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0 Motivation and repetition
Recall the notion of a Banach space: A Banach space X is a vector space (mostly over
C) with a norm ‖ · ‖ such that the metric space (X, d), where d(x, y) = ‖x − y‖, is a
complete metric space. A Hilbert space H is a Banach space, where the norm comes
from a scalar product: ‖x‖ =

√
〈x, x〉. For example L2(R), with

〈f, g〉 =
∫ ∞
−∞

f(x)g(x) dx

is a Hilbert space. So is `2(N), where

`2(N) =
{

(x1, . . . ) ∈ CN :
∞∑
i=1
|xi|2 <∞

}
Note that there are norms that do not arise from an inner product. For example `p,
p 6= 2, is a Banach space but not a Hilbert space.
The space B(X,Y ) is the set of bounded linear operators X → Y , i.e. T ∈ B(X,Y )

if and only if T : X → Y is linear and there exists C > 0 such that ‖Tx‖Y ≤ C‖x‖X for
all x ∈ X. This definition only requires normed vector space X and Y . We will write
B(X) for B(X,X). There is a norm on B(X,Y ) such that

‖T‖ = sup
x∈X
‖x‖≤1

‖Tx‖X .

If Y is a Banach space, so is B(X,Y ) with this norm.
If Y = K, i.e. Y = C or Y = R depending on the ground field of X and Y , we call

elements of B(X,K) bounded linear functionals and write X ′ = B(X,K). X ′ is called
the dual of X. It always is a Banach space. Note that for Hilbert spaces H, “H ′ = H”,
in the sense that there exists an antilinear isometry Φ: H → H ′, y 7→ 〈y,−〉. One has
“X ⊆ X ′′” in the sense that there is a canonical embedding ι : X → X ′′ that embeds
X isometrically in X ′′. If X = X ′′ (i.e. ι(X) = X ′′), then X is called reflexive. In
particular all Hilbert spaces are reflexive. So are `p and Lp for 1 < p <∞.

Definition 0.1. Let T ∈ B(X) with a C-Banach space X. We define the resolvent set
ρ(T ) of T by

ρ(T ) = {λ ∈ C : N(T − λI) = 0 and R(T − λI) = X} ⊆ C.

We define the spectrum σ(T ) of T by σ(T ) = Cr ρ(T ).
The spectrum of T can be split in three types. There is the point spectrum

σp(T ) = {λ ∈ C : N(T − λI) 6= 0} ⊆ σ(T ),

the continuous spectrum

σc(T ) = {λ ∈ σ(T ) : N(T − λI) = 0 and R(T − λI) = X} ⊆ σ(T ),

and the rest (residual) spectrum

σr(T ) = {λ ∈ σ(T ) : N(T − λI) and R(T − λI) 6= X} ⊆ σ(T ).
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Remark 0.2.
1. Note that λ ∈ ρ(T ) if and only if T − λI : X → X is bijective. This is equivalent

to the existence of Rλ(T ) = (T − λI)−1 ∈ B(X), called the resolvent of T at λ.
The map ρ(T ) 3 λ 7→ Rλ(T ) ∈ B(X) is called the resolvent map.

2. If λ ∈ σp(T ) then there exists x 6= 0 such that Tx = λx. Then λ is called an
eigenvalue, and x an eigenvector of T . (However, if the space X is a space of
functions, x is often called an eigenfunction). In this case N(T − λI) is called the
eigenspace of T corresponding to λ. It is a T -invariant subspace of X.

Proposition 0.3. Let T ∈ B(X). Then ρ(T ) ⊆ C is an open set, hence σ(T ) is a closed
subset of C, and the resolvent map λ 7→ Rλ(T ) is a complex analytic map, with

‖Rλ(T )‖−1 ≤ dist(λ, σ(T )).

Here, “complex analytic” means for all λ0 ∈ ρ(T ) there exist r > 0 and cj ∈ B(X) such
that

Rλ(T ) =
∞∑
j=0

cj(λ− λ0)j

for all λ ∈ Br(λ0).

The aim of the course is (mainly) to study the spectrum and its properties for various
classes or types of operators and to prove theorems “in analogy” to the spectral the-
orem of linear algebra concerning diagonalization of symmetric/self adjoint/Hermitian
matrices. The theory here is, however, much more rich.

Definition 0.4. The compact (linear) operators from X to Y (normed vectorspaces)
are defined by

K(X,Y ) = {T ∈ B(X,Y ) : T (B1(0)) ⊆ Y is compact}.

Remark 0.5.
1. As for B(X), we write K(X) = K(X,X).

2. If Y is Banach, then “T (B1(0)) is compact” can be replaced by “T (B1(0)) is pre-
compact”.

3. That is, T ∈ K(X,Y ) iff T maps bounded sequences into sequences which has a
convergent subsequence.

4. Given k ∈ C(I2), I = [0, 1], define

(Tkf)(x) =
∫ 1

0
k(x, y)f(y) dy, x ∈ I, f ∈ C(I).

Tk is called an integral operator, k is called the integral kernel. Then Tk : X → X,
X = C(I), is a bounded linear operator which is compact.
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Definition 0.6 (Banach space adjoints). Let T ∈ B(X,Y ), X, Y Banach spaces, and
define, for y′ ∈ Y ′,

(T ′y′)(x) = y′(Tx).

Then T ′ : Y ′ → X ′ is linear and bounded. T ′ is called the (Banach space) adjoint of
T . Furthermore, ‖T ′‖ = ‖T‖. In fact, −′ : B(X,Y ) → B(Y ′, X ′) is a (linear) isometric
embedding. It may be not surjective.

Definition 0.7 (Hilbert space adjoint). Let H be a Hilbert space and let Φ: H → H ′

be the map y 7→ 〈y,−〉 identifying H with H ′, and let T ∈ B(H). Then

T ∗ = Φ−1T ′Φ

is called the Hilbert space adjoint of T . It satisfies 〈T ∗x, y〉 = 〈x, Ty〉 for all x, y ∈ H. T
is called self-adjoint iff T = T ∗.

The “programme” of the course will consisct of the spectral theory for compact op-
erators, the spectral theory for self-adjoint bounded operators, unbounded operators —
in particular symmetric operators and quadratic forms — and the spectral theory for
self-adjoint unbounded operators. We will also talk about the Fourier transform.

Lemma 0.8 (Algebraic properties of the adjoint).
(1) (αT1 + T2)′ = αT ′1 + T ′2 for T1, T2 ∈ B(X,Y ) and α ∈ K.

(1)∗ (αT1 + T2)∗ = αT ∗1 + T ∗2 for T1, T2 ∈ B(H) and α ∈ K.

(2) I ′ = I for I ∈ B(X), I : X → X,x 7→ x.

(3) For T1 ∈ B(X,Y ), T2 ∈ B(Y, Z), (T2T1)′ = T ′1T
′
2.

(3)∗ For S, Y ∈ B(H), (ST )∗ = T ∗S∗.

(4) With ιX : X → X ′′ and ιY : Y → Y ′′ the canonical embeddings and T ∈ B(X,Y ),
we have T ′′ιX = ιY T .

(4)∗ For T ∈ B(H), T ∗∗ = T .

Proposition 0.9. Let X and Y be Banach spaces and T ∈ B(X,Y ). Then T−1 ∈
B(Y,X) exists if and only if (T ′)−1 ∈ B(X ′, Y ′) exists and in this case, (T−1)′ = (T ′)−1

(or, in the case of X = Y being Hilbert spaces (T ∗)−1 = (T−1)∗).

Proof. Assume T is invertible. Then (by 0.8) IX′ = (IX)′ = (T−1T )′ = T ′(T−1)′ and
IY ′ = (IY )′ = (TT−1)′ = (T−1)′T ′.

Assume now that T ′ is invertible. Then T ′′ is invertible. In particular, T ′′ is a
homeomorphism, hence it maps closed sets into closed sets. Recall, that T ′′ιX = ιY T and
that ιX and ιY are isometries. Hence R(ιY T ) = R(T ′′ιX) = T ′′(R(ιX)). This is a closed
subspace of Y ′′, since R(ιX) is closed [take a convergent sequence {ιX(xn)} in R(ιX);
this is Cauchy, so the corresponding sequence {xn} in X is also Cauchy, hence convergent
xn → x, so ιX(xn) → ι(x) ∈ R(ιX)]. Hence, R(T ) = ι−1

Y (R(ιY T )) is closed. Since T ′

4



is injective, it follows that 0 = N(T ′) = Ann(R(T )) by the next lemma. From this and
the following proposition (a consequence of Hahn-Banach) we have Y = R(T ) = R(T ).
Hence, T is surjective. Since T ′′ is injective, N(ιY T ) = N(T ′′ιX) = 0, hence T is injective.
Hence, T is a continuous linear bijection, hence T−1 ∈ B(Y,X) by the open mapping
theorem.

Lemma 0.10. For a linear subspace Z ⊆W , define the annihilator

Ann(Z) = {w′ ∈W ′ : ∀z ∈ Z. w′(z) = 0}.

For T ∈ B(X,Y ), N(T ′) = Ann(R(T )).

Proof. We have: y′ ∈ N(T ′) iff T ′y′ = 0 iff ∀x ∈ X. T ′y′(x) = 0 iff ∀x ∈ X. y′(Tx) = 0
iff y′ ∈ Ann(R(T )).

