langle \gamma''(t), \gamma'(t) \rangle.$$

Also ist $\gamma''(t) \perp \gamma'(t)$ für alle $t \in I$ und es existiert genau ein $\kappa(t) \in \mathbb{R}$ mit $\gamma''(t) = \kappa(t)n(t)$.

Definition. Sei $\gamma \colon I \to \mathbb{R}^2$ eine nach Bogenlänge parametrisierte (also auch reguläre) \mathscr{C}^2 -Kurve. Die oben definierte Zahl $\kappa(t) \in \mathbb{R}$ heißt $Kr\ddot{u}mmung\ von\ \gamma\ in\ t \in I$. Die Funktion $\kappa \colon I \to \mathbb{R}, t \mapsto \kappa(t)$ heißt $Kr\ddot{u}mmung\ von\ \gamma$.

Beispiel. Sei $\gamma \colon [a,b] \to \mathbb{R}^2, t \mapsto \gamma_0 + tv_0$ mit $\gamma_0, v_0 \in \mathbb{R}^2$ und $\|v_0\|_2 = 1$. Dann gilt $\gamma'(t) = v_0$ und $\gamma''(t) = 0$ für $t \in [a,b]$ und wegen $\|v_0\|_2 = 1$ ist γ nach Bogenlänge parametrisiert. Also gilt $\kappa = 0$.

Beispiel. Sei $\gamma \colon \mathbb{R} \to \mathbb{R}^2, t \mapsto R\left(\cos\frac{t}{R}, \sin\frac{t}{R}\right)$ die Kreislinie mit Radius R > 0, also periodisch mit Periode $2\pi R$. Dann gilt $\gamma'(t) = \left(-\sin\frac{t}{R}, \cos\frac{t}{R}\right)$, also $\|\gamma'(t)\|_2 = 1$ und γ ist nach Bogenlänge parametrisiert. Weiter gilt $\gamma''(t) = \frac{1}{R}\left(-\cos\frac{t}{R}, -\sin\frac{t}{R}\right)$ und $n(t) = \left(-\cos\frac{t}{R}, -\sin\frac{t}{R}\right)$. Also ist $\gamma''(t) = \frac{1}{R}n(t)$ für alle $t \in \mathbb{R}$, also $\kappa = \frac{1}{R}$.

Definition. Sei $\gamma: I \to \mathbb{R}^2$ eine nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve. Dann heißt $(e_1(t), e_2(t)) := (v(t), n(t)), t \in I$, begleitendes 2-Bein.

Bemerkung. $(e_1(t), e_2(t))$ ist eine positiv orientierte Orthonormalbasis von \mathbb{R}^2 für alle $t \in I$.

Satz (Frenet-Gleichungen für n=2). Sei $\gamma: I \to \mathbb{R}^2$ eine nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve. Dann gilt für $t \in I$:

$$\begin{pmatrix} v'(t) \\ n'(t) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(t) \\ -\kappa(t) & 0 \end{pmatrix} \begin{pmatrix} v(t) \\ n(t) \end{pmatrix}$$

Beweis. Die erste Gleichung ist gerade die Definition der Krümmung. Wegen

$$n'(t) = \frac{\mathrm{d}}{\mathrm{d}t} \left(Jv(t) \right) = Jv'(t) = \kappa(t)Jn(t) = \kappa(t)J^2v(t) = -\kappa(t)v(t)$$

folgt die zweite Gleichung.

Sei $\phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ eine orientierungserhaltende Bewegung, d.h. $\phi(x) = Ax + b$ für $A \in SO(2)$ und $b \in \mathbb{R}^2$. Sei $\gamma \colon I \to \mathbb{R}^2$ eine nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve. Dann ist auch $\tilde{\gamma} = \phi \circ \gamma \colon I \to \mathbb{R}^2$ nach Bogenlänge parametrisiert und die Krümmung $\tilde{\kappa}$ von $\tilde{\gamma}$ ist gleich der Krümmung κ von γ . Kurz gesagt ist die Krümmung einer ebenen Kurve invariant unter orientierungserhaltenden Bewegungen, denn es gilt $\tilde{\gamma}' = (\phi \circ \gamma)' = A\gamma'$, $\tilde{\gamma}'' = A\gamma''$ und $\tilde{n} = J\tilde{v} = JAv = An$, also $\tilde{v}' = Av' = \kappa An = \kappa \tilde{n}$.

Satz (Hauptsatz der lokalen Kurventheorie für n=2). Sei $\kappa\colon I\to\mathbb{R}$ stetig. Dann existiert eine nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve $\gamma\colon I\to\mathbb{R}$ mit Krümmung κ . Diese ist bis auf Komposition mit orientiertungserhaltenden Bewegungen eindeutig bestimmt.

Beweis. Sei $t_0 \in I$ beliebig und setze

$$\Theta(t) = \int_{t_0}^t \kappa(s) \, \mathrm{d}s$$

und für $v_0 \in \mathbb{R}^2$ mit $||v_0||_2 = 1$ sei

$$v(t) = \begin{pmatrix} \cos \Theta(t) & -\sin \Theta(t) \\ \sin \Theta(t) & \cos \Theta(t) \end{pmatrix} v_0.$$

Schließlich sei für $\gamma_0 \in \mathbb{R}^2$

$$\gamma(t) = \gamma_0 + \int_{t_0}^t v(s) \, \mathrm{d}s.$$

Dann ist γ eine nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve mit $\gamma' = v$ und

$$\gamma''(t) = v'(t) = \kappa(t) \underbrace{\begin{pmatrix} -\sin\Theta(t) & -\cos\Theta(t) \\ \cos\Theta(t) & -\sin\Theta(t) \end{pmatrix} v_0}_{Iv(t)} = \kappa(t)n(t)$$

für alle $t \in I$. Also besitzt γ die Krümmung κ . Ist $\tilde{\gamma} : I \to \mathbb{R}^2$ eine weitere nach Bogenlänge parametrisierte Kurve mit Krümmung κ und $\tilde{v}(0) = v_0$, so gilt für $f(t) = \frac{1}{2} ||v(t) - \tilde{v}(t)||^2$:

$$f'(t) = \langle v'(t) - \tilde{v}'(t), v(t) - \tilde{v}(t) \rangle = \kappa(t) \langle J(v(t) - \tilde{v}(t)), v - \tilde{v}(t) \rangle = 0$$

und

$$f(0) = \frac{1}{2} ||v(0) - \tilde{v}(0)||^2 = 0.$$

Also ist f = 0, d.h. $v(t) = \tilde{v}(t)$ für alle $t \in I$, also auch $\gamma(t) = \tilde{\gamma}(t)$ für alle $t \in I$. Da es zu $\gamma_0, \tilde{\gamma}_0 \in \mathbb{R}^2$, bzw. $v_0, \tilde{v}_0 \in \mathbb{R}^2$, $||v_0|| = ||\tilde{v}_0|| = 1$, genau eine orientierungserhaltende Bewegung $\phi(x) = Ax + b$ gibt mit $Av_0 = \tilde{v}_0$ und $\gamma_0 + b = \tilde{\gamma}_0$ folgt die Behauptung. \square

Wir haben im Beweis gesehen: Ist $\gamma \colon I \to \mathbb{R}^2$ eine nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve, so ist für $\Theta_0 \in \mathbb{R}$ mit $v_0 = \binom{\cos \Theta_0}{\sin \Theta_0}$ (Θ_0 ist eindeutig mod $2\pi\mathbb{Z}$) durch

$$\Theta(t) = \Theta_0 + \int_{t_0}^t \kappa(s) \, \mathrm{d}s$$

eine Funktion $\Theta: I \to \mathbb{R}$ gegeben, die mod $2\pi\mathbb{Z}$ den orientierten Winkel zwischen $e_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ und v(t) angibt. Es gilt also für $t \in I$

$$v(t) = \begin{pmatrix} \cos \Theta(t) \\ \sin \Theta(t) \end{pmatrix}.$$

Allgemeiner gilt:

Lemma. Sei $v: I \to S^1 \subseteq \mathbb{R}^2$ stetig. Sei $t_0 \in I$ und $v_0 = v(t_0)$. Dann existiert stetiges $\Theta: I \to \mathbb{R}$ mit $v(t) = \binom{\cos \Theta(t)}{\sin \Theta(t)}$ für alle $t \in I$. Die Funktion Θ ist eindeutig bis auf Addition einer Konstanten aus $2\pi\mathbb{Z}$.

Beweisskizze. Sei $\Theta_0 \in \mathbb{R}$ mit $v_0 = \begin{pmatrix} \cos \Theta_0 \\ \sin \Theta_0 \end{pmatrix}$. Gesucht ist ein stetiges $\Theta \colon I \to \mathbb{R}$ mit

- i) $\Theta(t_0) = \Theta_0$
- ii) $\pi \circ \Theta = v$

wobei $\pi: \mathbb{R} \to S^1, \Theta \to \begin{pmatrix} \cos\Theta \\ \sin\Theta \end{pmatrix}$. Es sei $\pi_k = \pi | I_k \colon I_k \to \pi(I_k) =: J_k \text{ mit } I_k = \begin{pmatrix} \frac{k}{2}\pi, \left(\frac{k}{2}+1\right)\pi \end{pmatrix}$. Dann ist π_k ein Homöomorphismus mit Umkehrabbildung $s_k \colon J_k \to I_k$, Weiterhin gilt

$$J_k = \begin{cases} S^1 \cap \{(x,y) \in \mathbb{R}^2 \colon y > 0\} & \text{für } k \equiv 0 \pmod{4} \\ S^1 \cap \{(x,y) \in \mathbb{R}^2 \colon x < 0\} & \text{für } k \equiv 1 \pmod{4} \\ S^1 \cap \{(x,y) \in \mathbb{R}^2 \colon y < 0\} & \text{für } k \equiv 2 \pmod{4} \\ S^1 \cap \{(x,y) \in \mathbb{R}^2 \colon x > 0\} & \text{für } k \equiv 3 \pmod{4} \end{cases}$$

Die I_k (bzw. J_k) überdecken \mathbb{R} (bzw. S^1). Es gibt also ein $k_0 \in \mathbb{Z}$ mit $\Theta_0 \in I_{k_0}$ und $v_0 \in J_{k_0}$. Da v stetig ist, existiert $\delta > 0$ mit $v([t_0 - \delta, t_0 + \delta] \cap I) \subseteq I_{k_0}$. Die Funktion $\Theta[[t_0 - \delta, t_0 + \delta] \cap I]$ ist also eindeutig gegeben durch

$$\Theta[[t_0 - \delta, t_0 + \delta] \cap I := s_{k_0} \circ v | [t_0 - \delta, t_0 + \delta] \cap I.$$

Führe die gleiche Konstruktion für die Randpunkte durch. Man erhält

$$\tilde{I} = \bigcup_{\substack{t_0 \in [a,b] \subseteq I \\ \Theta | [a,b] \text{ definiert}}} [a,b] \subseteq I$$

ist offen, abgeschlossen und nichtleer. Also ist $\tilde{I} = I$.

Definition. Eine Teilmenge $T \subseteq \mathbb{R}^2$ heißt sternförmig bezüglich $x_0 \in T$, falls mit $x \in T$ immer auch die Strecke $[x_0, x] = \{tx_0 + (1 - t)x : t \in [0, 1]\}$ in T liegt.

Lemma. Ist $T \subseteq \mathbb{R}^2$ sternförmig bezüglich $x_0 \in T$ und $v: T \to S^1$ stetig, $v_0 = v(x_0)$, so existiert ein stetiges $\Theta: T \to \mathbb{R}$ mit $v(t) = {\cos \Theta(t) \choose \sin \Theta(t)}$ für $t \in T$. Θ ist eindeutig bis auf Addition einer Konstante in $2\pi\mathbb{Z}$.

Beweis. Wähle $\Theta_0 \in \mathbb{R}$ mit $v_0 = \begin{pmatrix} \cos \Theta_0 \\ \sin \Theta_0 \end{pmatrix}$. Dann ist Θ mit $\Theta(x_0) = \Theta_0$ durch Lemma 1 eindeutig auf allen Strecken $[x_0, x] \subseteq T$ festgelegt, insbesondere ist Θ auf allen $x \in T$ festgelegt. Zu zeigen bleibt, dass das so definierte $\Theta \colon T \to \mathbb{R}$ stetig ist. Sei $x \in T$. Dann existiert ein $k \in \mathbb{Z}$ mit $v(x) \in J_k$ und $\Theta(x) \in I_k$. Da v stetig ist, existiert $\delta > 0$ mit $v(B_\delta(x) \cap T) \subseteq J_k$. Dann gilt $\Theta|B_\delta(x) \cap T = s_k \circ v|B_\delta(x) \cap T$. Insbesondere ist Θ stetig in x.

Sei $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ eine geschlossene, reguläre \mathscr{C}^1 -Kurve mit Periode T > 0. Sei $\Theta \colon \mathbb{R} \to \mathbb{R}$ eine Winkelfunktion für den normierten Geschwindigkeitsvektor, d.h.

$$\frac{\gamma'(t)}{\|\gamma'(t)\|} = \begin{pmatrix} \cos \Theta(t) \\ \sin \Theta(t) \end{pmatrix} \quad \text{für alle } t \in \mathbb{R}.$$

Dann gilt

$$\omega(\gamma) := \frac{1}{2\pi} (\Theta(T) - \Theta(0)) \in \mathbb{Z}.$$

 $\omega(\gamma)$ heißt Windungszahl der geschlossenen, regulären \mathscr{C}^1 -Kurve $\gamma \colon \mathbb{R} \to \mathbb{R}^2$. $\omega(\gamma)$ beschreibt die Anzahl der vollen Drehungen von v(t) gegen den Uhrzeigersinn.

Bemerkung. Ist γ eine geschlossene, nach Bogenlänge parametrisierte $\mathscr{C}^2\textsc{-Kurve}$ mit Periode T>0, so gilt

$$\omega(\gamma) = \frac{1}{2\pi} \int_0^T \kappa(t) \, \mathrm{d}t.$$

Bemerkung. Ist γ eine geschlossene, reguläre \mathscr{C}^1 -Kurve mit Periode $T>0,\ t_0\in\mathbb{R}$. Dann ist $\tilde{\gamma}(t)=\gamma(t+t_0)$ wieder eine solche Kurve und es gilt $\omega(\gamma)=\omega(\tilde{\gamma})$, denn eine Winkelfunktion für $\tilde{v}(t)=\frac{\tilde{\gamma}'(t)}{\|\tilde{\gamma}'(t)\|}$ ist gegeben durch $\tilde{\Theta}(t)=\Theta(t+t_0)$.

Bemerkung. Sei γ wie oben und $\tilde{\gamma}(t) = \gamma(-t)$. Dann ist $\omega(\gamma) = -\omega(\tilde{\gamma})$.

Bemerkung. Ist $\varphi \colon \mathbb{R} \to \mathbb{R}$ eine \mathscr{C}^1 -Parameter transformation mit $\varphi(t+T) = \varphi(t) + T$, so gilt für $\tilde{\gamma} = \gamma \circ \varphi$:

$$\omega(\tilde{\gamma}) = \begin{cases} \omega(\gamma) & \text{für orientierungserhaltendes } \varphi \\ -\omega(\gamma) & \text{für orientierungsumkehrendes } \varphi \end{cases}$$

Satz (Umlaufsatz). Ist $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ eine einfach geschlossene, reguläre \mathscr{C}^1 -Kurve, so gilt $\omega(\gamma) \in \{\pm 1\}$.

Beweis. Sei T>0 die Periode von γ . Sei $x_0=\max\{\gamma_1(t)\colon t\in\mathbb{R}\}$ und durch eine orientierungserhaltende Parametertransformation können wir annehmen, dass $\gamma_1(0)=x_0$. Weiter können wir annehmen, dass γ nach Bogenlänge parametrisiert ist und $\gamma'(0)=e_2$ gilt (möglicherweise durch eine orientierungsumkehrende Parametertransformation). Sei G die Gerade, die durch $s\mapsto \gamma(0)+se_1$ parametrisiert wird. Auf dem positiven Halbstrahl liegen keine Punkte von γ (*). Wir setzen

$$X = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le y \le T\}.$$

Dann ist X konvex, also sternförmig. Wir betrachten die stetige Abbildung $v\colon X\to S^1$ mit

$$v(x,y) = \begin{cases} \frac{\gamma(y) - \gamma(x)}{\|\gamma(y) - \gamma(x)\|} & x < y, (x,y) \neq (0,T) \\ \gamma'(t) & x = y = t \\ -\gamma'(0) & (x,y) = (0,T) \end{cases}$$

Wähle eine Winkelfunktion $\Theta \colon X \to \mathbb{R}$ gemäß Lemma 2, d.h. $v(x,y) = \binom{\cos \Theta(x,y)}{\sin \Theta(x,y)}$ für alle $(x,y) \in X$. Insbesondere gilt also $\gamma'(t) = v(t,t) = \binom{\cos \Theta(t,t)}{\sin \Theta(t,t)}$ für $t \in [0,T]$, d.h.

$$\omega(\gamma) = \frac{1}{2\pi} (\Theta(T, T) - \Theta(0, 0)) = \frac{1}{2\pi} (\Theta(T, T) - \Theta(0, T) + \Theta(0, T) - \Theta(0, 0)).$$

Es gilt $\Theta(0,T) - \Theta(0,0) = \pi$ und $\Theta(T,T) - \Theta(0,T) = \pi$, denn sei ohne Einschränkung $\Theta(0,0) = \frac{\pi}{2}$. Wegen (*) liegt e_1 nicht im Bild von $t \mapsto v(0,t)$, d.h. $2\pi\mathbb{Z}$ liegt nicht im Bild von $t \mapsto \Theta(0,t)$. Weiterhin gilt $\Theta(0,T) \in \frac{3\pi}{2} + 2\pi\mathbb{Z}$. Da Θ stetig ist, folgt aus dem Zwischenwertsatz $\Theta(0,T) = \frac{3\pi}{2}$, also $\Theta(0,T) - \Theta(0,0) = \pi$. Wegen $\Theta(T,T) \in \frac{\pi}{2} + 2\pi\mathbb{Z}$ und wegen (*) liegt $-e_1$ nicht im Bild von $t \mapsto v(t,T)$, d.h. $\pi + 2\pi\mathbb{Z}$ liegt nicht im Bild von $t \mapsto \Theta(T,t)$. Also ist $\Theta(T,T) = \frac{5\pi}{2}$, also folgt $\Theta(T,T) - \Theta(0,T) = \pi$. Damit folgt die Behauptung.

Korollar. Ist $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ eine einfach geschlossene, nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve mit Periode T > 0, so gilt

$$\int_0^T \kappa(t) \, \mathrm{d}t \in \{\pm 2\pi\}.$$

Sei $\gamma: I \to \mathbb{R}^2$ eine nach Bogenlänge parametrisierte ebene Kurve und $t_0 \in I$. Ist dann $\kappa(t_0) > 0$, so liegt $\gamma(t)$ für t nahe t_0 links der Tangente an $\gamma(t_0)$, denn nach Taylor gilt

$$\langle \gamma(t) - \gamma(t_0), n(t_0) \rangle = \langle \gamma(t_0) - \gamma(t_0), n(t_0) \rangle + \langle \gamma'(t_0), n(t_0) \rangle (t - t_0) + \frac{1}{2} \langle \gamma''(t_0), n(t_0) \rangle (t - t_0)^2 + o(|t - t_0|^2) = \frac{1}{2} \kappa(t_0) (t - t_0)^2 + o(|t - t_0|^2) > 0$$

für t nahe t_0 . Analog liegt $\gamma(t)$ für $\kappa(t_0) < 0$ für t nahe t_0 rechts der Tangente an $\gamma(t_0)$.

Definition. Eine einfach geschlossene, nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ heißt konvex, falls gilt: $\kappa(t) > 0$ für alle $t \in \mathbb{R}$ oder $\kappa(t) < 0$ für alle $t \in \mathbb{R}$.

Lemma. Sei $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ eine einfach geschlossene, nach Bogenlänge parametrisierte \mathscr{C}^2 -Kurve. Dann gilt:

- 1. Ist $\kappa > 0$, so liegt $\gamma(t)$ links der Tangente an $\gamma(t_0)$ für alle $t_0 \in \mathbb{R}$ und $\gamma(t) \neq \gamma(t_0)$.
- 2. Ist $\kappa < 0$, so liegt $\gamma(t)$ rechts der Tangente an $\gamma(t_0)$ für alle $t_0 \in \mathbb{R}$ und $\gamma(t) \neq \gamma(t_0)$.

Beweis. Sei $\kappa > 0$ und T > 0 die Periode von γ . Angenommen,

$$f(t_1) := \langle \gamma(t_1) - \gamma(t_0), n(t_0) \rangle = 0$$

für $t_1 \in [0, T)$, $t_1 \neq t_0$. Dann existiert $t_- \in [0, T) \setminus \{t_0\}$ mit $f'(t_-) = 0$ und $t_+ \in [0, T) \setminus \{t_0, t_-\}$ mit $f'(t_+) = 0$. Natürlich gilt $f'(t_0) = 0$. Unter den 3 Vektoren $\gamma'(t_-), \gamma'(t_0)$ und $\gamma'(t_+)$ zeigen also mindestens 2 in die gleiche Richtung, d.h. es existieren $t' \neq t'' \in \{t_-, t_0, t_+\}$ mit $\gamma'(t') = \gamma'(t'')$. Es sei ohne Einschränkung 0 = t' < t'' < T. Sei $\Theta(t)$ eine Winkelfunktion für $v(t) = \gamma'(t)$. Wegen $\Theta' = \kappa > 0$ ist Θ streng monoton wachsend, also

$$2\pi\omega(\gamma) = \Theta(T) - \Theta(0) = \Theta(T) - \Theta(t'') + \Theta(t'') - \Theta(0) = 2\pi k + 2\pi l$$

mit $k, l \geq 1$, was unmöglich ist.

Definition. Sei $\gamma: I \to \mathbb{R}^2$ eine nach Bogenlänge parametrisierte \mathscr{C}^3 -Kurve. Ein $t_0 \in I$ heißt Scheitel von γ , falls $\kappa'(t_0) = 0$. Insbesondere sind lokale Extrema von κ Scheitel von γ .

Satz (Vierscheitelsatz). Eine konvexe \mathscr{C}^3 -Kurve $\gamma \colon \mathbb{R} \to \mathbb{R}^2$ hat mindestens 4 Scheitel.

Beweis. Sei ohne Einschränkung $\kappa > 0$ und κ habe ein Minimum in t = 0 und ein Maximum in $t = t_0$, $0 < t_0 < T$, mit der Periode T > 0 von γ . Weiterhin können wir erreichen, dass $\gamma(0) = 0$ und die Strecke von $\gamma(0)$ nach $\gamma(t_0)$ auf der positiven x-Achse liegt. Schreibe $\gamma(t) = (x(t), y(t))$, also x(0) = y(0) = 0 und $(x(t_0), y(t_0)) = (x_0, 0)$ für $x_0 > 0$. Es gilt y(t) < 0 für $0 < t < t_0$, denn $(x_0, 0)$ liegt links der Tangente an $\gamma(0)$, also y'(0) < 0. Also ist y(t) < 0 für kleine t > 0. Wäre y(t) = 0 für ein $0 < t < t_0$, so lägen $\gamma(0)$, $\gamma(t)$ und $\gamma(t_0)$ auf einer Geraden, was ein Widerspruch zur Konvexität von γ ist. Genauso zeigt man y(t) > 0 für $t_0 < t < T$.

Wären 0 und t_0 die einzigen Scheitel, so wäre $\kappa'(t) > 0$ für alle $0 < t < t_0$ und $\kappa'(t) < 0$ für alle 0 < t < T. Also wäre $y(t)\kappa'(t) < 0$ für $t \neq 0, t_0$. Es gilt

$$\int_0^T y(t)\kappa'(t) dt = -\int_0^T y'(t)\kappa(t) dt = \int_0^T x''(t) dt = x'(T) - x'(0) = 0$$

was ein Widerspruch zu $y\kappa' < 0$ fast überall ist. Es muss also ein weiterer Scheitel t_1 existieren, etwa $0 < t_1 < t_0$. Die Annahme, dass t_1 der einzige weitere Scheitel von γ ist, impliziert, dass $\kappa'|_{(0,t_1)\cup(t_1,t_0)} > 0$, also

$$0 = \int_0^T y(t)\kappa'(t) dt = \int_0^{t_0} y(t)\kappa'(t) dt + \int_{t_0}^T y(t)\kappa'(t) dt < 0.$$

Also existiert ein vierter Scheitel auf $(0, t_0)$ oder (t_0, T) .

Beispiel. Die Kreislinie mit Radius R > 0 hat Krümmung $\frac{1}{R}$, also sind alle Parameterwerte Scheitel.

Beispiel. Die Ellipse mit Halbachsen $a \neq b$, a, b > 0:

$$\gamma \colon \mathbb{R} \to \mathbb{R}^2, t \mapsto (a \cos t, b \sin t)$$

hat 4 Scheitel in $[0,2\pi)$: $0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}$.

Beispiel. Ist $\gamma \colon I \to \mathbb{R}^2$ regulär, aber nicht notwendigerweise nach Bogenlänge parametrisiert, und $\varphi \colon J \to I$ eine Parametertransformation, so dass $\tilde{\gamma} = \gamma \circ \varphi$. Dann gilt

$$\tilde{\kappa}(t) = \frac{1}{\|\gamma'(t)\|^3} \det \begin{pmatrix} \gamma_1'(t) & \gamma_1''(t) \\ \gamma_2'(t) & \gamma_2''(t) \end{pmatrix}$$

1.3 Raumkurven

Eine Kurve $\gamma\colon I\to\mathbb{R}^3$ heißt Raumkurve. Sei jetzt im Folgenden γ eine nach Bogenlänge parametrisierte \mathscr{C}^3 -Kurve.

Definition. Die Krümmung $\kappa: I \to \mathbb{R}$ von $\gamma: I \to \mathbb{R}$ sei definiert durch $\kappa(t) = \|\gamma''(t)\|$.

Bemerkung. Wie im ebenen Fall gilt für alle $t \in I$:

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \langle \gamma'(t), \gamma'(t) \rangle = 2 \langle \gamma''(t), \gamma'(t) \rangle$$

Das heißt $\gamma'' \perp \gamma'$.

Definition. $v(t) = \gamma'(t)$ heißt Geschwindigkeitsvektor und im Falle $\kappa(t) > 0$ heißt $n(t) = \frac{\gamma''(t)}{\|\gamma''(t)\|}$ Normalenvektor und $b(t) = v(t) \times n(t)$ Binormalenvektor von γ in $t \in I$.

Definition. Für $t \in I$ heißt $(e_1(t), e_2(t), e_3(t)) = (v(t), n(t), b(t))$ das begleitende Dreibein von γ in t.

Bemerkung. Für $t \in I$ mit $\kappa(t) > 0$ ist $(e_1(t), e_2(t), e_3(t))$ eine positiv orientierte Orthonormalbasis von \mathbb{R}^3 .

Bemerkung. Für $t \in I$ mit $\kappa(t) > 0$ gilt $\langle v'(t), n(t) \rangle = \langle \gamma''(t), n(t) \rangle = \kappa(t)$. Anschaulich misst die Krümmung, wie stark v in Richtung von n abkippt.

Definition. Für $t \in I$ mit $\kappa(t) > 0$ heißt $\tau(t) = \langle n'(t), b(t) \rangle \in \mathbb{R}$ die Torsion von γ in t.

Beispiel. Ist $(\gamma_1, \gamma_2) = \gamma \colon I \to \mathbb{R}^2$ eine ebene, nach Bogenlänge parametrisierte \mathscr{C}^3 -Kurve, so ist durch $\tilde{\gamma} = (\gamma_1, \gamma_2, 0)$ eine Raumkurve definiert. Es gilt $\tilde{v} = \tilde{\gamma}' = (\gamma_1', \gamma_2', 0)$ und $\tilde{\gamma}'' = (\gamma_1'', \gamma_2'', 0)$, also ist $\tilde{n} = (\pm n, 0)$, falls $\tilde{\kappa}(t) > 0$, und $\tilde{\kappa} = |\kappa|$. Weiterhin gilt $\tilde{b}(t) = e_3(t)$ und $\tilde{n}'(t) = (\pm n'(t), 0)$, also $\tilde{\tau}(t) = 0$ für alle $t \in I$ mit $\tilde{\kappa}(t) > 0$.

Beispiel. Die Schraubenlinie ist definiert durch $\gamma \colon \mathbb{R} \to \mathbb{R}^3, t \mapsto \left(\cos\frac{t}{\sqrt{2}}, \sin\frac{t}{\sqrt{2}}, \frac{t}{\sqrt{2}}\right)$. Also ist $\gamma'(t) = \frac{1}{\sqrt{2}} \left(-\sin\frac{t}{\sqrt{2}}, \cos\frac{t}{\sqrt{2}}, 1\right)$ und $\|\gamma'(t)\|^2 = 1$. Also ist γ nach Bogenlänge parametrisiert. Weiter ist $\gamma''(t) = \frac{1}{2} \left(-\cos\frac{t}{\sqrt{2}}, -\sin\frac{t}{\sqrt{2}}, 0\right)$, also $\kappa(t) = \|\gamma''(t)\| = \frac{1}{2}$ und $n(t) = \left(-\cos\frac{t}{\sqrt{2}}, -\sin\frac{t}{\sqrt{2}}, 0\right)$. Weiterhin ist $b(t) = v(t) \times n(t) = \frac{1}{\sqrt{2}} \left(\sin\frac{t}{\sqrt{2}}, -\cos\frac{t}{\sqrt{2}}, 1\right)$, und $n'(t) = \frac{1}{\sqrt{2}} \left(\sin\frac{t}{\sqrt{2}}, -\cos\frac{t}{\sqrt{2}}, 0\right)$, also $\tau(t) = \langle n'(t), b(t) \rangle = \frac{1}{2}$.

Bemerkung. Ist $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$ eine orientierungserhaltende Bewegung und $\gamma \colon I \to \mathbb{R}^3$ eine nach Bogenlänge parametrisierte \mathscr{C}^3 -Kurve, dann gilt für $\tilde{\gamma} = \phi \circ \gamma \colon \tilde{\kappa} = \kappa$ und $\tilde{\tau} = \tau$.

Satz (Frenetgleichungen). Sei $\gamma: I \to \mathbb{R}^3$ eine nach Bogenlänge parametrisierte \mathscr{C}^3 Kurve mit $\kappa(t) > 0$ für alle $t \in I$. Dann gilt für alle $t \in I$:

$$\begin{pmatrix} v'(t) \\ n'(t) \\ b'(t) \end{pmatrix} = \begin{pmatrix} 0 & \kappa(t) & 0 \\ -\kappa(t) & 0 & \tau(t) \\ 0 & -\tau(t) & 0 \end{pmatrix} \begin{pmatrix} v(t) \\ n(t) \\ b(t) \end{pmatrix}$$

Beweis. $v'(t) = \kappa(t)n(t)$ ist klar. Da v(t), n(t), b(t) eine Orthonormalbasis von \mathbb{R}^3 ist, gilt

$$n'(t) = \langle n'(t), v(t) \rangle v(t) + \langle n'(t), n(t) \rangle n(t) + \langle n'(t), b(t) \rangle b(t) =$$

$$= \left(\frac{\mathrm{d}}{\mathrm{d}t} \langle n(t), v(t) \rangle - \langle n(t), v'(t) \rangle \right) v(t) + \frac{1}{2} \left(\frac{\mathrm{d}}{\mathrm{d}t} \langle n(t), n(t) \rangle \right) n(t) + \tau(t) b(t)$$

$$= -\kappa(t) v(t) + \tau(t) b(t)$$

Genauso gilt

$$b'(t) = \langle b'(t), v(t) \rangle v(t) + \langle b'(t), n(t) \rangle n(t) + \langle b'(t), b(t) \rangle b(t) =$$

$$= \left(\frac{\mathrm{d}}{\mathrm{d}t} \langle b(t), v(t) \rangle - \langle b(t), v'(t) \rangle \right) v(t) + \left(\frac{\mathrm{d}}{\mathrm{d}t} \langle b(t), n(t) \rangle - \langle b(t), n'(t) \rangle \right) n(t)$$

$$+ \frac{1}{2} \left(\frac{\mathrm{d}}{\mathrm{d}t} \langle b(t), b(t) \rangle \right) b(t) =$$

$$= 0 + \left(0 - \langle b(t), -\kappa(t)v(t) + \tau(t)b(t) \rangle \right) n(t) = -\tau(t)n(t)$$

Satz (Hauptsatz der lokalen Kurventheorie für n=3). Seien $\kappa\colon I\to\mathbb{R}_{>0},\ \tau\colon I\to\mathbb{R}$ stetig. Dann existiert eine nach Bogenlänge parametrisierte \mathscr{C}^3 -Kurve $\gamma\colon I\to\mathbb{R}^3$ mit Krümmung κ und Torsion τ . Diese ist bis auf Komposition mit orientierungserhaltenden Bewegungen eindeutig bestimmt.

Beweis. Betrachte das lineare Differentialgleichungssystem

$$\begin{pmatrix} \gamma'(t) \\ v'(t) \\ n'(t) \\ b'(t) \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & \kappa(t) & 0 \\ 0 & -\kappa(t) & 0 & \tau(t) \\ 0 & 0 & -\tau(t) & 0 \end{pmatrix} \begin{pmatrix} \gamma(t) \\ v(t) \\ n(t) \\ b(t) \end{pmatrix}$$

Sei $t_0 \in I$. Existenz- und Eindeutigkeitssätze für gewöhnliche (lineare) Differentialgleichung liefern: Es existiert genau eine Lösung (γ, v, n, b) auf I mit $\gamma(t_0) = 0$, $v(t_0) = e_1$, $n(t_0) = e_2$ und $b(t_0) = e_3$. Aus den Frenetgleichungen folgt

$$\frac{\mathrm{d}}{\mathrm{d}t} \begin{pmatrix} \langle v, v \rangle \\ \langle n, n \rangle \\ \langle b, b \rangle \\ \langle b, v \rangle \\ \langle b, n \rangle \\ \langle n, v \rangle \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 2\kappa \\ 0 & 0 & 0 & 0 & 2\tau & 2\kappa \\ 0 & 0 & 0 & 0 & -2\tau & 0 \\ 0 & 0 & 0 & 0 & \kappa & -\tau \\ 0 & -\tau & \tau & -\kappa & 0 & 0 \\ -\kappa & \kappa & 0 & \tau & 0 & 0 \end{pmatrix} \begin{pmatrix} \langle v, v \rangle \\ \langle n, n \rangle \\ \langle b, b \rangle \\ \langle b, v \rangle \\ \langle b, n \rangle \\ \langle n, v \rangle \end{pmatrix} \tag{*}$$

Es gilt für $e_1 = v$, $e_2 = n$ und $e_3 = b$: $\langle e_i(t_0), e_j(t_0) \rangle = \delta_{ij}$. Nun löst $\langle e_i(t), e_j(t) \rangle = \delta_{ij}$ für alle $t \in I$ die Differentialgleichung (*), also ist (v(t), n(t), b(t)) für alle $t \in I$ eine Orthonormalbasis von \mathbb{R}^3 . Es gilt $\det(v(t_0), n(t_0), b(t_0)) > 0$, also wegen Stetigkeit auch $\det(v(t), n(t), b(t)) > 0$ für alle $t \in I$, d.h. (v(t), n(t), b(t)) ist sogar positiv orientiert für alle $t \in I$. Also ist $\gamma \colon I \to \mathbb{R}^3$ nach Bogenlänge parametrisiert mit begleitendem Dreibein (v(t), n(t), b(t)), der Krümmung κ und der Torsion τ .

Ist $\tilde{\gamma} \colon I \to \mathbb{R}^3$ eine weitere nach Bogenlänge parametrisierte Kurve mit Krümmung κ und Torsion γ und begleitendem Dreibein $(\tilde{v}, \tilde{n}, \tilde{b})$, so existiert eine orientierungserhaltende Bewegung $\phi \colon \mathbb{R}^3 \to \mathbb{R}^3$, $\phi(x) = Ax + b$, $A \in SO(3)$, $b \in \mathbb{R}^3$ mit $Av(t_0) = \tilde{v}(t_0)$, $An(t_0) = \tilde{n}(t_0)$, $Ab(t_0) = \tilde{b}(t_0)$ und $-b = \tilde{\gamma}(t_0)$. Damit folgt $\tilde{\gamma} = A \circ \gamma$.

2 Lokale Flächentheorie

2.1 Untermannigfaltigkeiten in \mathbb{R}^n

Definition. Eine Teilmenge $M \subseteq \mathbb{R}^n$ heißt m-dimensionale Untermannigfaltigkeit der Klasse \mathscr{C}^k mit $k \in \mathbb{N} \cup \{\infty\}$, falls es für jedes $p \in M$ offene Teilmengen $U, V \subseteq \mathbb{R}^n$ mit $p \in U$ und einen \mathscr{C}^k -Diffeomorphismus $\phi \colon U \to V$ gibt mit $\phi(U \cap M) = V \cap (\mathbb{R}^m \times \{0\})$. Anschaulich ist M "lokal flach". ϕ heißt Untermannigfaltigkeitskarte von M um p, und $\varphi = \phi|_{U \cap M} \colon U \cap M \to V \cap (\mathbb{R}^m \times \{0\})$ heißt Karte von M um p.

Definition. Sei $M \subseteq \mathbb{R}^n$ eine Untermannigfaltigkeit und $p \in M$. Sei $\phi \colon U \to V$ eine Untermannigfaltigkeitskarte um p. Dann heißt der lineare Unterraum $(D\phi(p))^{-1}(\mathbb{R}^m)$ Tangentialraum von M an p und wird mit T_pM bezeichnet. Schreibt man $\mathbb{R}^n = \mathbb{R}^m \times \mathbb{R}^{n-m}$

und sind e_i , i = 1, ..., m die ersten m Einheitsvektoren, so wird T_pM von $(D\phi(p))^{-1}e_i$, i = 1, ..., m, aufgespannt.

Bemerkung (Geometrische Beschreibung des Tangentialraums). Es gilt

$$T_pM = \{\gamma'(0) : \gamma : (-\varepsilon, \varepsilon) \to M \text{ differenzierbar mit } \gamma(0) = p\},$$

denn sei $v \in T_p M$. Betrachte $x = (D\phi(p))v \in \mathbb{R}^m \times \{0\}$. Dann ist $v = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \phi^{-1}(\phi(p) + tx)$ und $\phi^{-1}(\phi(p) + tx) \in M$ für genügend kleine t. Ist andersherum $\gamma \colon (-\varepsilon, \varepsilon) \to M$, $\gamma(0) = p$, so gilt $\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \phi(\gamma(t)) = w \in \mathbb{R}^m \times \{0\}$, also $\gamma'(0) = (D\phi(p))^{-1}w \in T_p M$.

Satz. Sei $M \subseteq \mathbb{R}^n$. Es sind äquivalent:

- 1. M ist eine m-dimensionale \mathcal{C}^k -Untermannigfaltigkeit.
- 2. Für alle $p \in M$ existiert eine offene Menge $U \subseteq \mathbb{R}^n$, $p \in U$, und $F: U \to \mathbb{R}^{n-m}$ der Klasse \mathscr{C}^k , $F = (f_1, \ldots, f_{n-m})$, mit DF(x) surjektiv für alle $x \in U$ (d.h. $(\operatorname{grad} f_i)(x)$ sind linear unabhängig), so dass $U \cap M = F^{-1}(0)$. Eine \mathscr{C}^k -Abbildung $F: U \to \mathbb{R}^{n-m}$ mit DF(x) surjektiv für alle $x \in U$ heißt Submersion.
- 3. Für alle $p \in M$ existieren offene $U \subseteq \mathbb{R}^m$, $V \subseteq \mathbb{R}^n$, $p \in V$ und $F: U \to \mathbb{R}^n$ der Klasse \mathscr{C}^k mit
 - (i) DF(x) ist injektiv für alle $x \in U$.
 - (ii) $V \cap M = F(U)$.
 - (iii) $F: U \to V \cap M$ ist ein Homöomorphismus.

Eine \mathscr{C}^k -Abbildung $F: U \to \mathbb{R}^n$ mit (i), (ii) und (iii) heißt lokale Parametrisierung von M.

Beweis.