Proposition 0.11. For Z ⊆ W , W a normed space, Z a closed linear subspace, and
u 6∈ Z, there exists a linear functional w′ ∈ W ′ such that w′|Z = 0, ‖w′‖ = 1 and
w′(u) = dist(u, Z).

Remark. For T ∈ B(X) we have that T−1 ∈ B(X) exists if and only if 0 ∈ ρ(T ),
i.e. invertibility of T is a “spectral question” related to 0 ∈ ρ(T ) or 0 ∈ σ(T ). The
proposition says (for T ∈ B(X)) that 0 ∈ σ(T ) if and only if 0 ∈ σ(T ′).

Proposition 0.12. Let X be a Banach space, T ∈ B(X), with ‖T‖ < 1. Then (I −
T )−1 ∈ B(X) and

(I − T )−1 =
∞∑
n=0

Tn

in B(X).

Remark 0.13.
1. The series in proposition 0.12 is called the Neumann-series for T .

2. Of course,

(T − 1 · I)−1 = (T − I)−1 = −(I − T )−1 = −
∞∑
n=0

Tn ∈ B(X)

if ‖T‖ < 1. Hence, if ‖T‖ < 1, 1 ∈ ρ(T ).

3. The proposition is a “perturbation result” in the following sense: The identity
I : X → X is invertible. If one adds something “not too big” , then the result is
also invertible (“perturbing I a little preserves invertibility”).

Corollary 0.14. Let X and Y be Banach spaces. Then the subset of invertible operators
in B(X,Y ) is an open set. More precisely, if S, T ∈ B(X,Y ) such that T us invertible
and ‖T − S‖ < ‖T−1‖−1, then S is invertible.
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Remark 0.15 (Functions of an operator).
1. For T ∈ B(X), we have the obvious definition T 0 = I, Tn+1 = TTn, T−1 = T−1 if

it exists. Also T−n = (T−1)n is the inverse of Tn.

2. More generally, if p : C→ C is a polynomial, p(z) =
∑n
i=0 aiz

i, then we can define,
for T ∈ B(X), p(T ) =

∑n
i=0 aiT

i ∈ B(X).

3. We have already seen other “functions of T”, namely the resolvent of T at λ,
Rλ(T ) = (T − λI)−1, and, if ‖T‖ < 1, the Neumann-series of T .

4. More generally, let f(z) =
∑∞
n=0 anz

n be a power series in K with radius of con-
vergence r > 0. Then, by the same type of argument as for the Neumann series
above,

∑∞
n=0 anT

n converges in B(X), if ‖T‖ < r. Hence, one can make sense of
f(T ) for such f .

In conclusion, we can define f(T ) (T ∈ B(X)) for functions f which can be expanded into
a power series. We will enlarge the class of functions f for which we can give meaning
to f(T ) considerably (possibly at the price of not making sense for all T ∈ B(X)). We
will also study the relationship between the spectrum of T and that of f(T ).

Example 0.16.
1. For all T ∈ B(X), we have the exponential function

exp(T ) = eT =
∞∑
n=0

1
n!T

n ∈ B(X).

For S, T ∈ B(X), eS+T = eSeT if ST = TS, otherwise this may fail.

2. For T ∈ B(X), define
A(s) = esT ∈ B(X), s ∈ R.

This gives a map A : R→ B(X), in fact A ∈ C∞(R, B(X)) with d
dsA(s) = TA(s) =

A(s)T and A(0) = I, where d
dsA(s) = limh→0

A(s+h)−A(s)
h .

3. For T ∈ B(X), with ‖I − T‖ < 1, define

log(T ) = −
∞∑
n=1

1
n

(I − T )n ∈ B(X).

4. For T ∈ B(X), with ‖T‖ < 1, |s| ≤ 1, define A(s) = log(I − sT ). Then d
dsA(s) =

−T (I − sT )−1 = −(I − sT )−1T and exp(A(s)) = I − sT .
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1 Spectral theory for compact operators
For a while, we shall be interested in the point spectrum σp(T ) for operators T ∈ B(X),
i.e. we look at the eigenvalue problem for T : Given y ∈ X we seek all solutions λ ∈ C,
x ∈ X to the equation (T − λI)x = y. If λ ∈ ρ(T ), so that T − λI is invertible, then
this equation has a unique solution x0 given by x0 = (T − λI)−1y ∈ X. If, on the
other hand, λ ∈ σp(T ), then a solution x0 to this equation (if such a thing exists) is not
unique: If x ∈ N(T − λI) 6= 0, then also x + x0 is a solution, since (T − λI)(x + x0) =
(T − λI)x + (T − λI)x0 = 0 + y = y. So, in this case, the number of solutions —
the “number of degrees of freedom” — is given by dim N(T − λI). On the other hand,
for a solution x0 to exist, we need y to belong to R(T − λI). This can be thought
of as a “constraint” (or several) on y. If we had a scalar product and worked in a
finite dimensional space, then y would have to be in the orthogonal complement to
U = R(T − λI)⊥, which means 〈y, ui〉 = 0 for a basis {ui} of U ; hence the number of
constraints on y would be dimU . An important class of operators are those where both
these numbers — “the number of degrees of freedom” and “the number of constraints”
— are finite.

Definition 1.1. An operator A ∈ B(X,Y ) is called a Fredholm operator if

1. dim N(A) <∞.

2. R(A) is closed.

3. codim R(A) <∞.

The index of a Fredholm operator A is then given by ind(A) = dim N(A)− codim R(A).

Remark 1.2. That codim R(A) < ∞ means that Y = R(A) ⊕ Y0 with Y0 ⊆ Y a linear
subspace and dimY0 < ∞. In this case codim R(A) = dim Y0 is independent of the
choice of Y0 such that Y = R(A)⊕ Y0, i.e if also Y = R(A)⊕ Y1 with a linear subspace
Y1 ⊆ Y and dimY1 <∞, then dimY1 = dimY0. In a Hilbert space Y = R(A)⊕ R(A)⊥,
hence codim R(A) = dim R(A)⊥.

A large and important class (the important) class of Fredholm operators is when
X = Y and A is a “compact perturbation” of the identity:

Theorem 1.3. Let T ∈ K(X). Then A = I − T is a Fredholm operator with index 0.
In particular, dim N(A) < ∞ (1), R(A) is closed (2), N(A) = 0 implies R(A) = X (3),
codim R(A) ≤ dim N(A) (4) and dim N(A) ≤ codim R(A) (5).

Theorem 1.4 (Spectral theorem for compact operators, Riesz-Schauder). For every
compact operator T ∈ B(X), where X is a C-Banach space, one has

1. σ(T ) r {0} consists of countably many eigenvalues, with 0 as the only possible
accumulation point. If σ(T ) contains infinitely many points then it follows that
σ(T ) = σp(T ) ∪ {0}.
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2. For λ ∈ σ(T ) r {0} one has

1 ≤ nλ := max
{
n ∈ N : N

(
(T − λI)n−1) 6= N

(
(T − λI)n

)}
<∞

nλ is the order (or index) of λ (as an eigenvalue) and the dimension of N(T −λI)
is called the multiplicity of λ.

3. There is a so called Riesz decomposition: For λ ∈ σ(T ) r {0},

X = N
(
(T − λI)nλ

)
⊕ R

(
(T − λI)nλ

)
Both subspaces are closed and T -invariant and dim N

(
(T − λI)nλ

)
< ∞ (“gener-

alised eigenspace”).

4. σ
(
T |

R
(
(T−λI)nλ

))r {λ} = σ(T ) r {λ}.

5. Let, for λ ∈ σ(T ) r {0}, Eλ be the projection on N
(
(T − λI)nλ

)
. Then EλEµ =

δλµEλ.

Proof.
1. Let λ 6∈ σp(T ), λ 6= 0. Then N(I − T/λ) = N(λI − T ) = 0. Hence, R(T − λI) =

R(I −T/λ) = X. So (T −λI)−1 ∈ B(X) exists, so λ ∈ ρ(T ). Hence, σ(T )r {0} ⊆
σp(T ). If σ(T ) r {0} is not finite, choose λn ∈ σ(T ) r {0}, n ∈ N, λn 6= λm,
and eigenvectors en corresponding to λn and define Xn = span{e1, . . . , en}. We
claim, that the en are linearly independent: Assume that {e1, . . . , en−1} are linearly
independent, but that there exist α1, . . . , αn−1 ∈ C such that en =

∑n−1
k=1 αkek.