 $1 \Rightarrow 2$ Gegeben einen Diffeomorphismus $\phi \colon U \to V$ und $\phi(U \cap M) = V \cap \mathbb{R}^m$, schreibe $\phi = (f_1, \dots, f_m, f_{m+1}, \dots, f_n)$ und setze $F = (f_{m+1}, \dots, f_n)$. Für $x \in U$ gilt dann F(x) = 0 genau dann, wenn $x \in M$, und

$$D\phi(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \dots & \frac{\partial f_1}{\partial x_n}(x) \\ \vdots & & \vdots \\ \frac{\partial f_n}{\partial x_1}(x) & \dots & \frac{\partial f_n}{\partial x_n}(x) \end{pmatrix} = \begin{pmatrix} \operatorname{grad} f_1(x) \\ \vdots \\ \operatorname{grad} f_n(x) \end{pmatrix}$$

ist invertierbar für alle $x \in U$, insbesondere sind grad $f_{m+1}(x), \ldots, \operatorname{grad} f_n(x)$ linear unabhängig.

 $2 \Rightarrow 1$ Sei $F: U \to \mathbb{R}^{n-m}$ gegeben mit $F^{-1}(0) = U \cap M$ und DF(x) surjektiv für alle $x \in U$. Ohne Einschränkung seien $DF(p)e_i$, $i = m+1,\ldots,n$, linear unabhängig. Setze $\phi(x) = (x_1,\ldots,x_m,F(x))$. Dann ist

$$D\phi(x) = \left(\frac{E_m \mid 0}{DF(x)}\right)$$

invertierbar, also existieren offene $U' \subseteq U$, $V' \subseteq \mathbb{R}^n$ so dass $\phi|_{U'}: U' \to V'$ ein Diffeomorphismus ist. Weiterhin gilt $\phi(U' \cap M) = V' \cap \mathbb{R}^m$.

 $1 \Rightarrow 3$ Gegeben sei ein Diffeomorphismus $\phi \colon U \to V$ mit $\phi(U \cap M) = V \cap \mathbb{R}^m$. Setze $\varphi = \phi|_{U \cap M} \colon U' = U \cap M \to V \cap \mathbb{R}^m = V'$ und $F = \phi^{-1}|_{V'} \colon V' \to U'$. Dann gilt $F = \varphi^{-1}$, d.h. $F \colon V' \to U'$ Homöomorphismus. Weiterhin ist

$$D\phi^{-1}(x) = \left(DF(x) \mid * \right)$$

invertierbar nach Voraussetzung. Insbesondere $DF(x)e_i$, $i=1,\ldots,m$ linear unabhängig, d.h. DF(x) injektiv.

 $3 \Rightarrow 1$ Gegeben sei eine lokale Parametrisierung $F: U \to \mathbb{R}^n$ von M um p. Sei $F(x_0) = p$. Ohne Einschränkung sei $DF(x_0)e_i = e_i, i = 1, \ldots, m$, inbesondere $DF(x_0)(\mathbb{R}^m) \subseteq \mathbb{R}^m$. Setze $\psi(x) = F(x_1, \ldots, x_m) + (0, \ldots, 0, x_{m+1}, x, \ldots, x_n)$ mit $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, d.h. $\psi: U \times \mathbb{R}^{n-m} \to \mathbb{R}^n$. Es gilt

$$D\psi(x_0) = \left(\begin{array}{c|c} DF(x_0) & 0 \\ \hline 0 & E_{m-n} \end{array}\right)$$

d.h. $DF(x_0)$ ist invertierbar. Also existieren nach dem lokalen Umkehrsatz offene $U', V' \subseteq \mathbb{R}^n$, $(x_0, 0) \in U'$, $p \in V'$, so dass $\psi|_{U'} : U' \to V'$ ein Diffeomorphismus ist. Sei $\phi : V' \to U'$ die Umkehrabbildung. Dann gilt $\phi(V' \cap M) = U' \cap \mathbb{R}^m$, denn zu $y \in V' \cap M$ existiert genau ein (x_1, \ldots, x_m) mit $F(x_1, \ldots, x_m) = y$, d.h. $y = \psi(x_1, \ldots, x_m, 0, \ldots, 0)$, d.h. $\phi(y) = (x_1, \ldots, x_m, 0, \ldots, 0)$.

Bemerkung. Die Halbstetigkeit des Ranges impliziert für $F \in \mathscr{C}^1(\mathbb{R}^n, \mathbb{R}^{n-m})$ mit $DF(x_0)$ surjektiv, dass DF(x) für x in einer Umgebung von x_0 surjektiv ist, und für $F \in \mathscr{C}^1(\mathbb{R}^m, \mathbb{R}^n)$ mit $DF(x_0)$, dass DF(x) für x in einer Umgebung von x_0 injektiv ist.

Bemerkung. $T_pM = (D\phi(x))^{-1}(\mathbb{R}^m)$ für eine Untermannigfaltigkeitskarte $\phi \colon U \to V$ um p. Im Falle der Charakterisierung 2 aus Satz 1 gilt $T_pM = \ker DF(p)$ und im Falle der Charakterisierung 3 gilt $T_pM = \operatorname{im} DF(x_0)$.

Bemerkung. Ist $f: U \to \mathbb{R}^{n-m}$ differenzierbar von der Klasse \mathscr{C}^k , dann ist Graph f eine m-dimensionale Untermannigfaltigkeit, denn $F: U \to \operatorname{Graph} f, x \mapsto (x, f(x))$ ist ein Homöomorphismus mit

$$DF(x) = \begin{pmatrix} 1 & & \\ & \ddots & \\ & & 1 \\ \hline DF(x)e_1 & \dots & DF(x)e_n \end{pmatrix}$$

injektiv.

Bemerkung. Untermannigfaltigkeiten sind lokal als Graph darstellbar.

2.2 Flächen

Definition. Eine 2-dimensionale Untermannigfaltigkeit im \mathbb{R}^3 heißt (eingebettete) Fläche.

Konvention. Untermannigfaltigkeiten seien ab jetzt Untermannigfaltigkeiten der Klasse \mathscr{C}^k , $k \in \mathbb{N} \cup \{\infty\}$ und differenzierbar heiße \mathscr{C}^k .

Beispiel. $S^2 \subseteq \mathbb{R}^3$ ist eine Fläche, denn betrachte $f: \mathbb{R}^3 \to \mathbb{R}, x \mapsto ||x||^2 - 1$. Dann ist $S^2 = f^{-1}(0)$ und grad f(x) = 2x für $x \in \mathbb{R}^3$, also grad $f(x) \neq 0$. Weiterhin gilt $T_p S^2 = \ker Df(p) = \operatorname{grad} f(p)^{\perp} = p^{\perp}$.

Definition. Sei $S \subseteq \mathbb{R}^3$ eine Fläche. Eine Abbildung $f: W \to S, W \subseteq \mathbb{R}^n$ offen, heißt differenzierbar, falls f aufgefasst als Abbildung $f: W \to \mathbb{R}^n$ differenzierbar ist. $f: S \to \mathbb{R}^n$ heißt differenzierbar um $p \in S$, falls ein offenes $W \subseteq \mathbb{R}^3$ mit $p \in W$ und ein differenzierbares $\tilde{f}: W \to \mathbb{R}^n$ mit $\tilde{f}|_{W \cap S} = f|_{W \cap S}$ existiert. f heißt differenzierbar, falls f um alle $p \in S$ differenzierbar ist.

Bemerkung. Sei $p \in S$ und $F: U \to V \cap S$ lokale Parametrisierung um p. Dann ist F differenzierbar und $F^{-1}: V \cap S \to U$ ist differenzierbar um p.

Bemerkung. Sei $S \subseteq \mathbb{R}^3$ eine Fläche, $W \subseteq \mathbb{R}^3$ offen. Dann ist $W \cap S$ eine Fläche. Nach Satz 1.1 existiert ein Diffeomorphismus $\phi \colon W \to \phi(W)$ mit $p \in W, W \cap S \subseteq V \cap S$, so dass $\phi|_{W \cap S}(x) = (F^{-1}|_{W \cap S}(x), 0)$. Dann ist $F^{-1}|_{W \cap S} = \phi_{\mathbb{R}^2} \circ \phi|_{W} \cap S$, d.h. $\pi_{\mathbb{R}^2} \circ \phi|_{W} \colon W \to \mathbb{R}^2$ ist differenzierbar.

Bemerkung. Ist $p \in S$ und sind $F_i : U_i \to V_i \cap S$, i = 1, 2, zwei lokale Parametrisierungen um p, d.h. $p \in V_1 \cap V_2$, so ist der Parametrisierungswechsel $F_2^{-1} \circ F_1|_{F_1^{-1}(V_1 \cap V_2)} : F_1^{-1}(V_1 \cap V_2) \to F_2^{-1}(V_1 \cap V_2)$ ein Diffeomorphismus.

Satz. Für $f: W \to S$, $W \subseteq \mathbb{R}^n$ offen, sind äquivalent:

- 1. f ist differenzierbar um $x_0 \in W$.
- 2. Es gibt eine lokale Parametrisierung $F: U \to V \cap S$ um $p = f(x_0)$, so dass $F^{-1} \circ f|_{f^{-1}(V)}$ differenzierbar um x_0 ist.
- 3. Für alle lokalen Parametrisierungen $F: U \to V \cap S$ um p ist $F^{-1} \circ f|_{f^{-1}(V)}$ differenzierbar um x_0 .

Beweis.

 $1 \Rightarrow 3$ Für jede lokale Parametrisierung F um p ist $F^{-1}: V \cap S \to S$ differenzierbar um p, also ist $f \circ F^{-1}|_{f^{-1}(V)}$ differenzierbar um x_0 .

 $3 \Rightarrow 2$ Ist klar.

$$2 \Rightarrow 1$$
 $f|_{f^{-1}(V)} = F \circ F^{-1} \circ f|_{f^{-1}(V)}$ ist differenzierbar um x_0 .

Lemma. Sei $S \subseteq \mathbb{R}^3$ eine Fläche. Für eine Abbildung $f: S \to \mathbb{R}^n$ sind äquivalent:

- 1. f ist differenzierbar um $p \in S$.
- 2. Es existiert eine lokale Parametrisierung $F: U \to S \cap V$ um p, so dass $f: F: U \to \mathbb{R}^n$ differenzierbar um $x_0 = F^{-1}(p)$ ist.
- 3. Für alle lokalen Parametrisierungen F um p ist $f \circ F$ differenzierbar um x_0 .

Beweis.

1 \Rightarrow 3 Nach Voraussetzung existiert ein offenes $W \subseteq \mathbb{R}^3$ mit $p \in W$ und differenzierbares $\tilde{f} \colon W \to \mathbb{R}^n$ mit $\tilde{f}|_{W \cap S} = f|_{W \cap S}$. Ist F irgendeine lokale Parametrisierung um p, so ist $F \colon U \to V \cap S \subseteq \mathbb{R}^4$ differenzierbar und $f \circ F|_{F^{-1}(W)} = \tilde{f} \circ F|_{F^{-1}(W)}$, \tilde{f} und $F|_{F^{-1}(W)}$ sind differenzierbar, also $\tilde{f} \circ F|_{F^{-1}(W)}$ differenzierbar. Also ist $f \circ F$ differenzierbar um x_0 .

- $3\Rightarrow 1$ Sei $\phi\colon W\to \phi(W)$ eine Untermannigfaltigkeitenkarte um p, d.h. ein Diffeomorphismus mit $\phi(W\cap S)=\phi(W)\cap\mathbb{R}^2$. Dann ist also $F=\phi^{-1}|_{\phi(W)\cap\mathbb{R}^2}\colon \phi(W)\cap\mathbb{R}^2\to W\cap S$ eine lokale Parametrisierung um p. Nach Voraussetzung ist $f\circ F\colon \phi(W)\cap\mathbb{R}^2\to \mathbb{R}^n$ differenzierbar um $\phi(p)$. Dann ist $\tilde{f}=f\circ F\circ\pi_{\mathbb{R}^2}\circ\phi\colon W\to\mathbb{R}^n$ differenzierbar mit $\tilde{f}|_{W\cap S}=f|_{W\cap S}$, d.h. f ist differenzierbar um p.
- $3 \Rightarrow 2$ Ist klar.
- 2 ⇒ 3 Seien $F_i: U_i \to V_i \cap S$, i=1,2, lokale Parametrisierungen um p. Dann gilt: $f \circ F_1|_{F_1(V_1 \cap V_2)} = f \circ F_2 \circ F_2^{-1} \circ F_1|_{F^{-1}(V_1 \cap V_2)}$, bzw. $f \circ F_2|_{F_2^{-1}(V_1 \cap V_2)} = f \circ F_1 \circ F_1^{-1} \circ F_2|_{F_2^{-1}(V_1 \cap V_2)}$. Also ist $f \circ F_1$ differenzierbar um $F_1^{-1}(p)$ genau dann, wenn $f \circ F_2$ differenzierbar um $F_2^{-1}(p)$ ist.

Bemerkung. Sei $S \subseteq \mathbb{R}^3$ eine Fläche. Ist $f: W \to S$, $W \subseteq \mathbb{R}^n$ offen, differenzierbar, $f(x_0) = p$, so gilt im $Df(x_0) \subseteq T_pS$, d.h. $Df(x_0)$ vermittelt eine lineare Abbildung $Df(x_0): \mathbb{R}^n \to T_pS$.

Bemerkung. Sei $S \subseteq \mathbb{R}^3$ eine Fläche. Ist $f: S \to \mathbb{R}^n$ differenzierbar, so ist $Df(p) := D\tilde{f}(p)|_{T_pS} : T_pS \to \mathbb{R}^n$ unabhängig von der Ausdehnung $\tilde{f}: W \to \mathbb{R}^n$, $W \subseteq \mathbb{R}^3$ offen, $p \in W$, denn ist $v \in T_pM$ gegeben durch $v = \gamma'(0)$, $\gamma: (-\varepsilon, \varepsilon) \to S$, $\gamma(0) = p$, so gilt

$$D\tilde{f}(p)(v) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (\tilde{f} \circ \gamma)(t) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} (f \circ \gamma)(t).$$

Definition. $Df(x_0): \mathbb{R}^n \to T_pS$ (bzw. $Df(p): T_pS \to \mathbb{R}^n$) heißt das Differential von $f: W \to S$ in x_0 (bzw. von $f: S \to \mathbb{R}^n$ in p).

Wir betrachten jetzt Abbildungen $f: S_1 \to S_2$ zwischen Flächen $S_1, S_2 \subseteq \mathbb{R}^3$.

Definition. Eine Abbildung $f: S_1 \to S_2$ heißt differenzierbar um $p_1 \in S_1$, falls f aufgefasst als Abbildung $f: S_1 \to \mathbb{R}^3$ differenzierbar um p_1 ist.

Bemerkung. Ist $f: S_1 \to S_2$ differenzierbar um $p_1 \in S_1$, so gilt im $Df(p_1) \subseteq T_{p_2}S_2$, falls $f(p_1) = p_2$.

Definition. Die lineare Abbildung $Df(p_1): T_{p_1}S_1 \to T_{p_2}S_2$ heißt das Differential von $f: S_1 \to S_2$ in p_1 , wobei $p_2 = f(p_1)$.

Definition. Eine differenzierbare und bijektive Abbildung $f: S_1 \to S_2$ zwischen Flächen $S_1, S_2 \subseteq \mathbb{R}^3$ heißt *Diffeomorphismus*.

Bemerkung. Ist $f: S_1 \to S_2$ ein Diffeomorphismus so ist nach dem lokalen Umkehrsatz $f^{-1}: S_2 \to S_1$ differenzierbar.

2.3 Erste und zweite Fundamentalform

Sei $S \subseteq \mathbb{R}^3$ eine Fläche. Es bezeichne $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ das euklidische Skalarprodukt auf \mathbb{R}^3 . Dann definiert für $p \in S$

$$g_p(v, w) = \langle v, w \rangle_{\mathbb{R}^3}, \quad v, w \in T_p S$$

ein Skalarprodukt auf T_pS .

Definition. $g_p: T_pS \times T_pS \to \mathbb{R}$ heißt 1. Fundamentalform von S in $p \in S$.

Sei $f: \mathbb{R}^2 \supseteq U \to V \cap S$ eine lokale Parametrisierung von S in $p, F = (F_1, F_2, F_3)$. Dann bilden $\frac{\partial F}{\partial x_i}(x) = DF(x)(e_i), i = 1, 2$, eine Basis von $T_{F(x)}S$ für alle $x \in U$. In diesem Sinne hängt T_pS glatt von p ab. Wir setzen $g_{ij}(x) = g_{F(x)}\left(\frac{\partial F}{\partial x_i}, \frac{\partial F}{\partial x_j}\right)$ für i, j = 1, 2. Sind $v, w \in T_{F(x)}S$ gegeben, so können wir schreiben:

$$v = \sum_{i=1}^{2} v_i \frac{\partial F}{\partial x_i}(x), \quad w = \sum_{i=1}^{2} w_i \frac{\partial F}{\partial x_i}(x)$$

Damit gilt

$$g_{F(x)}(v, w) = \sum_{i,j=1}^{2} v_i w_j g_{ij}(x)$$

Bemerkung. Ist $F: U \to V \cap S$ differenzierbar von der Klasse \mathscr{C}^{k+1} , so sind die Komponentenfunktionen $g_{ij}: U \to \mathbb{R}$ differenzierbar von der Klasse \mathscr{C}^k . In diesem Sinne ist $(g_p: T_p \times T_p \to \mathbb{R})_{p \in S}$ eine "differenzierbar" von $p \in S$ abhängige Familie von Skalarprodukten auf den Tangentialräume T_pS .

Bemerkung. Die 1. Fundamentalform ermöglicht es, Längen und Winkel auf S zu messen: Ist $\gamma \colon [a,b] \to S$ eine \mathscr{C}^1 -Kurve, so sei

$$L(\gamma) = \int_a^b \|\gamma'(t)\|_{\gamma(x)} dt$$

mit $||v||_p = \sqrt{g_p(v,v)}$ die Länge von γ . Sind $\gamma_i \colon I \to S^2$, i=1,2, reguläre \mathscr{C}^1 -Kurven mit $\gamma_i(t_0) = p \in S, \, \gamma_i'(t_0) \neq 0$, so sei durch

$$\cos \alpha = \frac{g_p(\gamma_1'(t_0), \gamma_2'(t_0))}{\|\gamma_1'(t_0)\|_p \|\gamma_2'(t_0)\|_p}$$

der Winkel $\alpha \in [0, \pi]$ zwischen γ_1 und γ_2 in p, bzw. $\gamma_1'(t_0)$ und $\gamma_2'(t_0)$ in T_pS definiert. Bemerkung (Verhalten der Komponentenfunktionen g_{ij} unter Parametrisierungswechsel). Seien $F: U \to V \cap S$, $\tilde{F}\tilde{U} \to \tilde{V} \cap S$ lokale Parametrisierungen von S mit $V \cap \tilde{V} \neq \emptyset$ und

$$\begin{split} \tilde{F}^{-1} \circ F|_{F^{-1}(V \cap \tilde{V})} \colon F^{-1}(V \cap \tilde{V}) &\to \tilde{F}^{\scriptscriptstyle 1}(V \cap \tilde{V}) \\ F^{-1} \circ \tilde{F}|_{F^{-1}(V \cap \tilde{V})} \colon \tilde{F}^{-1}(V \cap \tilde{V}) &\to F^{\scriptscriptstyle 1}(V \cap \tilde{V}) \end{split}$$

die Parametrisierungswechsel, so gilt $(F(x) = \tilde{x}, \tilde{F}(x) = \tilde{x})$

$$\tilde{g}_{ij}|_{\tilde{F}^{-1}(V\cap\tilde{V})}(\tilde{x}) = \sum_{k,l=1}^{2} \frac{\partial (F^{-1}\circ\tilde{F})_{k}}{\partial x_{i}}(\tilde{x}) \frac{\partial (F^{-1}\circ\tilde{F})_{l}}{\partial x_{j}}(\tilde{x}) g_{kl}|_{F^{-1}(V\cap\tilde{V})}(x)$$

Beispiel (Ebene). Seien $v, w \in \mathbb{R}^3$ und $x_0 \in \mathbb{R}^3$. Durch $F: \mathbb{R}^2 \to \mathbb{R}^3$, $(\lambda, \mu) \mapsto x_0 + \lambda v + \mu w$ wird eine Ebene $S \subseteq \mathbb{R}^3$ parametrisiert. Es gilt $\frac{\partial F}{\partial \lambda} = v$ und $\frac{\partial F}{\partial \mu} = w$, also mit $x_1 = \lambda$, $x_2 = \mu$

$$(g_{ij}(x))_{ij} = \begin{pmatrix} \langle v, v \rangle & \langle v, w \rangle \\ \langle w, v \rangle & \langle w, w \rangle \end{pmatrix}$$

Ist $\{v, w\}$ als Orthonormalsystem gewählt, so gilt also

$$\left(g_{ij}(x)\right)_{ij} = \begin{pmatrix} 1 & 0\\ 0 & 1 \end{pmatrix}$$

Beispiel (Zylindermantel vom Radius R > 0). Sei $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 = R^2\}$. Eine lokale Parametrisierung ist durch $F: \mathbb{R} \times (0, 2\pi) \to \mathbb{R}^3 \setminus \{x_1 \geq 0, x_2 = 0\} \cap S, (z, \theta) \mapsto (R\cos\theta, R\sin\theta, z)$ gegeben. Es gilt $\frac{\partial F}{\partial z}(z, \theta) = (0, 0, 1)$ und $\frac{\partial F}{\partial \theta}(z, \theta) = (-R\sin\theta, R\cos\theta, 0)$. Also ist

$$(g_{ij}(x))_{ij} = \begin{pmatrix} 1 & 0 \\ 0 & R^2 \end{pmatrix}$$

Für R = 1 hat also der Zylindermantel die gleiche Fundamentalform wie die Ebene.

Beispiel (Sphäre vom Radius R > 0). Eine lokale Parametrisierung von $S = \{p \in \mathbb{R}^3 : ||p||^2 = R^2\}$ ist gegeben durch $(V = \mathbb{R}^3 \setminus \{x_1 \ge 0, x_2 = 0\})$

$$F \colon \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) \times (0, 2\pi) \to V \cap S, (\varphi, \theta) \mapsto \begin{pmatrix} R\cos\varphi\cos\theta \\ R\cos\varphi\sin\theta \\ R\sin\varphi \end{pmatrix}$$

Es gilt

$$\frac{\partial F}{\partial \varphi}(\varphi, \theta) = \begin{pmatrix} -R\sin\varphi\cos\theta \\ -R\sin\varphi\sin\theta \\ R\cos\varphi \end{pmatrix}$$
$$\frac{\partial F}{\partial \theta}(\varphi, \theta) = \begin{pmatrix} -R\cos\varphi\sin\theta \\ R\cos\varphi\cos\theta \\ 0 \end{pmatrix}$$

Es gilt also

$$(g_{ij}(x))_{ij} = \begin{pmatrix} R^2 & 0\\ 0 & R^2 \cos^2 \varphi \end{pmatrix}$$

Definition. Sei $S \subseteq \mathbb{R}^3$ eine Fläche. Ein Normalenfeld auf S ist eine Abbildung $N: S \to \mathbb{R}^3$ mit $N(p) \perp T_p S$ für alle $p \in S$. Ein Normalenfeld heißt Einheitsnormalenfeld, falls weiterhin $||N(p)||_{\mathbb{R}^3} = 1$ für alle $p \in S$ gilt.

Definition. Eine Fläche $S \subseteq \mathbb{R}^3$ heißt *orientierbar*, falls ein differenzierbares Einheitsnormalenfeld auf S existiert.

Beispiel (Ebene). Mit den Notationen von oben definiert $N(p) = v \times w$ für alle $p \in S$ ein differenzierbares Einheitsnormalenfeld auf $E_{x_0,v,w}$.

Beispiel (Sphäre vom Radius R > 0). Mit den Notationen von oben definiert $N(p) = \frac{1}{R}p$ für alle $p \in S$ ein differenzierbares Einheitsnormalenfeld auf S_R^2 .

Beispiel (Zylindermantel vom Radius R > 0). Mit den Notationen von oben definiert $N(x_1, x_2, x_3) = \frac{1}{R}(x_1, x_2, 0)$ ein differenzierbares Einheitsnormalenfeld auf Z_R .

Beispiel. Das Möbiusband ist nicht orientarbar (Übung).

Definition. Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld $N, p \in S$ und $\{e_1, e_2\}$ eine Basis von T_pS . $\{e_1, e_2\}$ heiße positiv orientiert, wenn $\{e_1, e_2, N(p)\}$ eine positiv orientierte Basis von \mathbb{R}^3 ist.

Bemerkung. Lokal ist jede Fläche orientierbar, denn ist $F\colon U\to V\cap S$ eine lokale Parametrisierung, so ist $\left\{\frac{\partial F}{\partial x_1}(x), \frac{\partial F}{\partial x_2}(x)\right\}$ eine Basis von $T_{F(x)}S$ für alle $x\in U$. Dann ist $\tilde{N}(F(x))=\frac{\partial F}{\partial x_1}(x)\times\frac{\partial F}{\partial x_2}(x)\perp T_{F(x)}S$ für alle $x\in U$. Mit $N(F(x))=\tilde{N}(F(x))/\|\tilde{N}(F(x))\|$ wird N ein differenzierbares Einheitsnormalenfeld auf $V\cap S$, d.h. $V\cap S$ ist orientierbar.

Definition. Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld N. Die Abbildung

$$N: S \to S^2$$

heißt $Gau\beta$ -Abbildung von S.

Bemerkung. Für $p \in S$ ist

$$DN(p): T_pS \to T_{N(p)}S^2 = N(p)^{\perp} = T_pS$$

ein Endomorphismus von T_pS .

Definition. Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche von der Klasse \mathscr{C}^k mit $k \geq 2$ mit Einheitsnormalenfeld N. Der Endomorphismus

$$W_p = -DN(p) : T_pS \to T_pS$$

heißt Weinbergabbildung von S in $p \in S$.

Beispiel (Ebene). Sei $\{v, w\}$ eine Orthonormalsystem in \mathbb{R}^3 und $E_{x_0, v, w} = \{x_0 + \lambda v + \mu w \colon \lambda, mu \in \mathbb{R}\}, \ N(p) = v \times w$ konstant. Dann ist $W_p = -DN(p) = 0$ für alle $p \in E_{x_0, v, w}$.

Beispiel (Zylindermantel vom Radius R > 0). Mit dem Einheitsnormalenfeld $N(p) = \frac{1}{R}(x_1, x_2, 0)$ mit $p = (x_1, x_2, x_3)$ ist $N = \frac{1}{R} \cdot \pi_{\mathbb{R}^2} \colon Z_R \to S^2$. $T_p Z_R$ hat als Basis

$$\left\{ \begin{pmatrix} -x_2 \\ x_1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$$

für $p = (x_1, x_2, x_3)$ und bezüglich dieser Basis gilt

$$W_p = \begin{pmatrix} -\frac{1}{R} & 0\\ 0 & 0 \end{pmatrix}$$

Beispiel (Sphäre vom Radius R > 0). Mit dem Einheitsnormalenfeld $N(p) = \frac{1}{R}p$ ist $N = \frac{1}{R}$: $S_R^2 \to S^2$ und $W_p = -DN(p) = -\frac{1}{R}\operatorname{id}_{T_pS_R^2}$.

Satz. Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche von der Klasse \mathscr{C}^k mit $k \geq 2$ mit Einheitsnormalenfeld N. Dann ist die Weingartenabbildung $W_p \colon T_pS \to T_pS$ selbstadjungiert bezüglich der 1. Fundamentalform g_p , d.h. für alle $v, w \in T_pS$ gilt

$$g_p(W_p(v), w) = g_p(v, W_p(w))$$

Beweis. Sei $F: U \to V \cap S$ eine lokale Parametrisierung um p. Setze $X_i = \frac{\partial F}{\partial x_i}(x)$ für i = 1, 2, F(x) = p. Dann gilt für $t \in (-\varepsilon, \varepsilon)$

$$\left\langle \frac{\partial F}{\partial x_i}(x+te_j), N(F(x+te_j)) \right\rangle_{\mathbb{R}^3} = 0$$

Also folgt

$$0 = \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \left\langle \frac{\partial F}{\partial x_i} (x + te_j), N(F(x + te_j)) \right\rangle_{\mathbb{R}^3}$$
$$= \left\langle \frac{\partial^2 F}{\partial x_j \partial x_i} (x), N(p) \right\rangle_{\mathbb{R}^3} + \left\langle X_i, DN(p)(X_j) \right\rangle_{\mathbb{R}^3}$$

Also ist

$$\langle X_i, W_p(X_j) \rangle_{\mathbb{R}^3} = \left\langle \frac{\partial^2 F}{\partial x_j \partial x_i}(x), N(p) \right\rangle_{\mathbb{R}^3}$$

$$= \left\langle \frac{\partial^2 F}{\partial x_i \partial x_j}(x), N(p) \right\rangle_{\mathbb{R}^3} = \langle X_j, W_p(X_i) \rangle_{\mathbb{R}^3}$$
(*)

Mit anderen Worten $g_p(W_p(X_i), X_j) = g_p(X_i, W_p(X_j))$. Da $\{X_1, X_2\}$ eine Basis von T_pS ist, folgt die Behauptung.

Definition. Die durch $h_p(v,w) = g_p(v,W_p(w)), v,w \in T_pS$, definierte symmetrische Bilinearform $h_p\colon T_pS\times T_pS\to \mathbb{R}$ heißt 2. Fundamentalform von S in p.

Bemerkung. Ist $F: U \to V \cap S$ eine lokale Parametrisierung, so sehen wir

$$h_{ij}(x) = h_{F(x)} \left(\frac{\partial F}{\partial x_i}(x), \frac{\partial F}{\partial x_j}(x) \right)$$

d.h. $(h_{ij}(x))_{i,j} \in \mathbb{R}^{2\times 2}$ ist eine symmetrische 2×2 -Matrix für alle $x\in U$, die darstellende Matrix von $h_{F(x)}$ bezüglich der Basis $\left\{\frac{\partial F}{\partial x_i}(x), \frac{\partial F}{\partial x_j}(x)\right\}$ von $T_{F(x)}S$. Aus (*) in dem Beweis von Satz 1 folgt

$$h_{ij}(x) = \left\langle \frac{\partial^2 F}{\partial x_i \partial x_j}(x), N(F(x)) \right\rangle_{\mathbb{R}^3}$$

Bemerkung. Für $\widetilde{N} = -N$ gilt $\widetilde{W}_p = -W_p$ und $\widetilde{h}_p = -h_p$. Insbesondere ist also die Weingartenabbildung und die 2. Fundamentalform bis auf Vorzeichen auch auf nichtorientierbaren Flächen definiert.

2.4 Krümmung

Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld N und $\gamma \colon (-\varepsilon, \varepsilon) \to S$ nach Bogenlänge parametrisiert, $\gamma(0) = p$. Aufgefasst als Raumkurve hat γ die Krümmung $\kappa(0) = \|\gamma''(0)\|_{\mathbb{R}^3}$, d.h. falls $\kappa(0) \neq 0$, so ist $\gamma''(0) = \kappa(0)n(0)$. Das Ziel ist die Aufspaltung $\kappa(0) = \kappa_{\text{nor}}(0) + \kappa_{\text{geod}}(0)$ in einen Anteil, der die Krümmung von γ in S misst ("geodätische Krümmung") und einen Anteil, der von der Krümmung von S in \mathbb{R}^3 herrührt ("Normalenkrümmung"). Setze dazu $n(0) = n(0)^{\parallel} + n(0)^{\perp}$ für $n(0)^{\parallel} \in T_p S$, $T_p S^{\perp} \ni n(0)^{\perp} = \langle n(0), N(p) \rangle N(p)$. Entsprechend gilt $\gamma''(0) = \kappa(0)n(0)^{\parallel} + \kappa(0)\langle n(0), N(p) \rangle_{\mathbb{R}^3} N(p)$.

Definition. Es heißt $\kappa_{\text{nor}}(0) = \langle \gamma''(0), N(p) \rangle_{\mathbb{R}^3}$ die Normalenkrümmung von γ in S für t = 0.

Satz. Sei $S \subseteq \mathbb{R}^3$ eine orientierte Fláche mit Einheitsnormalenfeld N. Sei weiterhin $\gamma \colon (-\varepsilon, \varepsilon) \to S$ eine nach Bogenlänge parametrisierte Kurve mit $\gamma(0) = p$. Dann gilt $\kappa_{nor} = h_p(\gamma'(0), \gamma'(0))$. Insbesondere hängt also κ_{nor} nur von $\gamma'(0) \in T_pS$ ab.

Beweis. Wegen $\gamma(t) \in S$ für alle $t \in (-\varepsilon, \varepsilon)$ gilt $\langle N(\gamma(t)), \gamma'(t) \rangle_{\mathbb{R}^3} = 0$ für alle $t \in (-\varepsilon, \varepsilon)$. Also gilt

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \langle N(\gamma(t)), \gamma'(t) \rangle_{\mathbb{R}^3} = \langle DN(p)\gamma'(0), \gamma'(0) \rangle_{\mathbb{R}^3} + \langle N(p), \gamma''(0) \rangle_{\mathbb{R}^3}$$

Also
$$h_p(\gamma'(0), \gamma'(0)) = \kappa_{\text{nor}}(0)$$
.

Bemerkung. Für die Kurve $\tilde{\gamma}(t) = \gamma(-t)$ gilt $\tilde{\kappa}_{nor}(0) = \kappa_{nor}(0)$.

Bemerkung. Für die entgegengesetze Orientierung gegeben durch $\tilde{N} = -N$ gilt $\tilde{\kappa}_{nor}(0) = -\kappa_{nor}(0)$.

Bemerkung. Für $v \in T_pS$ betrachte die affine Ebene $E_{p,v,N(p)}$. Dann ist $E_{p,v,N(p)} \cap S$ (Übung) eine eindimensionale Untermannigfaltigkeit. Sei also $\gamma \colon (-\varepsilon,\varepsilon) \to E_{p,v,N(p)} \cap S$ eine lokale Parametrisierung (nach Bogenlänge) so dass $\gamma(0) = p, \ \gamma'(0) = v$. Dann ist $h_p(v,v) = \kappa_{\text{nor}}(0)$ (Übung).

Definition. Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld N. Die Eigenwerte $\kappa_1, \kappa_2 \in \mathbb{R}$ der Weingartenabbildung $W_p \colon T_p S \to T_p S$ heißen Hauptkrümmungen von S in p. Ein zugehöriger Eigenvektor, d.h. $X_i \in T_p S, X_i \neq 0$, mit $W_p(X_i) = \kappa_i X_i$, heißt Hauptkrümmungsrichtung. Ferner heißt $K(p) = \det W_p = \kappa_1 \kappa_2 \in \mathbb{R}$ die $Gau\beta$ -Krümmung von S in p, sowie $H_p = \frac{1}{2} \operatorname{tr} W_p = \frac{1}{2} (\kappa_1 + \kappa_2) \in \mathbb{R}$ die mittlere Krümmung von S in p.

Definition. Eine nach Bogenlänge parametrisierte Kurve $\gamma \colon I \to S$ heißt Krümmungslinie, falls $\gamma'(t) \in T_{\gamma(t)}S$ für alle $t \in I$ eine Hauptkrümmung ist.

Bemerkung. Für $\widetilde{N} = -N$ gilt $\widetilde{\kappa}_i = -\kappa_i$, i = 1, 2, und $\widetilde{W}_p(X_i) = \widetilde{\kappa}_i X_i$, sowie $\widetilde{K}(p) = \widetilde{\kappa}_1 \widetilde{\kappa}_2 = K(p)$. Insbesondere sind also Hauptkrümmungsrichtungen, bzw. Krümmungslinien, sowie die Gaußkrümmung auch auf nichtorientierbaren Flächen wohldefiniert.

Definition. Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld N. Es heißt $p \in S$

- elliptisch, wenn K(p) > 0.
- hyperbolisch, wenn K(p) < 0.
- parabolisch, wenn K(p) = 0, aber $W_p \neq 0$.
- Flachpunkt, wenn $W_p = 0$.

Beispiel (Ebene). Sei $E_{x_0,v,w}=\{x_0+\lambda v+\mu w\colon \lambda,\mu\in\mathbb{R}\}$ für $x_0\in\mathbb{R}^3$ und ein Orthonormalsystem $\{v,w\}$ in \mathbb{R}^3 . Setze $N(p)=v\times w$ für alle $p\in E_{x_0,v,w}$, also $W_p=0$. Also ist $\kappa_1=\kappa_2=K(p)=H(p)=0$ für alle p und alle Richtungen sind Hauptkrümmungsrichtungen, alle nach Bogenlänge parametrisierten Kurven $\gamma\colon I\to E_{x_0,v,w}$ sind Krümmungslinien.

Beispiel (Zylindermantel Z_R vom Radius R). Sei jetzt $N(x_1, x_2, x_3) = -\frac{1}{R}(x_1, x_2, 0)$. Dann ist

$$W_p = \begin{pmatrix} \frac{1}{R} & 0\\ 0 & 0 \end{pmatrix}$$

bezüglich der Basis $\{(-x_2,x_1,0),(0,0,1)\}$ von T_pZ_R . Also ist $\kappa_1=\frac{1}{R}$ und $\kappa_2=0$, also K(p)=0 und $H(p)=\frac{1}{2R}$. Also ist jeder Punkt $p\in Z_R$ parabolisch. $(-x_2,x_1,0)$ und (0,0,1) sind Hauptkrümmungsrichtungen und Krümmungslinien sind vertikale Geradensegmente oder horizontale Kreissegmente.

Beispiel (Sphäre S_R^2 vom Radius R). Betrachte das nach Innen gerichtete Einheitsnormalenfeld $N(p)=-\frac{1}{R}p$. Dann ist $W_p=\frac{1}{R}\operatorname{id}_{T_pS_R^2}$, also $\kappa_1=\kappa_2=\frac{1}{R},\ K(p)=\frac{1}{R^2}$ und $H(p)=\frac{1}{R}$. Also sind alle $p\in S_R^2$ elliptisch und jede Richtung ist Hauptkrümmungsrichtung, jede nach Bogenlänge parametrisierte Kurve in S_R^2 ist Krümmungslinie.

Die 2. Fundamentalform (bzw. die Weingartenabbildung) beschreibt die Fläche lokal um p bis zur 2. Ordnung:

Satz. Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld N. Seien κ_1, κ_2 die Hauptkrümmungen in $p \in S$, $X_1, X_2 \in T_pS$ die Hauptkrümmungsrichtungen, so dass $\{X_1, X_2, N(p)\}$ eine positiv orientierte Orthonormalbasis von \mathbb{R}^3 ist. Dann existiert eine lokale Parametrisierung $F: U \to V \cap S$ um p mit

$$F(x_1, x_2) = p + \sum_{i=1}^{2} x_i X_i + \frac{1}{2} \sum_{i=1}^{2} x_i^2 \kappa_i N(p) + o(\|x\|^2).$$

Beweis. Sei zunächst $F: U \to V \cap S$ eine lokale Parametrisierung mit F(0) = p, $\frac{\partial F}{\partial x_i}(0) = X_i$. Dann gilt

$$F(x_1, x_2) = p + \sum_{i=1}^{2} x_i X_i + \frac{1}{2} \sum_{i,j=1}^{2} x_i x_j \frac{\partial^2 F}{\partial x_i \partial x_j}(0) + o(\|x\|^2).$$

Es ist
$$\frac{\partial^2 F}{\partial x_i \partial x_j}(0) = \left\langle \frac{\partial^2 F}{\partial x_i \partial x_j}(0), X_1 \right\rangle X_1 + \left\langle \frac{\partial^2 F}{\partial x_i \partial x_j}(0), X_2 \right\rangle X_2 + \left\langle \frac{\partial^2 F}{\partial x_i \partial x_j}(0), N(p) \right\rangle N(p).$$
 Also
$$F(x_1, x_2) = p + \sum_{k=1}^2 \underbrace{\left(x_k + \frac{1}{2} \sum_{i,j=1}^2 \left\langle \frac{\partial^2 F}{\partial x_i \partial x_j}(0), X_k \right\rangle \right)}_{\tilde{x}_k} X_k + \frac{1}{2} \sum_{i,j=1}^2 x_i x_j \underbrace{\left(\frac{\partial^2 F}{\partial x_i \partial x_j}(0), N(p) \right\rangle}_{\kappa_i \delta_{ij}} N(p) + o(\|x\|^2)$$

Betrachte nun $\phi(x_1, x_2) = (\tilde{x}_1(x_1, x_2), \tilde{x}_2(x_1, x_2)), \phi \colon U \to \mathbb{R}^2$. Dann gilt

$$D\phi(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

und $\phi(0) = 0$. Also existiert eine lokale Umkehrung $\psi \colon \widetilde{U} \to \psi(\widetilde{U}) \subseteq U$ mit $D\psi(0) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ und $\psi(0) = 0$. Sei $\widetilde{F} = F \circ \psi \colon \widetilde{U} \to \widetilde{V} \cap S$ mit $\widetilde{V} \subseteq \mathbb{R}^3$ offen. Dann gilt

$$\widetilde{F}(\widetilde{x}_1, \widetilde{x}_2) = p + \sum_{k=1}^{2} \widetilde{x}_k X_k + \frac{1}{2} \sum_{k=1}^{2} x_k (\widetilde{x}_1, \widetilde{x}_2)^2 \kappa_k N(p) + o(\|x(\widetilde{x})\|^2) =$$

$$= p + \sum_{k=1}^{2} \widetilde{x}_k X_k + \frac{1}{2} \sum_{k=1}^{2} \widetilde{x}_k^2 \kappa_i N(p) + o(\|\widetilde{x}\|^2)$$

$$da \ x(\tilde{x}) = \tilde{x} + o(\|\tilde{x}\|).$$

Bemerkung. Sei jetzt $Q(x_1, x_2) = p + \sum_{i=1}^2 x_i X_i + \frac{1}{2} \sum_{i=1}^2 x_i^2 \kappa_i N(p)$ eine solche Approximation bis zur 2. Ordnung p. Ist K(p) > 0, so beschreibt Q einen Paraboloid. Ist K(p) < 0, so beschreibt Q eine Sattelfläche.