Then 0 = Ten−λnen =
∑n−1
k=1 αkTek−

∑n−1
k=1 αkλnen =

∑n−1
k=1 αk(λk−λn)ek which

implies αk = 0 since λk 6= λn for all 1 ≤ k ≤ n− 1 by assumption. Hence, en = 0
which is impossible since en is an eigenvector.
Hence, Xn−1 ( Xn is a proper closed subspace of Xn. Then, by Riesz’s lemma,
there exists an xn ∈ Xn with ‖xn‖ = 1 and dist(xn, Xn−1) ≥ 1

2 . Note, that
all the Xk are T -invariant. Also, there exists αn ∈ C and x̃n ∈ Xn−1 such that
xn = αnen+x̃n. Then Txn−λnxn = αnλnen+T x̃n−αnλnen−λnx̃n = T x̃n−λnx̃n,
i.e. (T − λnI)xn ∈ Xn−1. So, for m < n,

‖T (xn/λn)− T (xm/λm)‖ =
∥∥∥∥xn + 1

λn
(Txn − λnxn)− 1

λm
Txm

∥∥∥∥ ≥ 1
2

by the choice of the xn. Hence, the sequence {T (xn/λn)} has no accumulation
points. Since T is compact, it maps bounded sequences into sequences which have
a convergent subsequence. So, the sequence {xn/λn} cannot be bounded, hence
1/|λn| = ‖xn/λn‖ → ∞, i.e. λn → 0. This proves that 0 is the only possible
accumulation point of σ(T )r{0}. In particular, σ(T )rBr(0) is finite for all r > 0
(if not, it would have an accumulation point), so σ(T ) r {0} is countable (for this
we need that σ(T ) is bounded for any T ∈ B(X)).
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2. Let A = λI − T . Then N(An−1) ⊆ N(An) for all n (always). Assume N(An−1) 6=
N(An) for all n ≥ 1. Note that N(B) is always closed when B ∈ B(X). So we
can choose xn ∈ N(An) such that ‖xn‖ = 1 and dist(xn,N(An−1)) ≥ 1

2 . Then,
for m < n, ‖Txn − Txm‖ = ‖λxn − (Axn + λxm − Axm)‖ and Axn + λxm −
Axm ∈ N(An−1), since xm, λxm ∈ N(Am) by construction and N(Am) ⊆ N(An−1).
Also, An−1(Axm) = A(An−1(xm)) = A0 = 0 and An−1(Axn) = Anxn = 0. So,
‖Txn − Txm‖ = |λ|‖xn − 1/λ(Axn + λxm − Axm)‖ ≥ |λ|/2 > 0. But, ‖xn‖ = 1
for all n ∈ N, so {xn} is a bounded sequence such that {Txn} has no convergent
subsequence which contradicts the compactness of T . Hence, there exists n ∈ N
such that N(An−1) = N(An). Then for allm > n, if x ∈ N(Am), Am−nx ∈ N(An) =
N(An−1), i.e. Am−1x = An−1(Am−nx) = 0, so x ∈ N(Am−1). Continuing in this
fashion, one sees N(An) = N(Am) and nλ <∞. Also nλ ≥ 1 since N(T − λI) 6= 0.

3. Write again A = λI − T = λ(I − T/λ). This A is Fredholm. We claim that
N(Anλ) ⊕ R(Anλ) ⊆ X, i.e. that N(Anλ) ∩ R(Anλ) = 0. For this let x ∈ N(Anλ),
x = Anλy, for some y. Then A2nλy = AnλAnλy = Anλx = 0, so y ∈ N(A2nλ) =
N(Anλ) and x = Anλy = 0. Note, that

Anλ = (λI − T )nλ = λnλI +
nλ∑
k=1

(
nλ
k

)
λnλ−k(−T )k

is Fredholm by 1.3 since the second summand is compact. Hence, R(Anλ) is closed
and codim R(Anλ) ≤ dim N(Anλ) < ∞. Hence, we have X = N(Anλ) ⊕ R(Anλ).
Clearly, both these subspaces are T -invariant.

4. Write Tλ = T |
R
(
(T−λI)nλ

) and take µ ∈ C r {λ}. Then µI − T is injective on
N(Anλ), because if x ∈ N(Anλ)∩N(µI−T ), i.e. (λ−µ)x = Ax and Anλxx = 0, then
(µ−λ)Anλ−1x = Anλ−1(λ−µ)x = Anλx = 0 whence Anλx = 0. Hence by induction
x = 0. Moreover N(Anλ) is finite dimensional, thus (µ− T ) : N(Anλ)→ N(Anλ) is
a bijection. Hence, wether or not µ− T is invertible on X is equivalent to wether
or not µ− T is invertible on R(Anλ) in view of the decomposition X = N(Anλ)⊕
R(Anλ). Therefore µ ∈ ρ(T ) iff µ ∈ ρ(Tλ). Equivalently σ(T )r{λ} = σ(Tλ)r{λ}.

5. Let λ, µ ∈ σ(T ) r {0}, λ 6= µ. Let Aλ = λ − T , Aµ = µ − T . Then, taking any
x ∈ N(Anµµ ), write x = z + y with z ∈ N(Anλλ ) and y ∈ R(Anλλ ). Then 0 = A

nµ
µ x =

A
nµ
µ z + A

nµ
µ y. Both N(Anλλ ) and R(Anλλ ) are T -invariant, hence Anµµ z ∈ N(Anλλ )

and A
nµ
µ y ∈ R(Anλλ ). Therefore Anµµ z = 0. Since Aµ : N(Anλλ ) → N(Anλλ ) is a

bijection, z = 0, so z = y ∈ R(Anλλ ) and therefore N(Anµµ ) ⊆ R(Anλλ ). Therefore
R(Eµ) ⊆ N(Eλ).

Theorem 1.5. Let X be a normed space, E ⊆ X an n-dimensional subspace with basis
{e1, . . . , en} and Y ⊆ X a closed subspace such that Y ∩ E = 0. Then there exist
e′1, . . . , e

′
n ∈ X ′ such that e′i|Y = 0 and e′i(ej) = δij. Moreover there exists a continuous

projection P onto E with Y ⊆ N(P ).

Lemma 1.6. For all finite dimensional subspaces E ⊆ X, if Y ⊆ X is a closed subspace
with Y ∩ E = 0, we have Y ⊕ E ⊆ X is also a closed subspace.
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Lemma 1.7. If X is a normed space, Y ⊆ X a closed subspace, x0 6∈ Y , then there
exists x′ ∈ X ′ such that x′|Y = 0, ‖x′‖ = 1 and x′(x0) = dist(x0, Y ).

Proof of theorem 1.3. We will only prove (3). Assume N(A) = 0 and for contradiction
assume there is x ∈ X r R(A). Then Anx ∈ R(An) r R(An+1) for all n ≥ 0, for
otherwise if Anx = An+1y for some y ∈ X, so An(x − Ay) = 0. Since N(A) = 0, this
would imply x = Ay ∈ R(A). Moreover, R(An+1) is closed (by part 2). By Riesz’ lemma
there exist xn ∈ R(An), ‖xn‖ = 1, such that dist(xn,R(An+1)) = 1

2 . Then, for m > n,
‖Txn − Txm‖ = ‖xn − (Axn + xm − Axm)‖ ≥ 1

2 , whence no subsequence of {Txn} can
be Cauchy.

Proposition 1.8 (Fredholm alternative). For T ∈ K(X) and λ 6= 0, either the equation
Tx−λx = y has a unique solution, or the equation Tx−λx = 0 has nontrivial solutions.

Proposition 1.9. Let T ∈ K(X), λ ∈ σ(T )r {0}. Then the resolvent map ρ(T ) 3 µ 7→
Rµ(T ) = (T − µ)−1 has an isolated pole at µ = λ of order nλ (see. 1.4 (2)), that is,
the map µ 7→ (µ − λ)nλRµ(T ) can be continued at the point λ to an analytic map and
(µ− λ)nλRµ(T ) 6= 0.

Proof. We have X = N((λ − T )nλ) ⊕ R((λ − T )nλ). Write Eλ for the projection on
N((λ − T )nλ) and T0 = T |R(Eλ), T1 = T |N(Eλ). Since λ is an isolated point in σ(T ),
there exists r > 0 such that Bλ,r r {λ} ⊆ ρ(T ), whence Bλ,r r {λ} ⊆ ρ(T0) and
Bλ,r r {λ} ⊆ ρ(T1) because of part (4) of theorem 1.4. Moreover, for every z ∈ Cr {0},
Rλ+z(T ) = Rλ+z(T0)Eλ +Rλ+z(T1)(I − Eλ). Also, z 7→ Rλ+z(T1) is analytic. Setting

S(z) =
nλ∑
k=1

1
zk

(T0 − λ)k−1

one sees that

S(z)((λ+ z)I − T0) =
nλ∑
k=1

z1−k(T0 − λ)k−1 −
nλ∑
k=1

z−k(T0 − λ)k = I − znλ(T0 − λ)nλ = I.

Analogously ((λ + z)I − T0)S(z) = I, whence S(z) = Rλ+z(T0). Now it’s clear that
Rλ+z(T0) has a pole at z = 0 of order nλ.

Remark. So far the decomposition in theorem 1.4 (3) looks very impressive since it gives
us a very fine decomposition of X into a direct sum of generalised eigenspaces. But the
theorem cannot even guarantee the existence of a closed invariant subspace, let alone a
direct sum decomposition.

Proposition 1.10 (finite-dimensional case). Let dimX <∞, T : X → X linear. Then
there exist distinct λ1, . . . , λm, m ≤ dimX, such that σ(T ) = σp(T ) = {λ1, . . . , λm}.
Each λj has multiplicity nλj with the properties 1.4 (2)–(5), that is

X =
m⊕
j=1

N((T − λj)nλj ).
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Sketch of a proof. Equip X with any norm. Then X is Banach and T , I and T − λ are
compact. Set Tµ = T − µ for any µ ∈ C and apply theorem 1.4 to T0 and T1.

Proposition 1.11 (Jordan normal form). Let T ∈ K(X), λ ∈ σp(T ). For A = T − λ
one has

1. For n = 1, . . . , nλ, there exist subspaces En ⊆ N(An) such that En ∩ N(An−1) = 0
and N(Anλ) =

⊕nλ
k=1Nk where Nk =

⊕k−1
l=0 A

l(Ek).