2.5 Integration und Flächeninhalt

Definition. Sei $F: U \to V \cap S$ eine lokale Parametrisierung der Fläche $S \subseteq \mathbb{R}^3$. Eine Funktion $f: S \to \mathbb{R}$ mit $f|_{S \setminus V} = 0$ heißt integrierbar, falls die Funktion $U \to \mathbb{R}$, $(x_1, x_2) \mapsto (f \circ F)(x_1, x_2) \sqrt{\det(g_{ij}(x_1, x_2))_{i,j}}$ integrierbar ist. In diesem Fall setzen wir

$$\int_{S} f \, dA = \int_{U} (f \circ F)(x_1, x_2) \sqrt{\det(g_{ij}(x_1, x_2))_{ij}} \, dx_1 dx_2$$

Lemma. Seien $F: U \to V \cap S$ bzw. $\widetilde{F}: \widetilde{U} \to \widetilde{V} \cap S$ lokale Parametrisierungen von $S \subseteq \mathbb{R}^3$. Dann gilt für $f: S \to \mathbb{R}$ mit $f|_{S \setminus (V \cap \widetilde{V})} = 0$:

$$(f \circ F)\sqrt{\det(g_{ij})}$$
 integrierbar $\iff (f \circ \widetilde{F})\sqrt{\det(\widetilde{g}_{ij})}$ integrierbar

In diesem Fall gilt

$$\int_{U} (f \circ F) \sqrt{\det(g_{ij})} \, \mathrm{d}x_{1} \mathrm{d}x_{2} = \int_{\widetilde{U}} (f \circ \widetilde{F}) \sqrt{\det(\widetilde{g}_{ij})} \, \mathrm{d}\widetilde{x}_{1} \mathrm{d}\widetilde{x}_{2}.$$

Beweis. Sei $\phi = F^{-1} \circ \widetilde{F}$ der Parametrisierungswechsel. Dann gilt

$$\tilde{g}_{ij}(\tilde{x}) = \sum_{k,l=1}^{2} \frac{\partial \phi_k}{\partial \tilde{x}_i} (\tilde{x}) \frac{\partial \phi_l}{\partial \tilde{x}_j} (\tilde{x}) g_{kl}(\phi(\tilde{x})) = \sum_{k,l=1}^{2} D\phi(\tilde{x})_{ki} D\phi(\tilde{x})_{lj} g_{kl}(\phi(\tilde{x})).$$

Also ist $(\tilde{g}_{ij}) = (D\phi)^T (g_{ij} \circ \phi)(D\phi)$. Also ist $\det(\tilde{g}_{ij}) = (\det D\phi)^2 \det(g_{ij} \circ \phi)$, also $\sqrt{\det(\tilde{g}_{ij})} = |\det D\phi| \sqrt{\det(g_{ij} \circ \phi)}$. Die Transformationsformel liefert

$$\int_{F^{-1}(V \cap \widetilde{V})} (f \circ F) \sqrt{\det(g_{ij})} \, \mathrm{d}x_1 \mathrm{d}x_2 = \int_{\widetilde{F}^{-1}(V \cap \widetilde{V})} (f \circ \widetilde{F}) \sqrt{\det(g_{ij} \circ \phi)} |\det D\phi| \, \mathrm{d}\tilde{x}_1 \mathrm{d}\tilde{x}_2$$

Also folgt die Behauptung.

Definition. $f: S \to \mathbb{R}$ heißt integrierbar, falls $f = f_1 + \cdots + f_k$ mit $f_i|_{S \setminus V_i} = 0$ mit lokalen Parametrisierungen $F_i: U_i \to V_i \cap S$ und integrierbaren f_i existieren. In diesem Fall setzen wir

$$\int_{S} f \, \mathrm{d}A = \sum_{i=1}^{k} \int_{S} f_i \, \mathrm{d}A$$

Bemerkung. Sei $f: S \to \mathbb{R}$ und $A \subseteq S$. Für $\chi_A f =: f_A$ gilt $f_A|_{S \setminus A} = 0$. Z.B. für $A = V \cap S$: $\chi_{V \cap S} f$ lässt sich direkt integrieren.

Bemerkung. Ist auch $f = \tilde{f}_1 + \cdots + \tilde{f}_{\ell}$ mit $\tilde{f}_j|_{S \setminus V_i} = 0$, so gilt

$$\sum_{i=1}^{k} \int_{S} f_i \, \mathrm{d}A = \sum_{j=1}^{\ell} \int_{S} \tilde{f}_j \, \mathrm{d}A.$$

Der Wert des Integrals hängt also nicht von der Art der Zerlegung ab.

Bemerkung. Die üblichen Eigenschaften des Integrals übertragen sich:

$$\int_{S} \lambda f + \mu g \, dA = \lambda \int_{S} f \, dA + \mu \int_{S} g \, dA$$

für $\lambda, \mu \in \mathbb{R}$ und integrierbare $f, g: S \to \mathbb{R}$, und

$$\int_{S} f \, \mathrm{d}A \le \int_{S} g \, \mathrm{d}A$$

für integrierbare $f, g: S \to \mathbb{R}$ mit $f \leq g$.

Definition. $N \subseteq S$ heißt *Nullmenge*, falls $F^{-1}(N) \subseteq U$ eine Nullmenge ist für jede lokale Parametrisierung $F: U \to V \cap S$ von S.

Bemerkung. Ist $f: S \to \mathbb{R}$ und $g: S \to \mathbb{R}$ und $g|_{S \setminus N} = f|_{S \setminus N}$ für eine Nullmenge $N \subseteq S$, so ist g integrierbar mit

$$\int_{S} f \, \mathrm{d}A = \int_{S} g \, \mathrm{d}A.$$

Definition. Ist f = 1 integrierbar, so heißt

$$A(S) = \int_{S} 1 \, \mathrm{d}A$$

der Flächeninhalt von S.

Beispiel (Sphäre S_R^2 vom Radius R). Sei $U=(-\pi/2,\pi/2)\times(0,2\pi),\ V=\mathbb{R}^3\setminus\{x_1\geq 0,x_2=0\}$ und $F\colon U\to V\cap S, (\varphi,\theta)\mapsto (R\cos\varphi\cos\theta,R\cos\varphi\sin\theta,R\sin\varphi)$. Dann ist $S\smallsetminus V$ eine 1-dimensionale Untermannigfaltigkeit, also eine Nullmenge. Früher:

$$(g_{ij})_{i,j} = \begin{pmatrix} R^2 & 0\\ 0 & R^2 \cos^2 \varphi \end{pmatrix}$$

Also ist $\sqrt{\det(g_{ij})} = R^2 |\cos \varphi|$ und

$$A(S) = \int_0^{2\pi} \int_{-\pi/2}^{\pi/2} R^2 \cos \varphi \, d\varphi \, d\theta = 4\pi R^2.$$

2.6 Spezielle Klassen von Flächen

2.6.1 Minimalflächen

Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld $N, A(S) < \infty$ und $F \colon U \to V \cap S$ eine lokale Parametrisierung. Sei weiterhin $f \colon S \to \mathbb{R}$ differenzierbar mit kompaktem Träger in $V \cap S$. Für genügend kleines t ist

$$S_t := \{ p + f(p)t N(p) \colon p \in S \}$$

eine Fläche mit lokaler Parametrisierung

$$F_t \colon U \to V \cap S_t, x \mapsto F(x) + t(f \circ F)(x)(N \circ F)(x)$$

Wir möchten $\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} A(S_t)$ berechnen.

Lemma (1. Variation des Flächeninhalts). Es gilt

$$\frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} A(S_t) = -2 \int_S f \cdot H \, \mathrm{d}A$$

mit der mittleren Krümmung H von S.

Beweis. Es gilt

$$\frac{\partial F_t}{\partial x_i} = \frac{\partial F}{\partial x_i} + t \frac{\partial (f \circ F)}{\partial x_i} (N \circ F) + t (f \circ F) \frac{\partial (N \circ F)}{\partial x_i}$$

Also ist

$$(g_t)_{ij} = \left\langle \frac{\partial F_t}{\partial x_i}, \frac{\partial F_t}{\partial x_j} \right\rangle_{\mathbb{R}^3} =$$

$$= \left\langle \frac{\partial F}{\partial x_i}, \frac{\partial F}{\partial x_j} \right\rangle + t(f \circ F) \left\langle \frac{\partial F}{\partial x_i}, \frac{\partial (N \circ F)}{\partial x_j} \right\rangle + t(f \circ F) \left\langle \frac{\partial (N \circ F)}{\partial x_i}, \frac{\partial F}{\partial x_j} \right\rangle + o(t) =$$

$$= g_{ij} - 2t(f \circ F)h_{ij} + o(t)$$

und

$$\det ((g_t)_{ij}) = g_{11}g_{22} - 2t(f \circ F)(g_{11}h_{22} + h_{11}g_{22}) - g_{21}g_{12} + + 2t(f \circ F)(g_{21}h_{12} + h_{21}g_{12}) + o(t) = = \det(g_{ij}) + 2t(f \circ F)(-g_{11}h_{22} - h_{11}g_{22} + g_{21}h_{12} + h_{21}g_{12}) + o(t)$$

Es gilt

$$h_{ij} = g\left(\frac{\partial F}{\partial x_i}, W\frac{\partial F}{\partial x_j}\right) = \sum_{k=1}^{2} W_{kj}g_{ik}$$

für die Matrix (W_{ij} von W bzgl. $\left\{\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}\right\}$. Also

$$\det ((g_t)_{ij}) = \det(g_{ij}) + 2t(f \circ F)(-g_{11}(g_{21}W_{12} + g_{22}W_{22}) - g_{22}(g_{11}W_{11} + g_{12}W_{21}) + g_{21}(g_{11}W_{12} + g_{12}W_{22}) + g_{12}(g_{21}W_{11} + g_{12}W_{21})) + o(t) =$$

$$= \det(g_{ij}) - 2t(f \circ F) \det(g_{ij})(W_{11} + W_{22}) + o(t) =$$

$$= \det(g_{ij})(1 - 4t(f \circ F)H) + o(t)$$

und

$$\sqrt{\det((g_t)_{ij})} = \sqrt{\det(g_{ij})} (1 - 2t(f \circ F)H) + o(t).$$

Insgesamt folgt

$$A(S_t) = \int_S (1 - 2t f \cdot H + o(t)) dA = A(S) - 2t \int_S f \cdot H dA + o(t).$$

Definition. Eine Fläche $S \subseteq \mathbb{R}^3$ mit H = 0 heißt Minimalfläche.

Bemerkung. Für Minimalflächen S ist $\frac{d}{dt}\Big|_{t=0} A(S_t) = 0.$

Bemerkung (Seifenhäute). Sei $S \subseteq \mathbb{R}^3$ eine Fläche mit kompaktem Abschluss \overline{S} . Hat S minimalen Flächeninhalt unter solchen Flächen \widetilde{S} mit demselben Rand $\partial \widetilde{S} = \partial S$, so hat S verschwindende mittlere Krümmung.

Beweis. Betrachte eine Variation S_t wie oben. Dann ist $\partial S_t = \partial S$ und

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} A(S_t) = -2 \int_S f \cdot H \, \mathrm{d}A.$$

Angenommen $H(p) \neq 0$, etwa H(p) > 0 für $p \in S$. Wähle $f : S \to \mathbb{R}$ wie folgt: Es existiert ein offenes $\widetilde{V} \subseteq V$ und $\delta > 0$ mit $H(q) \geq \delta$ für alle $q \in \widetilde{V} \cap S$. Setze $f = \chi_{\widetilde{V} \cap S} \cdot H$. Dann wäre

$$\int_{S} f \cdot H \, \mathrm{d}A = \int_{S} \chi_{\widetilde{V} \cap S} H^{2} \, \mathrm{d}A \ge A(\widetilde{V} \cap S) \delta^{2} > 0.$$

3 Innere Geometrie von Flächen

3.1 Isometrien

Definition. Seien $S, \widetilde{S} \subseteq \mathbb{R}^3$ Flächen. Eine differenzierbare Abbildung $f : S \to \widetilde{S}$ heißt lokale Isometrie, falls $Df(p) : T_pS \to T_{f(p)}\widetilde{S}$ für alle $p \in S$ eine lineare Isometrie bezüglich der jeweiligen 1. Fundamentalform g_p und $\tilde{g}_{f(p)}$ ist, d.h. $\tilde{g}_{f(p)}(Df(p)v, Df(p)w) = g_p(v, w)$ für alle $v, w \in T_pS$.

Bemerkung. Ist $f \colon S \to \widetilde{S}$ eine lokale Isometrie, so ist f ein lokaler Diffeomorphismus.

Beispiel. $f: E_{e_1,e_2} \to Z_R, (x_1,x_2) \mapsto (R\cos(x_1/R), R\sin(x_1/R), x_2)$ ist eine lokale Isometrie, denn

$$\left\langle \frac{\partial f}{\partial x_i}, \frac{\partial f}{\partial x_j} \right\rangle = \delta_{ij} \quad i, j = 1, 2.$$

Früher haben wir gezeigt, dass $K_{E_{e_1,e_2}}=K_{Z_R}=0,\,H_{E_{e_1,e_2}}=0$ und $H_{Z_R}=\frac{1}{2R}.$

Bemerkung. Eine Größe der inneren Geometrie ist eine Größe, die invariant unter lokalen Isometrien ist. Die mittlere Krümmung ist also keine Größe der inneren Geometrie. Für eine lokale Isometrie $f \colon S \to \widetilde{S}$ gilt im Allgemeinen $(\widetilde{H} \circ f)(p) \neq H(p)$ für $p \in S$, siehe obiges Beispiel.

Definition. Ein Diffeomorphismus $f \colon S \to \widetilde{S}$ heißt *Isometrie*, falls er eine lokale Isometrie ist.

Definition. Zwei Flächen $S, \widetilde{S} \subseteq \mathbb{R}^3$ heißen (lokal) isometrisch, falls eine (lokale) Isometrie $S \to \widetilde{S}$ existiert.

Beispiel. Ebene und Zylinder von Radius R > 0 sind lokal isometrisch, aber nicht isometrisch (Übung).

3.2 Vektorfelder und kovariante Ableitung

Definition. Sei $S \subseteq \mathbb{R}^3$ eine Fläche. Eine (differenzierbare) Abbildung $X \colon S \to \mathbb{R}^3$ mit $X(p) \in T_pS$ für alle $p \in S$ heißt (differenzierbares) Vektorfeld.

Bemerkung. Sei $F\colon U\to V\cap S$ eine lokale Parametrisierung um $p\in S$. Dann ist $\left\{\frac{\partial F}{\partial x_1}(x),\frac{\partial F}{\partial x_2}(x)\right\}$ eine Basis von $T_{F(x)}(S)$ für $x\in U$ und somit gilt

$$(X \circ F)(x) = \sum_{i=1}^{2} X_i(x) \frac{\partial F}{\partial x_i}(x)$$

für eindeutig bestimmte Funktionen $X_i \colon U \to \mathbb{R}$ (die Koeffizientenfunktionen von X bezüglich F).

Bemerkung. X ist differenzierbar um p genau dann, wenn $X_i^F \colon U \to \mathbb{R}$ differenzierbar um $F^{-1}(p)$ sind für eine lokale Parametrisierung F um p. Dies ist genau dann der Fall, wenn $X_i^F \colon U \to \mathbb{R}$ für jede lokale Parametrisierung F um $F^{-1}(p)$ differenzierbar sind.

Beispiel. Sei $f: S \to \mathbb{R}$ differenzierbar. Da g_p nicht ausgeartet ist, existiert genau ein grad $f(p) \in T_pS$ mit $Df(p)v = g_p(\operatorname{grad} f(p), v)$ für alle $v \in T_pS$. Das Vektorfeld grad f heißt Gradientenvektorfeld von f. Ist $F: U \to V \cap S$ eine lokale Parametrisierung, so gilt für $X = \operatorname{grad} f$:

$$\frac{\partial (f \circ F)}{\partial x_j}(x) = (Df)(F(x))\frac{\partial F}{\partial x_j}(x) = g_{F(x)}\bigg(X(F(x)), \frac{\partial F}{\partial x_j}(x)\bigg) = \sum_{i=1}^2 X_i(x)g_{ij}(x).$$

Für $G = (g_{ij})$ gilt also

$$\begin{pmatrix} \frac{\partial (f \circ F)}{\partial x_1} \\ \frac{\partial (f \circ F)}{\partial x_2} \end{pmatrix} = G \begin{pmatrix} X_1 \\ X_2 \end{pmatrix}$$

bzw.

$$\begin{pmatrix} X_1 \\ X_2 \end{pmatrix} = G^{-1} \begin{pmatrix} \frac{\partial (f \circ F)}{\partial x_1} \\ \frac{\partial (f \circ F)}{\partial x_2} \end{pmatrix}$$

Ist $f\colon S\to\mathbb{R}$ also differenzierbar der Klasse \mathscr{C}^{k+1} , so ist grad f differenzierbar der Klasse \mathscr{C}^k

Definition. Für $v \in T_pS$ und differenzierbares $f: S \to \mathbb{R}$ heißt $v(f) = (Df(p))v \in \mathbb{R}$ die *Richtungsableitung* von f in Richtung v. Für ein Vektorfeld $X: S \to \mathbb{R}^3$ setzen wir $X(f): S \to \mathbb{R}, p \mapsto (X(p))(f)$.

Bemerkung. Ist f differenzierbar der Klasse \mathscr{C}^{k+1} und X differenzierbar der Klasse \mathscr{C}^k , so ist X(f) differenzierbar der Klasse \mathscr{C}^k .

Lemma. Seien $X,Y:S\to\mathbb{R}^3$ differenzierbare Vektorfelder der Klasse \mathscr{C}^{k+1} . Dann existiert ein eindeutiges differenzierbares Vektorfeld $[X,Y]:S\to\mathbb{R}^3$ der Klasse \mathscr{C}^k , so dass [X,Y]f=X(Yf)-Y(Xf) für alle differenzierbaren $f:S\to\mathbb{R}$ der Klasse \mathscr{C}^ℓ mit $\ell\geq 2$.

Beweis. Sei $F: U \to V \cap S$ eine lokale Parametrisierung. Dann gilt $X \circ F = \sum_{i=1}^2 X_i \frac{\partial F}{\partial x_i}$ und $Y \circ F = \sum_{i=1}^2 Y_i \frac{\partial F}{\partial x_i}$ für $X_i, Y_i: U \to \mathbb{R}$ differenzierbar. Also gilt für differenzierbares $f: S \to \mathbb{R}$

$$X(f) \circ F = \sum_{i=1}^{2} X_i \frac{\partial (f \circ F)}{\partial x_i}, \quad Y(f) \circ F = \sum_{i=1}^{2} Y_i \frac{\partial (f \circ F)}{\partial x_i}$$

und

$$X(Yf) \circ F = \sum_{i,i=1}^{2} X_{i} \frac{\partial}{\partial x_{i}} \left(Y_{j} \frac{\partial (f \circ F)}{\partial x_{j}} \right) = \sum_{i,j=1}^{2} \left(X_{i} \frac{\partial Y_{j}}{\partial x_{i}} \frac{\partial (f \circ F)}{\partial x_{j}} + X_{i} Y_{j} \frac{\partial^{2} (f \circ F)}{\partial x_{i} \partial x_{j}} \right)$$

und analog

$$Y(Xf) \circ F = \sum_{i,j=1}^{2} \left(Y_i \frac{\partial X_j}{\partial x_i} \frac{\partial (f \circ F)}{\partial x_j} + Y_i X_j \frac{\partial^2 (f \circ F)}{\partial x_i \partial x_j} \right)$$

Also ist

$$(X(Yf) - Y(Xf)) \circ F = \sum_{j=1}^{2} \underbrace{\left(\sum_{i=1}^{2} X_{i} \frac{\partial Y_{j}}{\partial x_{i}} - Y_{i} \frac{\partial X_{j}}{\partial x_{i}}\right)}_{Z_{j} : U \to \mathbb{R}} \frac{\partial (f \circ F)}{\partial x_{j}} = Zf \circ F$$

für $Z \circ F = \sum_{i=1}^{2} Z_i \frac{\partial (f \circ F)}{\partial x_i}$. Dies definiert ein eindeutiges Vektorfeld $Z \colon S \to \mathbb{R}^3$ mit Zf = X(Yf) - Y(Xf) für alle $f \colon S \to \mathbb{R}$.

Definition. Das Vektorfeld $[X,Y]: S \to \mathbb{R}^3$ heißt *Kommutator* von X und Y.

Sei $X: S \to \mathbb{R}^3$ ein Vektorfeld und $v \in T_pS$. Wir wollen die Richtungsableitung von X in die Richtung von v definieren. Diese sollte ein Tangentialvektor in T_pS sein. Problematisch ist dabei allerdings, dass im Allgemeinen $(DX(p))(v) \notin T_pS$. Wir betrachten daher die orthogonale Projektion $\pi_p: \mathbb{R}^3 \to T_pS, v \mapsto v - \langle v, N(p) \rangle N(p)$ für einen der beiden Einheitsnormalenvektoren N(p).

Definition. Sei $X: S \to \mathbb{R}^3$ ein differenzierbares Vektorfeld und $v \in T_pS$. Dann heißt $\nabla_v X := \pi_p(DX(p)(v)) \in T_pS$ die kovariante Ableitung von X in p in Richtung v. Für ein weiteres Vektorfeld $Y: S \to \mathbb{R}^3$ heißt das Vektorfeld $\nabla_Y X$ definiert durch $(\nabla_Y X)(p) = \nabla_{Y(p)} X$ die kovariante Ableitung von X in Richtung Y.

Bemerkung (Ausdruck bezüglich einer lokalen Parametrisierung $F\colon U\to S\cap V$). Schreibe $X\circ F=\sum_{i=1}^2 X_i \frac{\partial F}{\partial x_i}$ und $Y\circ F=\sum_{i=1}^2 Y_i \frac{\partial F}{\partial x_i}$. Dann gilt

$$\nabla_{Y} X \circ F = \pi \left(DX(Y) \circ F \right) = \pi \left(\sum_{i=1}^{2} Y_{i} \frac{\partial X \circ F}{\partial x_{i}} \right) =$$

$$= \pi \left(\sum_{i=1}^{2} Y_{i} \sum_{j=1}^{2} \frac{\partial X_{j}}{\partial x_{i}} \frac{\partial F}{\partial x_{j}} + X_{j} \frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} \right) =$$

$$= \sum_{i=1}^{2} Y_{i} \sum_{j=1}^{2} \left(\frac{\partial X_{j}}{\partial x_{i}} \frac{\partial F}{\partial x_{j}} + X_{j} \pi \left(\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} \right) \right)$$

Wir entwickeln $\frac{\partial^2 F}{\partial x_i \partial x_j}(x)$ in die Basis $\left\{\frac{\partial F}{\partial x_1}(x), \frac{\partial F}{\partial x_2}(x), N(F(x))\right\}$, wobei $N(F(x)) = \frac{\partial F}{\partial x_1}(x) \times \frac{\partial F}{\partial x_2} / \left\|\frac{\partial F}{\partial x_1}(x) \times \frac{\partial F}{\partial x_2}\right\|$:

$$\frac{\partial^2 F}{\partial x_i \partial x_j} = \Gamma_{ij}^1(x) \frac{\partial F}{\partial x_1}(x) + \Gamma_{ij}^2(x) \frac{\partial F}{\partial x_2}(x) + h_{ij}(x) N(F(x))$$

für eindeutig bestimmte Funktionen $\Gamma_{ij}^k \colon U \to \mathbb{R}$. Damit ist

$$\begin{split} \nabla_Y X \circ F &= \sum_{i=1}^2 Y_i \sum_{j=1}^2 \left(\frac{\partial X_j}{\partial x_i} \frac{\partial F}{\partial x_j} + X_j \sum_{k=1}^2 \Gamma^k_{ij} \frac{\partial F}{\partial x_k} \right) = \\ &= \sum_{j=1}^2 \left(\sum_{i=1}^2 Y_i \frac{\partial X_j}{\partial x_i} \right) \frac{\partial F}{\partial x_j} + \sum_{k=1}^2 \left(\sum_{i,j=1}^2 Y_i X_j \Gamma^k_{ij} \right) \frac{\partial F}{\partial x_k} \end{split}$$

Definition. In der Basisentwicklung der zeiten Ableitung einer lokalen Parametrisierung

$$\frac{\partial^2 F}{\partial x_i \partial x_j} = \Gamma_{ij}^1(x) \frac{\partial F}{\partial x_1}(x) + \Gamma_{ij}^2(x) \frac{\partial F}{\partial x_2}(x) + h_{ij}(x) N(F(x))$$

heißen die Koeffizientenfunktionen $\Gamma^k_{ij}\colon U\to\mathbb{R},\ i,j,k=1,2,\ \textit{Christoffelsymbole}.$ Es gilt für Vektorfelder X,Y

$$\nabla_Y X \circ F = \sum_{j=1}^2 \left(\sum_{i=1}^2 Y_i \frac{\partial X_j}{\partial x_i} \right) \frac{\partial F}{\partial x_j} + \sum_{k=1}^2 \left(\sum_{i,j=1}^2 Y_i X_j \Gamma_{ij}^k \right) \frac{\partial F}{\partial x_k}$$

Bemerkung. Für die Vektorfelder

$$\frac{\partial}{\partial x_i} = \frac{\partial F}{\partial x_i} \circ F^{-1} \colon V \cap S \to \mathbb{R}^3, \quad i = 1, 2$$

gilt also insbesondere

$$\nabla_{\partial/\partial x_i} \frac{\partial}{\partial x_j} \circ F = \sum_{k=1}^2 \Gamma_{ij}^k \frac{\partial F}{\partial x_k}$$

Bemerkung. Es gilt $\Gamma_{ij}^k = \Gamma_{ji}^k$ nach dem Satz von Schwartz.

Lemma. Für die Christoffelsymbole gilt

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{\ell=1}^{2} \left(\frac{\partial g_{j\ell}}{\partial x_i} + \frac{\partial g_{i\ell}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_\ell} \right) g^{\ell k}$$

wobei g^{ij} die Koeffizienten von $(g_{ij})_{i,j}^{-1}$ sind.

Beweis. Es gilt $g_{j\ell} = (g \circ F) \left(\frac{\partial F}{\partial x_j}, \frac{\partial F}{\partial x_\ell} \right) = \left\langle \frac{\partial F}{\partial x_j}, \frac{\partial F}{\partial x_\ell} \right\rangle$ und daher

$$\begin{split} \frac{\partial g_{j\ell}}{\partial x_i} &= \left\langle \frac{\partial^2 F}{\partial x_i \partial x_j}, \frac{\partial F}{\partial x_\ell} \right\rangle + \left\langle \frac{\partial F}{\partial x_j}, \frac{\partial^2 F}{\partial x_i \partial x_\ell} \right\rangle = \\ &= \left\langle \sum_{k=1}^2 \Gamma_{ij}^k \frac{\partial F}{\partial x_k}, \frac{\partial F}{\partial x_\ell} \right\rangle + \left\langle \frac{\partial F}{\partial x_j}, \sum_{k=1}^2 \Gamma_{i\ell}^k \frac{\partial F}{\partial x_k} \right\rangle = \sum_{k=1}^2 \left(\Gamma_{ij}^k g_{k\ell} + \Gamma_{i\ell}^k g_{jk} \right) \end{split}$$

und analog

$$\frac{\partial g_{i\ell}}{\partial x_j} = \sum_{k=1}^{2} \left(\Gamma_{ji}^k g_{k\ell} + \Gamma_{jl}^k g_{ik} \right)$$

$$\frac{\partial g_{ij}}{\partial x_{\ell}} = \sum_{k=1}^{2} \left(\Gamma_{\ell i}^{k} g_{kj} + \Gamma_{\ell j}^{k} g_{ik} \right)$$

Also folgt

$$\frac{\partial g_{j\ell}}{\partial x_i} + \frac{\partial g_{i\ell}}{\partial x_j} - \frac{\partial g_{ij}}{\partial x_\ell} = 2\sum_{k=1}^2 \Gamma_{ij}^k g_{k\ell} \qquad \Box$$

Bemerkung. Die Christoffelsymbole sind also Größen der inneren Geometrie.

Wir fassen die wichtigsten Eigenschaften der kovarianten Ableitung zusammen:

Satz. Für die kovariante Ableitung $(X,Y) \mapsto \nabla_X Y$ gilt:

- 1. $\nabla_X(\lambda_1 Y_1 + \lambda_2 Y_2) = \lambda_1 \nabla_X Y_1 + \lambda_2 \nabla_X Y_2$ für $\lambda_1, \lambda_2 \in \mathbb{R}$ und Vektorfelder X, Y_1, Y_2 .
- 2. $\nabla_X(fY) = X(f)Y + f\nabla_X Y \text{ für } f \colon S \to \mathbb{R} \text{ und Vektorfelder } X, Y.$
- 3. $\nabla_{f_1X_1+f_2X_2}Y = f_1\nabla_{X_1}Y + f_2\nabla_{X_2}Y$ für $f_1, f_2 \colon S \to \mathbb{R}$ und Vektorfelder X_1, X_2, Y .
- 4. $Xg(Y,Z) = g(\nabla_X Y, Z) + g(Y, \nabla_X Z)$ für Vektorfelder X, Y, Z.
- 5. $\nabla_X Y \nabla_Y X = [X, Y]$ für Vektorfelder X, Y (Torsionsfreiheit).

Beweis. 1-3 folgen aus $\nabla_X Y = \pi(DX(Y))$ und $DX(\lambda_1 Y_1 + \lambda_2 Y_2) = \lambda_1 DX(Y_1) + \lambda_2 DX(Y_2)$, DX(fY) = DX(f)Y + fDX(Y) und $D(f_1X_1 + f_2X_2)(Y) = f_1 DX_1(Y) + f_2 DX_2(Y)$.

Weiter gilt $Xg(Y,Z) = X\langle Y,Z \rangle = \langle DY(X),Z \rangle + \langle Y,DZ(X) \rangle = \langle \pi(DY(X)),Z \rangle + \langle Y,\pi(DZ(X)) \rangle = g(\nabla_X Y,Z) + g(Y,\nabla_X Z)$ und bezüglich einer lokalen Parametrisierung F gilt

$$(\nabla_X Y - \nabla_Y X) \circ F = \sum_{j=1}^2 \left(\sum_{i=1}^2 X_i \frac{\partial Y_j}{\partial x_i} - Y_i \frac{\partial X_j}{\partial x_i} \right) \frac{\partial F}{\partial x_j} = [X, Y] \circ F. \quad \Box$$

3.3 Krümmungstensor & Theorema Egregium

Definition. Seien $X, Y, Z \colon S \to \mathbb{R}^3$ Vektorfelder: Die zweite kovariante Ableitung von Z nach X und Y ist definiert durch

$$\nabla_{X,Y}^2 Z = \nabla_X(\nabla_Y Z) - \nabla_{\nabla_X Y} Z$$

Lemma. Sei $F: U \to V \cap S$ eine lokale Parametrisierung und $X \circ F = \sum_i X_i \frac{\partial F}{\partial x_i}$, $Y \circ F = \sum_i Y_i \frac{\partial F}{\partial x_i}$, $Z \circ F = \sum_i Z_i \frac{\partial F}{\partial x_i}$. Dann gilt $\nabla^2_{X,Y} Z \circ F = \sum_i (\nabla^2_{X,Y} Z)_i \frac{\partial F}{\partial x_i}$ mit

$$\begin{split} (\nabla^2_{X,Y}Z)_m &= \sum_{i,j} \frac{\partial^2 Z_m}{\partial x_i \partial x_j} X_i Y_j + \sum_{i,j,k} \Gamma^m_{ij} \frac{\partial Z}{\partial x_k} (X_i Y_k + X_k Y_j) - \sum_{i,j,k} \Gamma^k_{ij} \frac{\partial Z_m}{\partial x_k} X_i Y_j \\ &+ \sum_{i,j,k} \left(\frac{\partial \Gamma^m_{ij}}{\partial x_i} + \sum_{\ell} (\Gamma^m_{\ell i} \Gamma^\ell_{kj} - \Gamma^m_{k\ell} \Gamma^\ell_{ij}) X_i Y_j Z_k \right) \end{split}$$

Beweis. Es gilt(s.o.):

$$\begin{split} \nabla_{Y}Z \circ F &= \sum_{k} \underbrace{\left(\sum_{\ell} \frac{\partial Z_{k}}{\partial x_{\ell}} Y_{\ell} + \sum_{i,j} \Gamma_{ij}^{k} Z_{i} Y_{j}\right)}_{=:U_{k}} \frac{\partial F}{\partial x_{k}} \\ \nabla_{X}\underbrace{\left(\nabla_{Y}Z\right)}_{U} &= \sum_{\alpha} \left(\sum_{m} \frac{\partial U_{\alpha}}{\partial x_{m}} X_{m} + \sum_{\beta,\gamma} \Gamma_{\beta\gamma}^{\alpha} U_{\beta} X_{\gamma}\right) \frac{\partial F}{\partial x_{\alpha}} = \\ &= \sum_{\alpha} \left(\sum_{m,\ell} \left(\frac{\partial^{2} Z_{\alpha}}{\partial x_{m} \partial x_{\ell}} Y_{\ell} X_{m} + \frac{\partial Z_{\alpha}}{\partial x_{\ell}} \frac{\partial Y_{\ell}}{\partial x_{m}} X_{m}\right) \right. \\ &+ \sum_{m,i,j} \left(\frac{\partial \Gamma_{ij}^{\alpha}}{\partial x_{m}} Z_{i} Y_{j} X_{m} + \Gamma_{ij}^{\alpha} \frac{\partial Z_{i}}{\partial x_{m}} Y_{j} X_{m} + \Gamma_{ij}^{\alpha} Z_{i} \frac{\partial Y_{j}}{\partial x_{m}} X_{m}\right) \\ &+ \sum_{\beta,\gamma,\ell} \left(\Gamma_{ij}^{\alpha} \frac{\partial Z_{\beta}}{\partial x_{\ell}} Y_{\ell} X_{j} + \Gamma_{\beta\gamma}^{\alpha} \Gamma_{ij}^{\beta} Z_{i} Y_{j} X_{j}\right) \frac{\partial F}{\partial x_{\alpha}} =: I_{1} \end{split}$$

Genauso

$$\nabla_{X}Y \circ F = \sum_{k} \underbrace{\left(\sum_{\ell} \frac{\partial Y_{k}}{\partial x_{\ell}} X_{\ell} + \sum_{i,j} \Gamma_{ij}^{k} Y_{i} X_{j}\right)}_{=:V_{k}} \frac{\partial F}{\partial x_{k}}$$

$$\nabla_{\nabla_{X}Y}Z \circ F = \sum_{\alpha} \left(\sum_{m} \frac{\partial Z_{\alpha}}{\partial x_{m}} V_{m} + \sum_{\beta,\gamma} \Gamma_{\beta\gamma}^{\alpha} Z_{\beta} V_{\gamma}\right) \frac{\partial F}{\partial x_{\alpha}} =$$

$$= \sum_{\alpha} \left(\sum_{m,\ell} \frac{\partial Z_{\alpha}}{\partial x_{m}} \frac{\partial Y_{m}}{\partial x_{\ell}} X_{\ell} + \sum_{m,i,j} \frac{\partial Z_{\alpha}}{\partial x_{m}} \Gamma_{ij}^{m} Y_{i} X_{j} + \sum_{\beta,\gamma,i,j} \Gamma_{\beta\gamma}^{\alpha} Z_{\beta} \Gamma_{ij}^{\gamma} Y_{i} X_{j}\right) \frac{\partial F}{\partial x_{\alpha}} =: I_{2}$$

Die Behauptete Formel ergibt sich als Differenz $I_1 - I_2$.

Korollar. Für $p \in S$ hängt $(\nabla^2_{X,Y}Z)(p) \in T_pS$ nur von $v := X(p) \in T_pS$ und $w := Y(p) \in T_pS$ ab. Für ein Vektorfeld $Z : S \to \mathbb{R}^3$ liefert die kovariante Ableitung also eine \mathbb{R} -bilineare Abbildung

$$T_p S \times T_p S \to T_p S$$

 $(v, w) \mapsto \nabla^2_{v, w} Z := (\nabla^2_{X, Y} Z)(p)$

für beliebige Vektorfelder $X, Y \colon S \to \mathbb{R}^3$ mit X(p) = v, Y(p) = w.

Bemerkung. Der Satz von Schwarz gilt im allgemeinen nicht für die zweite kovariante Ableitung, d.h. im allgemeinen $\nabla^2_{X,Y}Z \neq \nabla^2_{Y,X}Z$. Die Abweichung wird durch den Krümmungstensor gemessen.

Definition. Seien $v, w \in T_pS$ und $Z \colon S \to \mathbb{R}^3$ ein Vektorfeld. Dann ist der *Riemannsche Krümmungstensor* definiert durch

$$R(v,w)Z := \nabla_{v,w}^2 Z - \nabla_{w,v}^2 Z \in T_p S$$

Bemerkung. Offenbar ist R(v, w)Z schiefsymmetrisch in v und w.

Lemma. Sei $F: U \to V \cap S$ eine lokale Parametrisierung, $F(x_0) = p$, $v = \sum_i v_i \frac{\partial F}{\partial x_i}(x_0)$, $v = \sum_i w_i \frac{\partial F}{\partial x_i}(x_0)$, $v_i, w_i \in \mathbb{R}$. Dann gilt:

$$R(v, w)Z = \sum_{i,j,k,\ell} R_{ijk}^{\ell}(x_o)v_i w_j Z_k(x_0) \frac{\partial F}{\partial x_{\ell}}(x_0)$$

für

$$R_{ijk}^{\ell} := \frac{\partial \Gamma_{kj}^{\ell}}{\partial x_i} - \frac{\partial \Gamma_{ki}^{\ell}}{\partial x_i} + \sum_{m} (\Gamma_{mi}^{\ell} \Gamma_{kj}^{m} - \Gamma_{mj}^{\ell} \Gamma_{ki}^{m})$$

Beweis. Benutze Lemma 1: Die Terme, die symmetrisch in v, w (bzw. X, Y) sind, fallen weg.

Korollar. $R(v,w)Z \in T_pS$ hängt nur von $u := Z(p) \in T_pS$ ab, R liefert also eine \mathbb{R} -trilineare Abbildung

$$T_pS \times T_pS \times T_pS \to T_pS$$

 $(v, w, u) \mapsto R(v, w)u := R(v, w)Z$

 $f\ddot{u}r\ Z\colon S\to\mathbb{R}^3\ beliebig\ mit\ Z(p)=u.$

Satz (Gauß-Gleichung). Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld N. Dann gilt für $v, w, u \in T_nS$:

$$R(v, w)u = h(w, u) \cdot W(v) - h(v, u) \cdot W(w) \in T_nS$$

Mit der zweiten Fundamentalform $h: T_pS \times T_pS \to T_pS$ und der Weingartenabbildung $W: T_pS \to T_pS$.