2. The subspaces Nk are T -invariant and dk = dimAl(Ek) is independent of l ∈
{0, . . . , k − 1}.

3. If {ek,j : j = 1, . . . , dk} is a basis for Ek, then {Alek,j : 0 ≤ l < k ≤ nj , 1 ≤ j ≤ dk}
is a basis for N(Anλ) and with

x =
∑
k,j,l

αk,j,lA
lek,j and y =

∑
k,j,l

βk,j,lA
lek,j

the equation Tx = y is equivalent to

 βk,j,0
...

βk,j,k−1

 =


λ 1

. . . . . .
λ 1

λ


 αk,j,0

...
αk,j,k−1



Sketch of a proof. If E is a subspace with N(An−1) ⊕ E ⊆ N(An), then N(An−1−l) ⊕
Al(E) ⊆ N(An−l) for l = 0, . . . , n and Al is injective on E. Choose En for n = nλ, . . . , 1
such that N(An) = N(An−1)⊕

⊕nλ−n
l=0 Al(En+l) from which the claim follows.

Theorem 1.12 (Schauder). We have T ∈ K(X,Y ) if and only if T ′ ∈ K(Y ′, X ′).

Proof. First assume T ∈ K(X,Y ), i.e. T (B1(0)) is compact in Y . For y′ ∈ Y ′

we have ‖T ′y′‖X′ = sup‖x‖≤1 |〈T ′y′, x〉| = sup‖x‖≤1 |〈y′, Tx〉| = sup
y∈TB1(0) |〈y

′, y〉| =
‖y′‖

C(TB1(0)), form which we learn that B′1(0) is isometric to the set A = {y′ =
ỹ′|

TB1(0) : ỹ′ ∈ Y ′, ‖ỹ′‖ ≤ 1}. Therefore the precompactness of T ′B1(0) is equivalent
to precompactness of A in C(TB1(0)) equipped with ‖ · ‖∞. The latter follows from
Ascoli-Arzelà: A is uniformly bounded, because ‖y′‖∞ = ‖T ′y′‖ ≤ ‖T ′‖‖y′‖ ≤ ‖T‖. A
is an equicontinuous family since

|
〈
y′, y1

〉
−
〈
y′, y2

〉
| = |

〈
y′, y1 − y2

〉
| ≤ ‖y′‖‖y1 − y2‖ ≤ ‖y1 − y2‖

for every y1, y2 ∈ TB1(0).
Conversely, if T ′ ∈ K(Y ′, X ′), by the above T ′′ ∈ K(X ′′, Y ′′). Then exploit the

canonical embedding X ↪→ X ′′: T (B1(0)) ⊆ T ′′(B1(0)) and the latter is compact.

Remark. If X is a Hilbert space, the proof of theorem 1.12 is much shorter since one has
approximation of compact operators by finite rank operators.
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The last step of this chapter on the spectral theory of compact operators is to in-
vestigate the special case of compact and normal operators. We shall see that the
Riesz-Schauder decomposition results on this case in an orthonormal decomposition of
eigenspaces.

Definition 1.13. For a Hilbert space H, T ∈ B(H) is called normal if T ∗T = TT ∗.

Lemma 1.14. For T ∈ B(H), [T, T ∗] = 0, i.e. T is normal, if and only if ‖Tx‖ = ‖T ∗x‖
for all x ∈ H.

Proof. We have ‖Tx‖2 − ‖T ∗x‖2 = 〈Tx, Tx〉 − 〈T ∗x, T ∗x〉 = 〈Tx, Tx〉 − 〈TT ∗x, x〉 =
〈Tx, Tx〉 − 〈T ∗Tx, x〉 = 〈Tx, Tx〉 − 〈Tx, Tx〉 = 0, if T is normal.

Theorem 1.15. Let T ∈ B(X), where X 6= 0 is a C-Banach space. Then σ(T ) ⊆ C is
compact and nonempty, and

sup
λ∈σ(T )

|λ| = lim
m→∞

‖Tm‖1/m ≤ ‖T‖.

We call r(T ) = supλ∈σ(T ) |λ| the spectral radius of T .

Proof. By Proposition 0.3, ρ(T ) ⊆ C is open, hence σ(T ) is closed. By Proposition 0.12,
I − T/λ is invertible, if ‖T/λ‖ < 1, that is, if |λ| > ‖T‖, and in this case

Rλ(T ) = (T − λI)−1 = − 1
λ

(
I − T

λ

)−1
= −

∞∑
k=0

1
λn+1T

n.

Hence, r(T ) ≤ ‖T‖. So, σ(T ) is bounded, hence compact by Heine-Borel. Note that
Tm − λmI = (T − λI)pm(T ) = pm(T )(T − λI) for

pm(T ) =
m−1∑
i=0

λm−1−iT i.

Hence, λ ∈ σ(T ) implies λm ∈ σ(Tm). Hence, |λm| ≤ ‖Tm‖, i.e. |λ| ≤ ‖Tm‖1/m for all
m. So, |λ| ≤ lim infm→∞ ‖Tm‖1/m for all λ ∈ σ(T ). So r(T ) ≤ lim infm→∞ ‖Tm‖1/m. It
remains to prove that r(T ) ≥ lim supm→∞ ‖Tm‖1/m.

By Proposition 0.3 ρ(T ) ⊆ C is open and the resolvent map λ 7→ Rλ(T ) ∈ B(X) is a
complex analytic map, i.e. for all λ0 ∈ C r Br(t)(0) there exist cn(λ0) ∈ B(X), n ≥ 0
and ε(λ0) > 0 such that

Rλ(T ) =
∞∑
n=0

cj(λ0)(λ− λ0)n

for all λ ∈ Bε(λ0)(λ0). We will need some Complex Analysis:

Theorem (Cauchy’s integral formula). Let Ω ⊆ C be open and simply connected and
assume f : Ω→ C is analytic. Let γ : [a, b]→ Ω be any closed path. Then∮

γ
f(z) dz = 0.
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Note that “simply connected” informally means “no holes” and a “path” means a
rectifiable curve, in particular it is enough for γ to be C1.
The same holds when f : Ω → Y for a complex Banach space Y . Only the linear

structure and the completeness of Y where needed for the proof, once one can make
sense of the Riemann integral appearing in Cauchy’s formula in this setting.
Now λ 7→ Rλ(T ) is complex analytic and by Cauchy’s formula∫

γ1
λjRλ(T ) dλ =

∫
γ2
λjRλ(T ) dλ

where γi are circles of the same orientation around the origin of radius strictly bigger
that r(T ). Hence, for any j ≥ 0, s > R(T ), the integral

1
2πi

∫
∂Bs(0)

λjRλ(T ) dλ

is independent of s. Recall that Rλ(T ) = −
∑∞
n=0 λ

−n−1Tn for |λ| > r(T ). Hence,

1
2πi

∫
∂Bs(0)

λjRλ(T ) dλ = − 1
2πi

∫
∂Bs(0)

∞∑
n=0

λj−n−1Tn dλ =

= − 1
2π

∞∑
n=0

(
sj−n

∫ 2π

0
eiθ(j−n) dθ

)
Tn = −T j .

Hence, for j ≥ 0 and s > r(T )

‖T j‖ = 1
2π

∥∥∥∥∥
∫
∂Bs(0)

λjRλ(T ) dλ
∥∥∥∥∥ = 1

2π

∥∥∥∥∫ 2π

0

(
seiθ

)j
Rseiθ(T )

(
iseiθ

)
dθ
∥∥∥∥ ≤

≤ 1
2πs

j+1
∫ 2π

0
‖Rseiθ(T )‖dθ ≤ sj+1 sup

λ∈∂Bs(0)
‖Rλ(T )‖

and hence ‖T j‖1/j ≤ s
(
s·supλ∈∂Bs(0) ‖Rλ(T )‖

)1/j
j→∞−−−→ s. So, lim supm→∞ ‖Tm‖1/m ≤

s for all s > r(T ). Hence, lim supm→∞ ‖Tm‖1/m ≤ r(T ).
Assume for contradicition that σ(T ) = ∅ (then r(T ) := 0). For j = 0 and any s > 0,
‖I‖ = ‖T 0‖ ≤ s · maxλ∈∂Bs(0) ‖Rλ(T )‖ ≤ s · max|λ|≤s ‖Rλ(T )‖ s→0−−−→ 0, which is only
possible if X = 0.

Proposition 1.16. Let H 6= 0 be a complex Hilbert space, and T ∈ B(H). If T is
normal, r(T ) = ‖T‖.
Proof. Let T 6= 0. Recall that limm→∞ ‖Tm‖1/m ≤ ‖T‖, hence it is enough to prove
that ‖Tm‖ ≥ ‖T‖m for m ≥ 0. This is clear for m = 0, 1.
For m ≥ 1, and x ∈ H, we have

‖Tmx‖2 = 〈Tmx, Tmx〉 =
〈
T ∗Tmx, Tm−1x

〉
≤ ‖T ∗Tmx‖‖Tm−1x‖ =

= ‖Tm+1x‖‖Tm−1x‖ ≤ ‖Tm+1‖‖x‖‖T‖m−1‖x‖ ≤ ‖Tm+1‖‖T‖m−1‖x‖2

Hence, ‖Tm‖2 ≤ ‖Tm+1‖‖T‖m−1. So ‖Tm+1‖ ≥ ‖Tm‖2/‖T‖m−1 ≥ ‖T‖2m−(m−1) =
‖T‖m+1 if ‖Tm‖ ≥ ‖T‖m. Hence, by induction, the proposition follows.
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Definition 1.17. Let T ∈ B(H) be selfadjoint, i.e. T ∗ = T . Then T is called positive
semi-definite if 〈x, Tx〉 ≥ 0 for all x ∈ H. We will write T ≥ 0. We will also write A ≥ B
for operators A,B iff A−B ≥ 0.