Beweis. Sei $F: U \to V \cap S$ eine lokale Parametrisierung um p. Dann gilt (s.o.):

$$\frac{\partial^2 F}{\partial x_i \partial x_j} = \sum_k \Gamma_{ij}^k \frac{\partial F}{\partial x_k} + h_{ij}(N \circ F) \qquad h_{ij} = h \circ F \left(\frac{\partial F}{\partial x_i}, \frac{\partial F}{\partial x_j} \right)$$

also

$$\frac{\partial^{3} F}{\partial x_{\ell} \partial x_{i} \partial x_{j}} = \sum_{k} \left(\frac{\partial \Gamma_{ij}^{k}}{\partial x_{\ell}} \frac{\partial F}{\partial x_{k}} + \Gamma_{ij}^{k} \frac{\partial^{2} F}{\partial x_{\ell}, x_{k}} \right) + \frac{\partial h_{ij}}{\partial x_{\ell}} (N \circ F) + h_{ij} \frac{\partial (N \circ F)}{\partial x_{\ell}}$$

$$= \sum_{k} \left(\frac{\partial \Gamma_{ij}^{k}}{\partial x_{\ell}} \frac{\partial F}{\partial x_{k}} + \Gamma_{ij}^{k} \sum_{m} \Gamma_{\ell k}^{m} \frac{\partial F}{\partial x_{m}} \right) - h_{ij} W \left(\frac{\partial F}{\partial x_{k}} \right) + \text{Normalanteil}$$

$$= \sum_{m} \left(\frac{\partial \Gamma_{ij}^{m}}{\partial x_{\ell}} + \sum_{k} \Gamma_{ij}^{k} \Gamma_{\ell k}^{m} - h_{ij} W_{m\ell} \right) \frac{\partial F}{\partial x_{m}} + \text{Normalanteil}$$

Nach dem Satz von Schwarz gilt

$$\begin{split} 0 &= \frac{\partial^3 F}{\partial x_\ell \partial x_i \partial x_j} - \frac{\partial^3 F}{\partial x_i \partial x_\ell \partial x_j} = \\ &= \sum_m \Biggl(\underbrace{\frac{\partial \Gamma^m_{ij}}{\partial x_\ell} - \frac{\partial \Gamma^m_{\ell j}}{\partial x_i}}_{=R^m_{\ell j i}} + \sum_k (\Gamma^k_{ij} \Gamma^m_{\ell k} - \Gamma^k_{\ell j} \Gamma^m_{ik}) - h_{ij} W_{m\ell} + h_{\ell j} W_{mi} \Biggr) \frac{\partial F}{\partial x_m} + \text{Normalanteil} \end{split}$$

Also $R_{\ell ji}^m = h_{ij}W_{m\ell} - h_{\ell j}W_{mi}$. Aus

$$R_{\ell ij}^m := \frac{\partial \Gamma_{ji}^m}{\partial x_\ell} - \frac{\partial \Gamma_{j\ell}^m}{\partial x_j} + \sum_k (\Gamma_{k\ell}^m \Gamma_{ki}^k - \Gamma_{ki}^m \Gamma_{k\ell}^k)$$

folgt

$$R\left(\frac{\partial}{\partial x_{\ell}}, \frac{\partial}{\partial x_{i}}\right) \frac{\partial}{\partial x_{j}} = \sum_{m} R_{\ell j i}^{m} \frac{\partial}{\partial x_{m}} = \sum_{m} \left(h_{i j} w_{m \ell} \frac{\partial}{\partial x_{m}} - h_{\ell j} W_{m i} \frac{\partial}{\partial x_{m}}\right) =$$

$$= h\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) W\left(\frac{\partial}{\partial x_{\ell}}\right) - h\left(\frac{\partial}{\partial x_{\ell}}, \frac{\partial}{\partial x_{j}}\right) W\left(\frac{\partial}{\partial x_{i}}\right).$$

Da $\frac{\partial}{\partial x_1}(p), \frac{\partial}{\partial x_2}(p)$ eine Basis von T_pS ist, gilt die Formel allgemein.

Satz (Theorema Egregium). Sei $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche mit Einheitsnormalenfeld N. Dann gilt für jede Orthonormalbasis $\{e_1, e_2\}$ von T_pS

$$K(p) = g(R(e_1, e_2)e_2, e_1).$$

Beweis. Mit der Gaußgleichung gilt

$$g(R(e_1, e_2)e_2, e_1) = h(e_2, e_2)g(W(e_1), e_1) - h(e_1, e_2)g(W(e_2), e_1) =$$

$$= g(W(e_2), e_2)g(W(e_1), e_1) - g(W(e_1), e_2)g(W(e_2), e_1) =$$

$$= W_{11}W_{22} - W_{12}W_{21} = \det W_p = K(p)$$

für (W_{ij}) die Matrix von W_p bezüglich $\{e_1, e_2\}$.

Bemerkung. Die Gaußkrümmung ist also eine Größe der inneren Geometrie von S, d.h. für eine lokale Isometrie $f: S \to \widetilde{S}$ gilt $\widetilde{K}(f(p)) = K(p)$.

Beispiel. Es gibt keine längentreuen, d.h. lokal isometrischen, ebenen Karten der Erdoberfläche, denn $K_{S_R^2} = \frac{1}{R^2}$, aber $K_{\mathbb{R}^2} = 0$.

Wir fassen die Symmetrien des Krümmungstensors zusammen:

Lemma. $F\ddot{u}r\ v, w, x, y \in T_pS\ gilt$

- 1. R(v, w)x = -R(w, v)x
- 2. g(R(v, w)x, y) = -g(R(v, w)y, x)

- 3. g(R(v, w)x, y) = g(R(x, y)v, w)
- 4. Bianchi Identität: R(v, w)x + R(w, x)v + R(x, v)w = 0.

Beweis.

- 1. Es ist $R(v,w)x = \nabla^2_{v,w}X \nabla^2_{w,v}X$ für eine Vektorfeld $X: S \to \mathbb{R}^3$ mit X(p) = x.
- 2. Folgt aus 3. und 1.
- 3. Mit der Gaußgleichung folgt g(R(v,w)x,y) = h(w,x)g(W(v),y) h(v,x)g(W(w),y) = h(w,x)h(v,y) h(v,x)h(w,y).
- 4. Es ist R(v, w)x + R(w, x)v + R(x, v)w = h(w, x)W(v) h(v, x)W(w) + h(x, v)W(w) h(w, v)W(x) + h(v, w)W(x) h(x, w)W(v) = 0.

3.4 Parallelverschiebung & Geodätische

Definition. Sei $I \subseteq \mathbb{R}$ ein Intervall $\gamma \colon I \to S$ eine Kurve. Eine Abbildung $X \colon I \to \mathbb{R}^3$ mit $X(t) \in T_{\gamma(t)}S$ für alle $t \in I$ heißt Vektorfeld entlang γ .

Beispiel. Ist $\gamma: I \to S$ differenzierbar, so ist $X(t) = \gamma'(t)$ ein Vektorfeld entlang γ .

Definition. Sei $X: I \to \mathbb{R}^3$ ein differenzierbares Vektorfeld entlang der differenzierbaren Kurve $\gamma: I \to S$. Dann heißt

$$\nabla_{\mathrm{d/d}t}X(t) = \pi_{\gamma(t)}^{\parallel}(X'(t)) \in T_{\gamma(t)}S$$

kovariante Ableitung entlang γ , wobei $\pi_{\gamma(t)}^{\parallel} \colon \mathbb{R}^3 \to T_{\gamma(t)}S$ die orthogonale Projektion sei.

Bemerkung. Ist $F: U \to V \cap S$ eine lokale Parametrisierung und $\gamma: I \to V \cap S$, so gilt mit $\tilde{\gamma}(t) = (F^{-1} \circ \gamma)(t)$

$$X(t) = X_1(t) \frac{\partial F}{\partial x_1}(\tilde{\gamma}(t)) + X_2(t) \frac{\partial F}{\partial x_2}(\tilde{\gamma}(t)).$$

Dann gilt analog zu Abschnitt 3.2:

$$\nabla_{\mathrm{d/d}t}X(t) = \sum_{k} \left(X_k'(t) + \sum_{i,j} \Gamma_{ij}^k(\tilde{\gamma}(t)) X_i(t) \tilde{\gamma}_j'(t) \right) \frac{\partial F}{\partial x_k}(\tilde{\gamma}(t))$$

mit $\tilde{\gamma}' = (\tilde{\gamma}_1', \tilde{\gamma}_2')$.

Bemerkung. Die Rechenregeln aus 3.2 gelten analog:

- (i) $\nabla_{\mathrm{d}/\mathrm{d}t}(\lambda_1 X_1 + \lambda_2 X_2) = \lambda_1 \nabla_{\mathrm{d}/\mathrm{d}t} X_1 + \lambda_2 \nabla_{\mathrm{d}/\mathrm{d}t} X_2, \ \lambda_1, \lambda_2 \in \mathbb{R}.$
- (ii) $\nabla_{d/dt}(fX) = f'X + f\nabla_{d/dt}X, f: I \to \mathbb{R}.$
- (iii) $\frac{\mathrm{d}}{\mathrm{d}t}g(X,Y) = g(\nabla_{\mathrm{d}/\mathrm{d}t}X,Y) + g(X,\nabla_{\mathrm{d}/\mathrm{d}t}Y).$

Weiterhin gilt $\nabla_{d/dt}(X \circ \varphi) = \varphi'(\nabla_{d/dt}X) \circ \varphi$ für eine Umparametrisierung $\varphi \colon J \to I$.

Definition. Das Vektorfeld $X: I \to \mathbb{R}^3$ entlang $\gamma: I \to S$ heißt parallel, falls $\nabla_{\mathrm{d/d}t} X(t) = 0$ für alle $t \in I$.

Bemerkung. Ist $F: U \to V \cap S$ eine lokale Parametrisierung und $\gamma: I \to V \cap S$, so ist $\nabla_{\mathrm{d/d}t}X(t) = 0$ für alle $t \in I$ äquivalent zu einem linearen Differentialgleichungssystem $(\tilde{\gamma} = F^{-1} \circ \gamma)$:

$$X_1'(t) + \sum_{i,j} \Gamma_{ij}^1(\tilde{\gamma}(t)) X_i(t) \tilde{\gamma}_j'(t) = 0$$
$$X_2'(t) + \sum_{i,j} \Gamma_{ij}^2(\tilde{\gamma}(t)) X_i(t) \tilde{\gamma}_j'(t) = 0$$

Existenz und Eindeutigkeit von Lösungen linearer Differentialgleichungssysteme impliziert damit folgenden Satz:

Satz. Sei $\gamma: I \to S$ differenzierbar, $t_0 \in I$. Dann existiert für alle $v_0 \in T_{\gamma(t_0)}S$ ein eindeutiges paralleles Vektorfeld $X: I \to \mathbb{R}^3$ entlang γ mit $X(t_0) = v_0$.

Definition. Sei $\gamma: [t_0, t_1] \to S$ differenzierbar. Die Abbildung $P_\gamma: T_{\gamma(t_0)}S \to T_{\gamma(t_1)}S$ die $v_0 \in T_{\gamma(t_0)}S$ auf $v_1 = X(t_1)$ abbildet, wobei $X: [t_0, t_1] \to \mathbb{R}^3$ das eindeutige parallele Vektorfeld entlang γ mit $X(t_0) = v_0$ ist, heißt Paralleltransport entlang γ .

Bemerkung. $P_{\gamma}: T_{\gamma(t_0)}S \to T_{\gamma(t_1)}S$ ist eine lineare Isometrie, denn sind X und Y parallel entlang γ , so gilt

$$\frac{\mathrm{d}}{\mathrm{d}t}g_{\gamma(t)}(X(t),Y(t)) = g_{\gamma(t)}(\nabla_{\mathrm{d}/\mathrm{d}t}X(t),Y(t)) + g_{\gamma(t)}(X(t),\nabla_{\mathrm{d}/\mathrm{d}t}Y(t)) = 0.$$

Beispiel. Für die Ebene $E = \mathbb{R}^2 \times \{0\}$ ist $T_p E = \mathbb{R}^2 \times \{0\} \subseteq \mathbb{R}^3$ für alle $p \in E$. Für eine Kurve $\gamma \colon I \to E$ ist ein Vektorfeld $X = (X_1, X_2)$ genau dann parallel entlang γ , wenn X_i , i = 1, 2, konstant ist.

Definition. $\gamma: I \to S$ heißt $Geod\"{a}tische$, falls gilt: $\nabla_{\mathrm{d/d}t}\gamma'(t) = 0$ für alle $t \in I$.

Bemerkung. Ist $F: U \to V \cap S$ eine lokale Parametrisierung und $\gamma: I \to V \cap S$, so gilt mit $\tilde{\gamma}: I \to U$, $\tilde{\gamma}(t) = F^{-1}(\gamma(t))$:

$$\gamma'(t) = \tilde{\gamma}_1'(t) \frac{\partial F}{\partial x_1} (\tilde{\gamma}(t)) + \tilde{\gamma}_2'(t) \frac{\partial F}{\partial x_2} (\tilde{\gamma}(t))$$

also $\tilde{\gamma}'(t) = \tilde{\gamma}_1'(t)e_1 + \tilde{\gamma}_2'(t)e_2$. Also gilt $\nabla_{\rm d/dt}\gamma'(t) = 0$ genau dann, wenn

$$\tilde{\gamma}_k''(t) + \sum_{i,j} \Gamma_{ij}^k (\tilde{\gamma}(t)) \tilde{\gamma}_i'(t) \tilde{\gamma}_j'(t) = 0$$

für k = 1, 2. Existenz und Eindeutigkeit für gewöhnliche Differentialgleichungen liefert damit den folgenden Satz.

Satz. Sei $v \in T_pS$. Dann existiert $\varepsilon > 0$ und eine eindeutige Geodätische $\gamma \colon [0, \varepsilon) \to S$ mit $\gamma(0) = p$ und $\gamma'(0) = v$.

Bemerkung. Im Allgemeinen existiert die Lösung nicht für alle Zeiten.

Beispiel (Sphäre S_R^2 vom Radius R > 0). Betrachte

$$\gamma_{\varphi} \colon \mathbb{R} \to S_R^2, \theta \mapsto (R\cos\varphi\cos\theta, R\cos\varphi\sin\theta, R\sin\varphi)$$

mit $\varphi \in (-\pi/2, \pi/2)$ fest. Dann ist $\gamma'_{\varphi}(\theta) = (-R\cos\varphi\sin\theta, R\cos\varphi\cos\theta, 0)$ und $\gamma''_{\varphi}(\theta) = (-R\cos\varphi\cos\theta, -R\cos\varphi\sin\theta, 0), N(\gamma_{\varphi}(\theta)) = \frac{1}{R} = \gamma_{\varphi}(\theta) = (\cos\varphi\cos\theta, \cos\varphi\sin\theta, \sin\varphi).$ Damit erhält man

$$\nabla_{\mathrm{d}/\mathrm{d}\theta}\gamma_{\varphi}'(\theta) = \gamma_{\varphi}''(\theta) - \left\langle \gamma_{\varphi}''(\theta), N(\gamma_{\varphi}(\theta)) \right\rangle N(\gamma_{\varphi}(\theta)) = R \begin{pmatrix} -\cos\varphi\cos\theta + \cos^3\varphi\cos\theta \\ -\cos\varphi\sin\theta + \cos^3\varphi\sin\theta \\ \cos^2\varphi\sin\varphi \end{pmatrix}$$

Also ist $\nabla_{d/d\theta} \gamma_{\varphi}'(\theta) = 0$ für alle θ genau dann, wenn $\varphi = 0$. Also ist γ_{φ} eine Geodätische genau dann, wenn $\varphi = 0$, d.h. γ_{φ} parametrisiert den Äquator.

Bemerkung. Ist $\phi \colon S \to \widetilde{S}$ eine lokale Isometrie und $\gamma \colon I \to S$ eine Geodätische, so ist $\widetilde{\gamma} = \phi \circ \gamma$ eine Geodätische.

Bemerkung. Die Geodätischen auf S^2_R sind gerade die (parametrisierten) Großkreise.

Die Geodätischengleichung taucht natürlich bei der Frage nach kürzesten Verbindungskurven zwischen $p,q\in S$ auf. Sei $\gamma\colon [a,b]\to S$ eine Kurve mit $p=\gamma(a),\,q=\gamma(b)$. Neben der Länge

$$L(\gamma) = \int_{a}^{b} \sqrt{g_{\gamma(t)}(\gamma'(t), \gamma'(t))} dt$$

betrachtet man dabei auch die Energie

$$E(\gamma) = \frac{1}{2} \int_a^b g_{\gamma(t)}(\gamma'(t), \gamma'(t)) dt.$$

Lemma. Es gilt: $L(\gamma)^2 \leq 2(b-a)E(\gamma)$ mit Gleichheit genau dann, wenn γ proportional zur Bogenlänge parametrisiert ist, d.h. $g_{\gamma(t)}(\gamma'(t), \gamma'(t))$ ist konstant.

Beweis. Aus der Cauchy-Schwarz-Ungleichung folgt

$$L(\gamma)^{2} \leq \int_{a}^{b} g_{\gamma(t)}(\gamma'(t), \gamma'(t)) dt \int_{a}^{b} dt = 2(b-a)E(\gamma).$$

Korollar. γ minimiert die Energie genau dann, wenn γ proportional zur Bogenlänge parametrisiert ist und die Länge minimiert.

Satz (1. Variation der Energie). Seien $p, q \in S$ und $H: (-\varepsilon, \varepsilon) \times [a, b] \to S$ differenzierbar, so dass für $\gamma_s: [a, b] \to S, t \mapsto H(s, t)$ gilt: $\gamma_s(a) = p$ und $\gamma_s(b) = q$. Dann gilt

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} E(\gamma_s) = -\int_a^b g_{\gamma(t)}(V(t), \nabla_{\mathrm{d/d}t} \gamma'(t)) \,\mathrm{d}t$$

mit $\gamma = \gamma_0$ und $V(t) = \frac{\partial H}{\partial s}(0, t)$.

Beweis. Es ist

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} \frac{1}{2} \int_{a}^{b} \left\langle \gamma_{s}'(t), \gamma_{s}'(t) \right\rangle \mathrm{d}t = \int_{a}^{b} \left\langle \frac{\partial^{2} H}{\partial s \partial t}(0, t), \gamma'(t) \right\rangle \mathrm{d}t = \int_{a}^{b} \left\langle V'(t), \gamma'(t) \right\rangle \mathrm{d}t = \\
= \int_{a}^{b} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle V(t), \gamma'(t) \right\rangle \mathrm{d}t - \int_{a}^{b} \left\langle V(t), \gamma''(t) \right\rangle \mathrm{d}t = \\
= -\int_{a}^{b} \left\langle V(t), \gamma''(t) \right\rangle \mathrm{d}t = -\int_{a}^{b} \left\langle V(t), \nabla_{\mathrm{d}/\mathrm{d}t} \gamma'(t) \right\rangle \mathrm{d}t$$

da
$$V(t) \in T_{\gamma(t)}S$$
.

Korollar. Hat $\gamma: [a,b] \to S$ minimale Energie unter allen Kurven $\tilde{\gamma}: [a,b] \to S$ mit $\tilde{\gamma}(a) = p$, $\tilde{\gamma}(b) = q$, so gilt $\nabla_{d/dt} \gamma'(t) = 0$ für alle $t \in [a,b]$, d.h. γ ist Geodätische.