Remark. By problem 12 〈x, Tx〉 ∈ R if T is selfadjoint.

Proposition 1.18. Let H be a C-Hilbert space, T ∈ B(H).

1. If T = T ∗, then σ(T ) ⊆ [−‖T‖, ‖T‖] ⊆ R. If also T ∈ K(H), then −‖T‖ or ‖T‖
is an eigenvalue of T .

2. If T = T ∗ and T ≥ 0, then σ(T ) ⊆ [0, ‖T‖] ⊆ R. If also T ∈ K(H), then ‖T‖ is
an eigenvalue of T .

Proof. By problem 12, for T = T ∗, σ(T ) ⊆
[
infx∈H,‖x‖≤1 〈x, Tx〉, supx∈H,‖x‖≤1 〈x, Tx〉

]
.

Also, by 1.15, σ(T ) ⊆ B‖T‖(0) ⊆ C. So σ(T ) ⊆ [−‖T‖, ‖T‖]. In fact, since s.a. implies
normal, maxλ∈σ(T ) |λ| = ‖T‖. If T is compact, then σ(T ) r {0} consists of isolated
eigenvalues by the spectral theorem for compact operators on a Banach space, so ‖T‖
or −‖T‖ is an eigenvalue.
For positive T , again using problem 12, σ(T ) ⊆

[
0, supx∈H,‖x‖≤1 〈x, Tx〉

]
and as before

σ(T ) ⊆ B‖T‖(0). So σ(T ) ⊆ [0, ‖T‖] ⊆ R. If also T ∈ K(H), then, as above ‖T‖ is an
eigenvalue.

Remark. In particular, if T ∈ K(H), T = T ∗, T 6= 0, and T ≥ 0, then for the largest
eigenvalue λ0 of T one has λ0 = maxλ∈σ(T ) λ = ‖T‖ = supx∈H,‖x‖≤1 〈x, Tx〉 = λ0. I.e.
maximising 〈x, Tx〉 under the constraint ‖x‖ ≤ 1 (or ‖x‖ = 1) gives the largest eigenvalue
of T . In particular λ0 ≥ 〈x, Tx〉 for all x ∈ H with ‖x‖ = 1. One can use this to compute
a lower bound on λ0 by choosing some x. Also, one can repeat this: for λ1 ≤ λ0 the
next eigenvalue, the same method works by restricting T so (span{x0})⊥ =: X̃, since X̃
is T -invariant: for x̃ ∈ X̃ one has 〈T x̃, x0〉 = 〈x̃, Tx0〉 = λ0〈x̃, x0〉 = 0, hence T x̃ ∈ X̃.
This can be used to compute the λj and their eigenvectors.

Example 1.19. Let H be a complex Hilbert space, and choose an ONS {ej}j∈N for
some N ⊆ N and choose a sequence {λj}j∈N ⊆ C with |λk| ≤ r < ∞ for all k ∈ N and
some r > 0. Then Tx =

∑
j∈N λj〈ej , x〉ej defines a bounded and normal operator. Also

T is compact iff λj → 0 as j →∞ (if N is infinite, otherwise T has finite rank, hence is
compact). The following theorem shows that every compact, normal operator has this
form.

Theorem 1.20. Let H be a complex Hilbert space, and let T ∈ K(H), T 6= 0, be normal.
Then

1. There exists an ONS {ej}j∈N with N ⊆ N and {λj}j∈N ⊆ C r {0} such that
Tek = λkek, k ∈ N , and σ(T ) r {0} = {λj}j∈N . If N is infinite, then λk → 0 as
k →∞.

2. For all k, nλk = 1 (the order of λk, i.e. the maximal n such that N((T−λkI)n−1) 6=
N((T − λkI)n).
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3. One has the orthogonal decomposition H = N(T )⊕ span{en : n ∈ N}.

4. Tx =
∑
k∈N λk〈ek, x〉ek for all x ∈ H.

Proof. Apply first the spectral theorem for compact operators (1.4) on T to get that
σ(T ) r {0} consists of eigenvalues λ̃k, k ∈ Ñ ⊆ N, with λ̃k → 0 as k → ∞ (if Ñ is
infinite). In this enumeration, the λ̃k are distinct. Moreover, the space Nk = N(T − λ̃kI)
is finite dimensional. Let N0 = N(T ), and λ̃0 = 0. Note that N(T − λ̃kI) = N(T ∗− λ̃kI)
for k ∈ Ñ ∪ {0}. We claim that Nk ⊥ Nl for k, l ∈ Ñ ∪ {0}, k 6= l. For xk ∈ Nk and
xl ∈ Nl, k 6= l, one has

λ̃l〈xk, xl〉 =
〈
xk, λ̃lxl

〉
= 〈xk, Txl〉 = 〈T ∗xk, xl〉 =

〈
λ̃kxk, xl

〉
= λ̃k〈xk, xl〉

and hence, since λ̃l 6= λ̃k, 〈xk, xl〉 = 0 as claimed. Next, we claim H =
⊕

k∈Ñ∪{0}Nk.

Let y ∈ Y :=
(⊕

k∈Ñ∪{0}Nk

)⊥
. Since, Nk = N(T ∗ − λ̃kI), k ∈ Ñ ∪ {0}, we have, for

x ∈ Nk, k ∈ Ñ ∪ {0}:
〈x, Ty〉 = 〈T ∗x, y〉 = λ̃k〈x, y〉 = 0,

hence Ty ∈ Y . Hence, Y is a T -invariant, closed subspace of H. We now look at
T0 = T |Y : Y → Y . Then T0 ∈ K(Y ) is normal. In case Y 6= 0, supλ∈σ(T0) |λ| = ‖T0‖
and its eigenvalues µk → 0 as k → ∞. Then there exists a µ0 ∈ σ(T0) such that
|µ0| = ‖T0‖. If ‖T0‖ 6= 0, then µ0 6= 0 is an eigenvalue for T0 by the spectral theorem,
hence µ0 is an eigenvalue for T with corresponding eigenvector u ∈ Y ⊆ H. Hence,
µ0 ∈ σ(T ) and u ∈ Nk for some k, which is a contradiction, since Y ⊥ Nk. If ‖T0‖ = 0,
then T0 = 0, so Y ⊆ N(T ) which is equally impossible if Y 6= 0. Hence, we have Y = 0.
Let Ek, k ∈ Ñ ∪ {0}, be the orthogonal projection on Nk. Then x =

∑
k∈Ñ∪{0}Ekx,

so
Tx =

∑
k∈Ñ∪{0}

TEkx =
∑

k∈Ñ∪{0}

λ̃kEkx =
∑
k∈Ñ

λ̃kEk.

Now the representation of T follows by choosing orthonormal bases {ek1, . . . , ekdk}, dk =
dimNk, of Nk. Then Ekx =

∑dk
j=1 〈ekj , x〉ekj and

Tx =
∑
k∈N

λk〈ek, x〉ek

by relabelling the λ̃k and ekj .
From this representation of T it follows that N((T −λkI)2) = Nk = N(T −λkI), for let

x ∈ N((T −λkI)2), i.e. 0 = (T − λ̃kI)2x =
∑
j∈Ñ (λ̃k− λ̃j)2Ejx. Since H =

⊕
k∈Ñ∪{0}Nk,

this implies Ejx = 0 for all j 6= k. Hence x = Ekx, so x ∈ Nk.

Let (as before) Ek be the orthogonal projection on Nk = N(T − λ̃kI), that is Ekx =∑dk
j=1 〈ekj , x〉ekj for an orthonormal basis {ek1, . . . , ekdk} of Nk. The spectral theorem

says that Tx =
∑
k∈N λ̃kEkx, i.e. the sum T =

∑
k∈N λ̃kEk converges pointwise.
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Corollary 1.21 (Spectral theorem for compact operators; Projection version). Let the
assumptions be as in theorem 1.20. Then, in the notation of above,

∑
k∈N λ̃kEk converges

in norm to T .

Proof. We have∥∥∥∥∥T −
M∑
k=1

λ̃kEk

∥∥∥∥∥ =

∥∥∥∥∥∥
∞∑

k=M+1
λ̃kEk

∥∥∥∥∥∥ = sup
λ∈σ(

∑
λ̃kEk)

|λ| = |λ̃M+1|
M→∞−−−−→ 0

since
∑
λ̃kEk is normal.

Theorem 1.22. Let T ∈ K(H), T ∗ = T , T ≥ 0. Then there exists a unique, positive,
self-adjoint operator S ∈ K(H) such that S2 = T . We write T 1/2 = S.

Proof. Write Tx =
∑
k∈N λk〈ek, x〉ek for all x ∈ H. Since T ≥ 0, we have λk ≥ 0. Let

Sx =
∑
k∈N
√
λk〈ek, x〉ek for x ∈ H. This defines a compact normal operator, since√

λk → 0 as k →∞. In fact, S is self-adjoint and S ≥ 0. Also, one computes

S2x = SSx = S
∑
k∈N

√
λk〈ek, x〉ek =

∑
k∈N

λk〈ek, x〉ek = Tx.

Assume R ∈ K(H) with R = R∗, R ≥ 0 and R2 = T . Using the spectral theorem
on R, we have R =

∑
k νkFk with νk the eigenvalues of R and corresponding orthogonal

projections Fk. Then T = R2 =
(∑

k νkFk
)(∑

m νmFm
)

=
∑
k ν

2
kFk and the ν2

k are the
eigenvalues of T with corresponding orthogonal projections Fk. Hence, R = S, since
νk ≥ 0 by R ≥ 0.

Let T : H1 → H2 be a compact operator between two Hilbert spaces. Then T ∗T : H1 →
H1 is positive and self-adjoint. Its unique square root is denoted |T | := (T ∗T )1/2.

Theorem 1.23 (Polar decomposition). For T ∈ K(H1, H2) there exists an operator
U ∈ B(H1, H2) with T = U |T |, such that U |N(U)⊥ is an isometry between N(U)⊥ and
R(U). U is uniquely determined by the demand that N(U) = N(T ).

Proof. |T | is self-adjoint, so ‖|T |x‖2 = 〈|T |x, |T |x〉 = 〈x, T ∗Tx〉 = 〈Tx, Tx〉 = ‖Tx‖2.
Hence, U(|T |x) = Tx defines an isometry from R(|T |) to R(T ) which extends uniquely
to a bounded operator U : R(|T |) → R(T ). Let Ux = 0 for x ∈ R(|T |)⊥ = N(|T |).
This proves the existence of U with the stated properties. The uniqueness follows from
N(|T |) = N(T ).

Remark.
1. An operator with the properties of U is called a partial isometry.

2. T = U |T | reminds of λ = eit|λ|, however, in general, |S + T | 6≤ |S|+ |T |.
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Theorem 1.24 (Singular Value Decomposition). For any T ∈ K(H1, H2) there exist
orthonormal systems {ei}i∈N ⊆ H1, {fi}i∈N ⊆ H2 and numbers s1 ≥ s2 ≥ · · · ≥ 0,
sk → 0 as k →∞ if |N | =∞, such that

Tx =
∑
k∈N

sk〈ek, x〉fk, for all x ∈ H1.

The numbers s2
k are the eigenvalues of T ∗T , counted with multiplicities. The sk are

called the singular values of T .

Proof. Write T = U |T | by polar decomposition, and use the spectral theorem on |T | to
get

|T |x =
∑
k∈N

sk〈ek, x〉ek

where the ek and the sk have the properties in the theorem. Then let fk = Uek to get
an orthonormal system {fk}k∈N (since U is a partial isometry) and

Tx = U |T |x =
∑
k∈N

sk〈ek, x〉Uek =
∑
k∈N

sk〈ek, x〉fk.

Remark.
1. There is no condition that T be normal or self-adjoint!

2. SVD is important, also on matrices, in Numerics.

Much remains to be said about compact operators. They occur (and were first studied)
as integral operators (Tkf)(x) =

∫
Ω k(x, y)f(y) dy, f ∈ X, for various types of k, and

various choices of X. We have seen the cases X = C[0, 1] and k : [0, 1]2 → C a continuous
function, and X = L2[0, 1] and k ∈ L2([0, 1] × [0, 1]), and “weakly singular integral
operators” where k(x, y) ∼ |x − y|−α. Compact operators also occur as embeddings of
certain spaces into certain spaces: i : X ↪→ Y . We have seen this (most often) where i
is bounded. Better yet, often i is even compact. Both situations are important in the
study of boundary value problems; for example, the Dirichlet problem: Take an open
bounded domain Ω ⊆ R2 (or more generally Ω ⊆ Rd) and ϕ ∈ C(∂Ω). The problem
then is to find u : Ω → C such that u ∈ C(Ω), u ∈ C2(Ω), solving ∆u = 0 on Ω and
u|∂Ω = ϕ.

One can study compact operators according to the properties of their singular values.
More precisely, let the p-th Schatten-class Sp be defined by

Sp =
{
T ∈ K(H) : ‖T‖p :=

( ∞∑
n=1

sn(T )p
)1/p

<∞
}

with sn(T ) the singular values of T . Then ‖−‖p is a norm on Sp, and (Sp, ‖−‖p) is
Banach. These spaces have many properties in common with `p, for example S′p ∼= Sq
for q the Hölder conjugate of p. Of special interest are S1, since it allows to define the
trace of operators, and S2, the Hilbert-Schmidt operators. In fact, S2 is a Hilbert space.
In particular, Tk ∈ S2(L2[0, 1]) when k ∈ L2([0, 1]× [0, 1]).
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For compact operators between Banach spaces, there is a notion of “nuclear operators”:
T ∈ B(X,Y ) is nuclear iff Tx =

∑∞
n=1 x

′
n(x)yn for all x ∈ X, with {x′n} ⊆ X ′ and

{yn} ⊆ Y , such that
∑
n ‖x′n‖‖yn‖ <∞. For more on these operators, see for examples

Werner, Alt.

2 Spectral theory for bounded, self-adjoint operators
As before, everything takes place on a complex Hilbert space. If T : Cn → Cn is nor-
mal, then it can be diagonalised, i.e. T is unitarily equivalent to a diagonal matrix D:
UTU−1 = D for some unitary U . The diagonal elements of D are of course the eigenval-
ues λ1, . . . , λn. Hence, (UTU−1x)i = λixi, i.e. D can be thought of as a multiplication
operator. This form can be used to define f(T ) for certain f by (Uf(T )U−1x)i = f(λi)xi.
We have already seen something similar for compact operators, namely, when defined,
S = T 1/2. Another way of thinking of UTU−1 = D is T =

∑
j µjEj with µj 6= µk wehen

k 6= j and orthogonal projections Ej onto the eigenspaces. Then f(T ) =
∑
j f(µj)Ej .

We shall elaborate on these various approaches.

Theorem 2.1 (Continuous functional calculus). Let T ∈ B(H) be self-adjoint. Then
there exists a unique map Φ: C(σ(T ))→ B(H) such that

(a) Φ(t) = T , where t : σ(T )→ C, t 7→ t, and Φ(1) = idH , where 1: σ(T )→ C, t 7→ 1.

(b) Φ is an involution and a homomorphism of algebras, i.e. Φ(αf +g) = αΦ(f)+Φ(g),
Φ(fg) = Φ(f)Φ(g), and Φ(f) = Φ(f)∗.

(c) Φ is continuous, i.e. bounded from (C(σ(T )), ‖−‖∞) to (B(H), ‖−‖). In fact,
‖Φ(f)‖ = ‖f‖∞ = supt∈σ(T ) |f(t)|.

The map Φ is called the continuous functional calculus of T .

Proof. We will use Weierstraß’ approximation theorem. The required properties fix Φ
on the polynomials, which are dense in C(σ(T )), and by continuity there exists a unique
bounded extension of Φ to C(σ(T )).

Theorem 2.2 (Weierstraß’ approximation theorem). Let f ∈ C[a, b], ε > 0. Then there
exists a polynomial p such that ‖f −p‖∞ < ε. In other words, the polynomials are dense
in (C[a, b], ‖−‖∞).

Theorem 2.3 (Tietze-Urysohn extension theorem for metric spaces). LetM be a metric
space and A ⊆M a closed subset. For all continuous functions f : A→ [c, d] there exists
a continuous extension F : M → [c, d] (i.e. F is continuous and F |A = f). In particular:
∀t0 6∈ A : ∃ϕ : M → [0, 1] continuous with ϕ|A = 0, ϕ(t0) = 1.

Proof. It is enough to look at c = 0, d = 1. Let

F (t) =


f(t) t ∈ A
inf{f(s)d(s, t) : s ∈ A}

inf{d(s, t) : s ∈ A} t 6∈ A
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where inf{d(s, t) : s ∈ A} = d(t, A) > 0 since t 6∈ A and A is closed. One easily (!)
sees that F is continuous. (For t0 6∈ A: Define (for A0 := A ∪ {t0}) ϕ0 : A0 → [0, 1] by
ϕ0|A = 0, ϕ0(t0) = 1 and then extend ϕ0 to ϕ, as above).

Recall: For T ∈ B(H), σ(T ) ⊆ C is compact and in particular, closed. Let f ∈
C(σ(T )) (i.e. f : σ(T ) → C is continuous). Then, by Tietze-Urysohn there exists
f̃ : Br(T )(0) → C continuous with f̃ |σ(T ) = f . For T self-adjoint (T = T ∗), we have:
∃m,M ∈ R : σ(T ) ⊆ [m,M ] ⊆ R. In other words, there exists f̃ : [m,M ] → R con-
tinuous and f̃ |σ(T ) = f . Then, by Weierstraß, for ε > 0 there exists a polynomial p
such that ‖f̃ − p‖∞ < ε (here ‖g‖∞ = supt∈[m,M ] |g(t)|). In particular, for all t ∈ σ(T ):
|f(t)− p(t)| = |f̃(t)− p(t)| < ε, so ‖f − p‖∞ < ε (here ‖g‖∞ = supt∈σ(T ) |g(t)|). Hence
(!) the polynomials are dense in (C(σ(T )), ‖ · ‖∞).