Beweis. Angenommen $\nabla_{\mathrm{d/dt}}\gamma'(t) \neq 0$ für ein $t \in (a,b)$. Sei $F : U \to V \cap S$ mit $\gamma(t_0) \in V$. Wähle $\delta > 0$ so, dass $[t_0 - \delta, t_0 + \delta] \subseteq (a,b)$ und $\gamma([t_0 - \delta, t_0 + \delta]) \subseteq V$. Sei $\tilde{\gamma} : [t_0 - \delta, t_0 + \delta] \to U$, $\tilde{\gamma}(t) = F^{-1}(\gamma(t))$ und $X(t) = DF(\tilde{\gamma}(t))^{-1}(\nabla_{\mathrm{d/dt}}\gamma'(t))$ für $t \in [t_0 - \delta, t_0 + \delta]$. Wähle $\varphi : [t_0 - \delta, t_0 + \delta] \to \mathbb{R}$ differenzierbar mit $\varphi \geq 0$, $\varphi(t_0) > 0$ und $\sup(\varphi) \subseteq (t_0 - \delta, t_0 + \delta)$. Definiere

$$\gamma_s(t) = \begin{cases} F(\tilde{\gamma}(t) + s\varphi(t)X(t)) & t \in [t_0 - \delta, t_0 + \delta] \\ \gamma(t) & t \in [a, b] \setminus [t_0 - \delta, t_0 + \delta] \end{cases}$$

mit $s \in (-\varepsilon, \varepsilon)$ und $\varepsilon > 0$ hinreichend klein. Dann gilt

$$V(t) = \begin{cases} DF(\tilde{\gamma}(t))(\varphi(t)X(t)) = \varphi(t)\nabla_{d/dt}\gamma'(t) & t \in [t_0 - \delta, t_0 + \delta] \\ 0 & t \in [a, b] \setminus [t_0 - \delta, t_0 + \delta] \end{cases}$$

Mit Satz folgt

$$\frac{\mathrm{d}}{\mathrm{d}s}\Big|_{s=0} E(\gamma_s) = -\int_a^b g_{\gamma(t)}(V(t), \nabla_{\mathrm{d/d}t}\gamma'(t)) \,\mathrm{d}t =
= -\int_{t_0-\delta}^{t_0+\delta} \varphi(t)g_{\gamma(t)}(\nabla_{\mathrm{d/d}t}\gamma'(t), \nabla_{\mathrm{d/d}t}\gamma'(t)) \,\mathrm{d}t < 0$$

im Widerspruch zur Energieminimalität von γ .

3.5 Der Satz von Gauß-Bonnet

Zunächst sei $X: U \to \mathbb{R}^2$ ein stetiges Vektorfeld und $x_0 \in U$ eine isolierte Nullstelle, d.h. $X(x_0) = 0$ aber es existiert $\varepsilon > 0$ mit $X(x) \neq 0$ für $x \in B_{\varepsilon}(x_0) \setminus \{x_0\}$. Wir nehmen ohne Einschränkung an, dass x_0 die einzige Nullstelle von X auf U ist. Für $\varepsilon > 0$ hinreichend klein betrachte

$$\gamma_{\varepsilon} \colon \mathbb{R} \to U, t \mapsto x_0 + \varepsilon(\cos t, \sin t).$$

Wir betrachten eine Winkelfunktion $\Theta_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ für $\widetilde{X}(t) = X(\gamma_{\varepsilon}(t)) / \|X(\gamma_{\varepsilon}(t))\| \in S^1$, d.h. $\widetilde{X}(t) = (\cos \Theta(t), \sin \Theta(t))$.

Definition. Es heißt

$$\operatorname{ind}(X, p) = \frac{1}{2\pi} (\Theta_{\varepsilon}(2\pi) - \Theta_{\varepsilon}(0)) \in \mathbb{Z}$$

 $\operatorname{der} \operatorname{Index} \operatorname{von} X \operatorname{in} p.$

Bemerkung. Das ist unabhängig von der Wahl von ε , denn es gilt allgemeiner:

Lemma. Sei $x_0 \in U$ die einzige Nullstelle von X auf U. Sind $\gamma, \tilde{\gamma} \colon \mathbb{R} \to U$ (periodisch mit Periode T > 0) homotop, d.h. es existiert eine Homotopie $H \colon \mathbb{R} \times [0,1] \to U$ (stetig) mit H(t+T,s) = H(t,s), $H(t,0) = \gamma(t)$ und $H(t,1) = \tilde{\gamma}(t)$ für alle $t \in \mathbb{R}$ und $s \in [0,1]$, so gilt

$$\Theta_{\tilde{\gamma}}(T) - \Theta_{\tilde{\gamma}}(0) = \Theta_{\gamma}(T) - \Theta_{\gamma}(0)$$

Beweis. Betrachte $R = [0,T] \times [0,1] \subseteq \mathbb{R}^2$. X is sternförmig bezüglich (0,0), also existiert eine Winkelfunktion $\Theta_H \colon R \to \mathbb{R}$ für $\widetilde{X} \circ H \colon R \to S^1$. Dann ist $\Theta_H(T,0) - \Theta_H(0,0) = \Theta_H(T,0) - \Theta_H(T,1) + \Theta_H(T,1) - \Theta_H(0,1) + \Theta_H(0,1) - \Theta_H(0,0) = \Theta_{\widetilde{\gamma}}(T) - \Theta_{\widetilde{\gamma}}(0)$ wegen der Periodizität von Θ_H .

Bemerkung. Für differenzierbares X und eine periodische Kurve $\gamma \colon \mathbb{R} \to U \setminus \{x_0\}$ mit Periode T > 0 gilt

$$\Theta_{\gamma}(T) - \Theta_{\gamma}(0) = \int_{0}^{T} \left(\widetilde{X}_{1}(t) \widetilde{X}_{2}'(t) - \widetilde{X}_{2}(t) \widetilde{X}_{1}'(t) \right) dt = \int_{0}^{T} \det \left(\frac{\widetilde{X}_{1}(t)}{\widetilde{X}_{2}(t)} \cdot \frac{\widetilde{X}_{1}'(t)}{\widetilde{X}_{2}'(t)} \right) dt$$

für
$$\widetilde{X} = (\widetilde{X}_1, \widetilde{X}_2) = \frac{X}{\|X\|} \circ \gamma$$
, denn mit $\widetilde{X}(t) = (\cos \Theta_{\gamma}(t), \sin \Theta_0(t))$ ist $\widetilde{X}'(t) = \Theta'_{\gamma}(t)(-\widetilde{X}_2(t), \widetilde{X}_1(t))$, also $\widetilde{X}_1(t)\widetilde{X}_2'(t) - \widetilde{X}_2(t)\widetilde{X}_1'(t) = \Theta'_{\gamma}(t)(\widetilde{X}_1(t)^2 + \widetilde{X}_2(t)^2) = \Theta'_{\gamma}(t)$.

Sei jetzt $S \subseteq \mathbb{R}^3$ eine orientierbare Fläche, orientiert durch das Einheitsnormalenfeld N. Sei $X \colon S \to \mathbb{R}^3$ ein stetiges Vektorfeld mit isolierter Nullstelle $p \in S$. Sei $U \subseteq S$ offen mit $p \in U$, so dass p die einzige Nullstelle von X auf U ist. Sei $\{e_1, e_2\}$ ein positiv orientiertes Orthonormalbasenfeld auf U, d.h. $e_i \colon U \to \mathbb{R}^3$ Vektorfelder, $g(e_i(x), e_j(x)) = \delta_{ij}$ und $\{e_1(x), e_2(x), N(x)\}$ ist eine positiv orientierte Orthonormalbasis von \mathbb{R}^3 . Schreibe $X = X_1e_1 + X_2e_2$, $X_i \colon U \to \mathbb{R}$, bzw. $\widetilde{X} = \widetilde{X}_1e_1 + \widetilde{X}_2e_2$ mit $\widetilde{X} = g(X, X)^{1/2}X$. Für $\varepsilon > 0$ hinreichend klein ist $S \setminus B_{\varepsilon}(p) =: S_{\varepsilon}$ eine Fläche mit Rand $\partial S_{\varepsilon} \simeq S^1$. Sei $\gamma_{\varepsilon} \colon \mathbb{R} \to \partial S_{\varepsilon}$ eine Parametrisierung von ∂S_{ε} mit Periode T > 0, so dass $\nu = J\gamma'$ der nach außen gerichtete Einheitsnormalenvektor ist; hier sei $J_p \colon T_p S \to T_p S$ die Drehung um 90° gegen den Uhrzeigersinn, d.h. für $v \in T_p S \setminus \{0\}$ gilt $g_p(v, J_p v) = 0$ und $\{v, J_p v, N(p)\}$ ist positiv orientiert in \mathbb{R}^3 . Sei $\Theta_{\varepsilon} \colon \mathbb{R} \to \mathbb{R}$ eine Winkelfunktion für $(\widetilde{X}_1, \widetilde{X}_2) \colon \mathbb{R} \to \mathbb{R}^2$, d.h. $(\widetilde{X}_1(t), \widetilde{X}_2(t)) = (\cos \Theta_{\varepsilon}(t), \sin \Theta_{\varepsilon}(t))$.

Definition. Es heißt

$$\operatorname{ind}(X, p) = \frac{1}{2\pi} (\Theta_{\varepsilon}(T) - \Theta_{\varepsilon}(0))$$

heißt der Index von X in p.

Bemerkung. Wie oben zeigt man, dass die Definition unabhängig von ε ist.

Bemerkung. Für U hinreichend klein existiert $\{e_1, e_2\}$ wie oben: Wende Gram-Schmidt auf ein von einer orientierungserhaltenden lokalen Parametrisierung kommendes Basenfeld an.

Bemerkung. Die Definition hängt nicht von der Wahl des positiv orientierten Orthonormalbasenfelds ab, denn zwei Wahlen $\{e_1,e_2\}$ und $\{e'_1,e'_2\}$ unterscheiden sich durch eine Abbildung $A\colon U\to SO(2)$, d.h. $e'_i=\sum A_{ji}(x)e_j(x)$ für alle $x\in U$, also auch $\widetilde{X}_i(x)=\sum A_{ij}(x)\widetilde{X}'_j(x)$ für alle $x\in U$. Damit folgt, dass $(\widetilde{X}_1\circ\gamma_\varepsilon,\widetilde{X}_2\circ\gamma_\varepsilon)\colon\mathbb{R}\to\mathbb{R}^2$ und $(\widetilde{X}'_1\circ\gamma_\varepsilon,\widetilde{X}'_2\circ\gamma_\varepsilon)\colon\mathbb{R}\to\mathbb{R}^2$ homotop sind, da $\overline{B_\varepsilon(p)}\cap S\simeq D^2\subseteq\mathbb{R}^2$.

Satz (Gauß-Bonnet I). Sei $S \subseteq \mathbb{R}^3$ eine kompakte orientierbare Fläche mit Einheitsnormalenfeld N. Sei $X : S \to \mathbb{R}^3$ ein differenzierbares Vektorfeld mit isolierten Nullstellen $p_1, \ldots, p_k \in S$. Dann gilt:

$$\int_{S} K \, \mathrm{d}A = 2\pi \sum_{i=1}^{k} \mathrm{ind}(X, p_i).$$

Beweis. Für $\varepsilon > 0$ hinreichend klein ist $S_{\varepsilon} = S \setminus \bigcup_{i=1}^k B_{\varepsilon}(p_i)$ eine kompakte Fläche mit Rand $\partial S_{\varepsilon} = \bigcup_{i=1}^k (\partial S_{\varepsilon})_i$ mit $(\partial S_{\varepsilon})_i \simeq S^1$. Sei $\gamma_i \colon \mathbb{R} \to (\partial S_{\varepsilon})_i$ eine Parametrisierung nach Bogenlänge mit Periode $T_i > 0$ wie oben, d.h. $\nu_i := J\gamma_i'$ ist der nach außen zeigende Einheitsnormalenvektor. Betrachte jetzt auf $S \setminus \{p_1, \ldots, p_k\}$ die Vektorfelder $e_1 := g(X, X)^{-1/2}X$ und $e_2 = Je_1$. D.h. $\{e_1, e_2\}$ ist ein positiv orientiertes Orthonormalbasenfeld auf $S \setminus \{p_1, \ldots, p_k\}$. Insbesondere gilt

$$0 = Yg(e_i, e_j) = g(\nabla_Y e_i, e_j) + g(e_i, \nabla_Y e_j),$$

also $g(\nabla_Y e_i, e_j) = -g(e_i, \nabla_Y e_j)$ und $g(\nabla_Y e_i, e_i) = 0$, mit anderen Worten $\nabla_Y e_i \perp e_i$ und $\nabla_Y e_1 = g(\nabla_Y e_1, e_2)e_2$ und $\nabla_Y e_2 = g(\nabla_Y e_2, e_1)e_1$. Für die Gaußkrümmung gilt

$$\begin{split} K &= g(R(e_1,e_2)e_2,e_1) = g(\nabla_{e_1,e_2}^2e_2,e_1) - g(\nabla_{e_2,e_1}^2e_2,e_1) = \\ &= g(\nabla_{e_1}\nabla_{e_2}e_2,e_1) - g(\nabla_{\nabla_{e_1}e_2}e_2,e_1) - g(\nabla_{e_2}\nabla_{e_1}e_2,e_1) + g(\nabla_{\nabla_{e_2}e_1}e_2,e_1) = \\ &= g(\nabla_{e_1}\nabla_{e_2}e_2,e_1) - g(\nabla_{e_1}e_2,e_1)g(\nabla_{e_1}e_2,e_1) - \\ &- g(\nabla_{e_2}\nabla_{e_1}e_2,e_1) + g(\nabla_{e_2}e_1,e_2)g(\nabla_{e_2}e_2,e_1) = \\ &= g(\nabla_{e_1}\nabla_{e_2}e_2,e_1) + g(\nabla_{e_1}e_1,\nabla_{e_1}e_1) + g(\nabla_{e_2}\nabla_{e_1}e_1,e_2) - g(\nabla_{e_2}e_2,\nabla_{e_2}e_2) = \\ &= g(\nabla_{e_1}\nabla_{e_2}e_2,e_1) - g(\nabla_{e_1}\nabla_{e_1}e_1,e_1) + g(\nabla_{e_2}\nabla_{e_1}e_1,e_2) + g(\nabla_{e_2}\nabla_{e_2}e_2,e_2) = \\ &= g(\nabla_{e_1}Z_{e_1}e_1) + g(\nabla_{e_2}Z_{e_2}e_2) = \mathrm{div}\,Z. \end{split}$$

mit $Z = \nabla_{e_1} e_1 + \nabla_{e_2} e_2$. Also folgt nach Stokes

$$\int_{S_{\varepsilon}} K \, dA = \int_{S_{\varepsilon}} \operatorname{div} Z \, dA = \sum_{i=1}^{k} \int_{(\partial S_{\varepsilon})_{i}} g(Z, \nu_{i}) \, ds.$$

Es gilt nun $\nu_i = J\gamma_i' = g(J\gamma_i', e_1)e_1 + g(J\gamma_i', e_2)e_2 = -g(\gamma_i', Je_1)e_1 - g(\gamma_i', Je_2)e_2$, also $\nu_i = g(\gamma_i', e_1)e_2 - g(\gamma_i', e_2)e_1$, und $Z = g(\nabla_{e_2}e_2, e_1, e_1)e_1 + g(\nabla_{e_1}e_1, e_2)e_2$. Damit folgt

$$g(Z,\nu_i) = -g(\gamma_i', e_2)g(\nabla_{e_2}e_2, e_1) + g(\gamma_i'e_1)g(\nabla_{e_1}e_1, e_2) = g(\nabla_{\gamma_i'}e_1, e_2).$$

Also

$$\int_{(\partial S_{\varepsilon})_i} g(Z, \nu_i) \, \mathrm{d}s = \int_0^{T_i} g(\nabla_{\mathrm{d}/\mathrm{d}t} e_1(t), e_2(t)) \, \mathrm{d}t$$

Sei $\{\tilde{e}_1, \tilde{e}_2\}$ ein Referenz-Orthonormalbasenfeld nahe p_i . Wir schreiben $e_1(t) = f_1(t)\tilde{e}_1(t) + f_2(t)\tilde{e}_2(t)$ und wählen eine Winkelfunktion $\Theta \colon \mathbb{R} \to \mathbb{R}$ mit $f_1 = \cos \Theta$ und $f_2 = \sin \Theta$. Dann ist

$$\nabla_{\mathrm{d/d}t}e_{1}(t) = \sum_{i} f'_{i}(t)\tilde{e}_{i}(t) + f_{i}(t)\nabla_{\mathrm{d/d}t}\tilde{e}_{i}(t) =$$

$$= -\Theta'(t)f_{2}(t)\tilde{e}_{1}(t) + f_{1}(t)\nabla_{\mathrm{d/d}t}\tilde{e}_{1}(t) + \Theta'(t)f_{1}(t)\tilde{e}_{1}(t) + f_{2}(t)\nabla_{\mathrm{d/d}t}\tilde{e}_{2}(t)$$

und mit $e_2(t) = f_1(t)\tilde{e}_2(t) - f_2(t)\tilde{e}_1(t)$ folgt

$$g(\nabla_{d/dt}e_{1}(t), e_{2}(t)) = \Theta'(t)(f_{1}(t)^{2} + f_{2}(t)^{2}) + f_{1}(t)^{2}g(\nabla_{d/dt}\tilde{e}_{1}(t), \tilde{e}_{2}(t)) - f_{2}(t)^{2}g(\nabla_{d/dt}\tilde{e}_{2}(t), \tilde{e}_{1}(t)) =$$

$$= \Theta'(t) + g(\nabla_{d/dt}\tilde{e}_{1}(t), \tilde{e}_{2}(t))$$

Also folgt mit Stokes

$$\int_{S} K \, dA = \lim_{\varepsilon \to 0} \int_{S_{\varepsilon}} K \, dA = \sum_{i=1}^{k} \lim_{\varepsilon \to 0} \int_{0}^{T_{i}} \Theta'(t) \, ds + \int_{0}^{T_{i}} g(\nabla_{d/dt} \tilde{e}_{1}(t), \tilde{e}_{2}(t)) \, ds =$$

$$= \sum_{i=1}^{k} \lim_{\varepsilon \to 0} \int_{0}^{T_{i}} \Theta'(t) \, ds \pm \int_{\overline{B_{\varepsilon}(p_{i})} \cap S} \operatorname{div} \widetilde{Z} \, dA = 2\pi \sum_{i=1}^{k} \operatorname{ind}(X, p_{i}).$$

Korollar. Insbesondere hängt $\sum \operatorname{ind}(X, p_i)$ nicht von X ab.

Satz. Ist $S \subseteq \mathbb{R}^3$ kompakt, so existiert ein Vektorfeld $X \colon S \to \mathbb{R}^3$ mit isolierten Nullstellen.

Beweisskizze. Für $a \in S^2$ betrachte die Höhenfunktion $f_a \colon S \to \mathbb{R}, p \mapsto \langle p, a \rangle$. Man hat folgenden Fakt aus der Morse-Theorie: Für fast alle $a \in S^2$ ist f_a eine Morsefunktion, d.h. grad $f_a(p) = 0 \implies \text{Hess } f_a(p)$ ist nicht ausgeartet. Das heißt, $X := \text{grad } f_a$ hat isolierte Nullstellen.

Definition. Sei $S \subseteq \mathbb{R}^3$ eine kompakte Fläche. Wir definieren die *Eulercharakteristik*

$$\chi(S) = \sum_{i=1}^{k} \operatorname{ind}(X, p_i)$$

für ein beliebiges Vektorfeld X mit isolierten Nullstellen $p_1, \ldots, p_k \in S$.

Bemerkung. Sind S und \widetilde{S} orientierungserhaltend diffeomorph, so ist $\chi(S) = \chi(\widetilde{S})$.

Beweis. Ist $\phi \colon S \to \widetilde{S}$ ein orientierungserhaltender Diffeomorphismus und $X \colon S \to \mathbb{R}^3$ ein Vektorfeld mit isolierten Nullstellen $p_1, \dots, p_k \in S$, so definiert

$$\widetilde{X}(\widetilde{p}) = D\phi(\phi^{-1}(\widetilde{p}))(X(\phi^{-1}(\widetilde{p})))$$

ein Vektorfeld mit isolierten Nullstellen $\tilde{p}_i = \phi(p_i)$ und $\operatorname{ind}(\tilde{X}, \tilde{p}_i) = \operatorname{ind}(X, p_i)$.

Satz (Gauß-Bonnet II). Ist $S \subseteq \mathbb{R}^3$ eine kompakte orientierte Fläche mit Einheitsnormalenfeld N. Dann ist

$$\int_{S} K \, \mathrm{d}A = 2\pi \chi(S).$$