Proof of the continuous functional calculus. Uniqueness: Last time (!). Existence: Let
p ∈ P, then, if p : t 7→

∑n
i=0 ait

i, we define Φ0(p) :=
∑n
i=0 aiT

i ∈ B(H). Clearly (!),
Φ0 satisfies (a) and (b). It remains to prove that Φ0 : P → B(H) is bounded. Then,
by density of P in C(σ(T )) we will have a unique bounded (linear) extension Φ of Φ0
with the desired properties. That Φ satisfies (a) is clear, linearity and boundedness
too, remains: Φ is involutive and multiplicative: This is done by a limit argument. For
involutive (Φ(f) = (Φ(f))∗): Let f ∈ C(σ(T )) then, choose a sequence {pn}n∈N of
polynomials, so ‖f − pn‖∞ → 0, n→∞. Then

Φ(f) = Φ
(

lim
n→∞

pn
)

= Φ
(

lim
n→∞

pn
)

= lim
n→∞

Φ(pn) =

= lim
n→∞

Φ0(pn) = lim
n→∞

(
(Φ0(pn))∗

)
=
(

lim
n→∞

Φ0(pn)
)∗

=

=
(

lim
n→∞

Φ(pn)
)∗

=
(
Φ
(

lim
n→∞

pn
))∗

= (Φ(f))∗

To prove Φ0 : P → B(H) is bounded we shall in fact prove that ‖Φ0(p)‖ = ‖p‖∞ =
supλ∈σ(T ) |p(λ)|. For this, we need (problem 16, week 4)

σ(Φ0(p)) = σ(p(T )) = σ(
∑n
i=0 aiT

i) = {p(λ) : λ ∈ σ(T )} =
= {

∑n
i=0 aiλ

i : λ ∈ σ(T )} = p(σ(T ))

(OK: for T ∈ B(X,Y ), X,Y Banach).

‖Φ0(p)‖2 = ‖Φ0(p)∗Φ0(p)‖ = ‖Φ0(p)Φ0(p)‖ = ‖Φ0(pp)‖ = sup{|λ| : λ ∈ σ(Φ0(pp))} =
= sup{|(pp)(λ)| : λ ∈ σ(T )} = sup{|p(λ)|2 : λ ∈ σ(T )} =

=
(
sup{|p(λ)| : λ ∈ σ(T )}

)2
since, by properties of Φ0, Φ0(pp) is self-adjoint, hence, normal, so its norm equals to its
spectral radius.

Theorem 2.4. T ∈ B(H), T = T ∗, f 7→ f(T ) is the functional calculus of T (on
C(σ(T ))). Then
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(a) ‖f(T )‖ = ‖f‖∞

(b) If f ≥ 0 then f(T ) is a positive semi-definite operator.

(c) Tx = λx =⇒ f(T )x = f(λ)x

(d) σ(f(T )) = f(σ(T )) (spectral mapping theorem)

(e) A := {f(T ) : f ∈ C(σ(T ))} ⊆ B(H) is a commutative algera of operators. f(T ) is
normal for all f ∈ C(σ(T )). f(T ) self-adjoint ⇐⇒ f = f (f is real).

Proof.

(a) Follows from the proof of theorem 2.1, since true for polynomials, and these are
dense.

(b) Let f ≥ 0 (on σ(T )!). Let f = g2 with g ∈ C(σ(T )) and g ≥ 0 (i.e. g =
√
f on σ(T )).

Then, for all x ∈ H, 〈x, f(T )x〉 = 〈x, g2(T )x〉 = 〈x, g(T )g(T )x〉 = 〈g(T )∗, g(T )x〉 =
〈g(T )x, g(T )x〉 = 〈g(T )x, g(T )x〉 = ‖g(T )x‖2 ≥ 0.

(c) This is true for f ∈ P. For general f it follows from a limiting argument: For
f ∈ C(σ(T )), choose polynomials {pn}n∈N such that ‖pn − f‖∞ → 0 as n → ∞.
Then (!) ‖pn(T )− f(T )‖ → 0, n→∞, in particular.

‖f(T )x− f(λ)x‖ = ‖(f(T )x− pn(T )x) + (pn(T )x− pn(λ)x) + (pn(λ)x− f(λ)x‖ ≤
≤ ‖f(T )− pn(T )‖‖x‖+ ‖pn(T )x− pn(λ)x‖+ |pn(λ− f(λ)|‖x‖
n→∞−−−→ 0

(d) OK if f is a polynomial (problem 16, week 4). Let f ∈ C(σ(T )) and µ 6∈ f(σ(T )).
That is, µ 6= f(t) ∀t ∈ σ(T ), so g(t) = (µ − f(t))−1, t ∈ σ(T ) is well-defined, and
g(t)(µ − f(t)) = (µ − f(t))g(t) = 1 ∀t ∈ σ(T ). Note g ∈ C(σ(T )), so g(T )(µ −
f(T )) = (µ− f(T ))g(T ) = idH , hence µ ∈ ρ(f(T )), hence µ 6∈ σ(f(T )). This shows
σ(f(T )) ⊂ f(σ(T )). On the other hand: Let µ = f(λ) for some λ ∈ σ(T ). Let n ∈ N:
Choose polynomials pn with ‖pn−f‖∞ ≤ 1/n, then also |pn(λ)−f(λ)| ≤ 1/n for all
λ ∈ σ(T ) and ‖pn(T )− f(T )‖ ≤ 1/n (since Φ is a linear isometry). As noted above,
λ ∈ σ(T ) ⇒ pn(λ) ∈ σ(pn(T )) (since pn is a polynomial). Hence (exercise 18(iii),
sheet 5) there exists xn ∈ H, ‖xn‖ = 1 and∥∥∥(pn(T )− pn(λ)

)
xn
∥∥∥ ≤ 1

n

Hence

‖(f(T )− µ)xn‖ = ‖(f(T )− f(λ))xn‖ =
= ‖(f(T )− pn(T ) + pn(T )− pn(λ) + pn(λ− f(λ))xn‖ ≤
≤ ‖f(T )− pn(T )‖‖xn‖+ ‖(pn(T )− pn(λ))xn‖+
+ |pn(λ)− f(λ)|‖xn‖ ≤
≤ 1/n+ 1/n+ 1/n = 3/n
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Hence there exists a sequence {xn}n∈N ⊂ H, ‖xn‖ = 1, such that ‖(f(T )−µ)xn‖ →
∞, n → ∞. So {xn}n∈N is a Weyl sequence for f(T ) at µ (= f(λ)). Hence µ ∈
σ(f(T )), so f(σ(T )) ⊂ σ(f(T )). So, in total σ(f(T )) = f(σ(T )).

(e) f(T ) is normal, since f(T )f(T )∗ = f(T )f(T ) = (ff)(T ) = (ff)(T ) = f(T )∗f(T ).
The rest is clear.

Remark (Holomorphic functional calculus). Let Ω ⊆ C open, f : Ω→ C holomorphic, Γ
a rectifiable, closed curve in Ω, then, by Cauchy’s Integral Formula,

f(z) = 1
2πi

∮
Γ

f(ξ)
ξ − z

dξ for any z inside (!) Γ

This allows the following construction (due to Dunford-Schwartz) of a holomorphic func-
tional calculus:
For T ∈ B(X) (X is a C-Banach space), σ(T ) ⊆ D ⊆ C open, f : D → C holomorphic,

Γ = {γi}ni=1 a collection of (Jordan) curves in D, such that σ(T ) lies inside Γ and each
γi is positively oriented. Then let (!)

f(T ) := 1
2πi

∮
Γ
f(ξ)(ξ − T )−1 dξ

Then f 7→ f(T ) is an involutive linear algebra homomorphism from H(σ(T )) to B(X)
(and the map is continuous in an appropriate sense).

The continuous functional calculus now allows (!) to ‘compute’ f(T ) ∈ B(H) for T
bounded and self-adjoint, and f continuous. However, there is nothing on diagonaliza-
tion.
Remark. Recall: Assume T ∈ K(H), T ∗ = T and let T =

∑∞
k=0 µkEk be the spectral

decomposition of T from the spectral theorem for compact normal operators (1.20 +
1.21). (here, µ0 = 0 ∈ σ(T ) and E0 is the orthogonal projections on N(T ), {µk}∞k=1
is the sequence of distinct and real eigenvalues of T , µk 6= 0, k 6= 0. Ek are the
corresponding projections on eigenspaces. From 1.20 and 1.21 it follows (!) that the
map

C(σ(T )) // B(H)

f � //
∞∑
k=0

f(µk)Ek

satisfies (a), (b) and (c) in theorem 2.1 (continuous functional calculus) — hence, this
map is the continuous functional calculus of T .

That is, diagonalistation of T ∈ K(H), T ∗ = T allowed already to define the continu-
ous calculus of T . On the other hand (in this case!), the continuous calculus allows to
‘re-find’ the orthogonal spectral projections Ek. Recall that σ(T ) r {0} consists of iso-
lated points. Hence, define for j ≥ 1, fj : σ(T ) = {0} ∪ {µ1, µ2, . . . } → R by fj(µj) = 1
and fj(t) = 0 otherwise. Then (!!) fj is continuous on σ(T ) and (µ0 = 0!)

fj(T ) =
∞∑
k=1

fj(µk)Ek = Ej =⇒ T =
∞∑
k=1

µkfk(T )
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Problem: If we imagine(!) there is, also for general bounded self-adjoint operators,
something like spectral projections, one could hope to ‘compute’ them by using — as
above — a function f with values in {0, 1} and define an operator f(T ). But: f has
to be continuous to use the continuous calculus — but in general, ‘f ∈ C(σ(T ))’ and
‘f(σ(T )) ∈ {0, 1}’ are incompatible. Note: For f(T ) to be an orthogonal projection, f
needs to take alues in {0, 1}. (if E2 = E,E∗ = E,E = f(T ), f has to be real and
f(T ) = E = E2 = f(T )2 = f2(T ), so f2 = f , so f can only take the values 0 and 1
on σ(T ).) This is one (major!) motivation for the following: Extending the continuous
functional calculus to define f(T ) for bounded, measurable functions on σ(T ) (i.e. Borel-
measurable).

Definition. Let T be a set. A family of subsets Σ ⊆ 2T is called a σ-algebra iff

(a) ∅ ∈ Σ

(b) E ∈ Σ⇒ T r E ∈ Σ

(c) {Ei}i∈N ⊆ Σ⇒
⋃
i∈NEi ∈ Σ

For any family Γ ⊂ 2T there exists a smalles σ-algebra Σ = Σ(Γ), containing Γ. The
smallest σ-algebra in a topological space that contains the topology is called the Borel-
σ-algebra. Its elements are called Borel-sets.

Definition. A family of subset ∆ ⊆ 2T is called a Dynkin-system iff

(a) T ∈ ∆

(b) E,F ∈ ∆, E ⊆ F =⇒ F r E ∈ ∆.

(c) E1, E2, · · · ∈ ∆, Ei ∩ Ej = ∅ for i 6= j =⇒
⋃∞
n=1En ∈ ∆.

For a family Γ ⊆ 2T tehre exists a smallest Dynkin-system ∆(T ) containing T . (Note:
Σ σ-algebra ⇒ Σ Dynkin-system).

A family Γ ⊆ 2T is called stable under intersection iff A,B ∈ Γ =⇒ A ∩B ∈ Γ.

Proposition 2.5. If Γ ⊆ 2T is stable under intersection, Σ(Γ) = ∆(Γ).

Definition. A function f : T → R is called measurable (Borel-measurable) iff f−1([a, b))
is a Borel-set for all a, b ∈ R.
A function f : T → C is measurable iff both Re f and Im f are measurable.

Definition. A function of the form

f =
n∑
i=1

αiχEi αi ∈ C Ei ∈ Σ

is called a step function. All step functions are measurable.

Proposition 2.6. Let f, g, fn : T → K be measurable functions, α ∈ K.
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(a) Then f + g, fg, f/g (g 6= 0), αf , |f |, max{f, g}, min{f, g} (if K = R), supn fn,
infn fn, lim infn fn, lim supn fn (and hence, limn fn) are all measurable.

(b) There exists a sequence {ϕn}n∈N of step functions such that f(t) = limn→∞ ϕn(t) for
all t ∈ T . If f ≥ 0, then the ϕn can be chosen such that ϕ1(t),≤ ϕ2(t) ≤ · · · ≤ f(t)
for all t ∈ T .

(c) If f is measurable and bounded, then there exists a sequence of step functions that
converges uniformly (on T ) to f .

Definition. Let T be a set, Σ a σ-algebra, µ : Σ → R (or C) is called a signed (or
complex) measure iff for all sequences {Ai}i∈N ⊆ Σ, Ai ∩ Aj = ∅ (i 6= j), µ(

⋃∞
i=1Ai) =∑∞

i=1 µ(Ai). (so µ(A) ≥ 0 is not needed!). M(T,Σ) is the space of all complex measures
on Σ. It s a vectorspace (!). If T is a topological/metric space, we let Σ be the Borel
σ-algebra.

Definition. The variation of a measure µ ∈M(T,Σ) is the positive measure |µ| defined
by

|µ|(A) = sup
Z

∑
E∈Z
|µ(E)|

where the sup is over all decompositions Z of A in finitely many disjoint elemnts of Σ.
Then (!!) |µ|(T ) <∞. The variation norm (!) of µ is ‖µ‖ = |µ|(T ).

Proposition 2.7. (M(T,Σ), ‖ · ‖) is a Banach space.

Theorem 2.8 (Riesz’ representation theorem). Let K be a compact topological space
(ex. [a, b]). Then C(K)′ (i.e. the dual of C(K), with ‖ · ‖∞) is isometrically isomorphic
to M(K,Σ), C(K)′ ∼= M(K,Σ), Σ being the Borel-sets on K, via the map T : M(K)→
C(K)′, µ 7→ Tµ given by

(Tµ)(f) =
∫
K
f dµ

and ‖µ‖ = ‖Tµ‖C(K)′.

Proof. See Rudin ‘Real & Complex Analysis’.

Fact: ‖S‖2 = ‖S∗S‖ for all S ∈ B(H), since ‖Sx‖2 = 〈Sx, Sx〉 = 〈x, S∗Sx〉 =
|〈x, S∗Sx〉|.

Definition. Let D ⊆ C be compact. Let Mb(D) be the set of (Borel) measurable
and bounded (complex valued) functions on D. (f ∈ Mb(D) ⇐⇒ f : D → C, f Borel-
measurable and bounded).

We will need the following lemma:

Lemma 2.9.

(a) (Mb(D), ‖ · ‖∞) is a Banach space.

(b) Assume U ⊆Mb(D) satisfies:
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(1) C(D) ⊆ U
(2) {fn}n∈N ⊆ U , supn ‖fn‖∞ <∞, f(t) := limn→∞ fn(t) ∀t ∈ D =⇒ f ∈ U .
Then U =Mb(D). SoMb(D) is the smallest space of functions which
(1) contains all continuous functions
(2) is closed under pointwise limits of uniformly bounded sequences.

Proof. (a) follows from the fact that the space of all bounded functions on D, with the
supremum norm, is a Banach space, and that Mb(D) is closed under pointwise limits.
To prove (b) let

F = {S ⊆Mb(D) : S ⊇ C(D) and S satisfies (2) in lemma 2.9}

and let V =
⋂

F . Note that σ(D) ⊆ V ⊆ Mb(D). Then V is a vector space: for
f0 ∈ V define Vf0 = {g ∈ Mb(D) : f0 + g ∈ V } ⊇ {0}. For f0 ∈ C(D) ⊆ V , we have
C(D) ⊆ Vf0 . Now, Vf0 satisfies condition (2) for any f0 ∈ V , for assume {fn}n∈N ⊆ Vf0 ,
with ‖fn‖∞ ≤ C < ∞, and f(t) = limn→∞ fn(t) exists for all t ∈ D. Since fn ∈ Vf0

for all n, we have f0 + fn ∈ V for all n. Setting hn := fn + f0 we have ‖hn‖∞ ≤
‖fn‖∞+‖f‖∞ ≤ C+‖f0‖ =: C̃ and hn(t) = fn(t)+f0(t) n→∞−−−→ f(t)+f0(t) for all t ∈ D
and {hn}n∈N ⊆ V . By definition of V , it follows that f + f0 ∈ V , i.e. f ∈ Vf0 . Hence,
Vf0 satisfies condition (2).

In summary, for f ∈ C(D), C(D) ⊆ Vf0 , and, for any f0 ∈ V , Vf0 satisfies condition
(2). Hence, V ⊆ Vf0 for f0 ∈ C(D). In other words, for f0 ∈ C(D) and g ∈ V , it follows
that f0 + g ∈ V . Now, take g0 ∈ V . Then the above shows that f + g0 ∈ V for all
f ∈ C(D), hence C(D) ⊆ Vg0 . Also, Vg0 satisfies condition (2), hence V ⊆ Vg0 for any
g0 ∈ V , which shows that V is closed under addition. Also, g ∈ V and α ∈ C implies
αg ∈ V . Hence, V is a linear subspace ofMb(D).

We will show that V =Mb(D). For this it suffices to show that all step functions lie
in V , since the step functions are dense inMb(D): For any f ∈ Mb(D) there exists a
sequence {fn}n∈N of step functions such that ‖fn− f‖∞ → 0. In particular, ‖fn‖∞ ≤ C
for some C > 0 and limn→∞ fn(t) = f(t) for all t ∈ D. Then f ∈ D since V satisfies
condition (2).
We still need to prove that χE ∈ V for all E ∈ Σ (the Borel σ-algebra on D). Let

∆ = {E ∈ Σ: χE ∈ V }. Claim: ∆ is a Dynkin-system. First χD ≡ 1 ∈ P ⊆ C(D) ⊆ V .
Let E,F ∈ ∆, ⊆ F , then χFrE = χF − χE and so, since χE , χF ∈ V , also χFrE =
χF − χE ∈ V . With E1, E2, · · · ∈ ∆, Ei ∩ Ej = ∅ for i 6= j, E =

⋃∞
k=1Ek, we have

χE =
∑∞
k=1 χEk (pointwise convergence). Let fn :=

∑n
k=1 χEk , then {fn}n∈N ⊆ V (V

vectorspace). ‖fn‖∞ ≤ 1 (En disjoint), and fn(t) → χE(t) as n → ∞ for all t ∈ D, so
χE ∈ V , hence, E ∈ ∆. So ∆ is a Dynkin-system. Claim: T ⊆ ∆ (the open sets). Idea:
Use 2.5 with Γ = T . Then ∆(T ) = Σ(T ) = Σ and T ⊆ ∆ ⊆ Σ = ∆(T ). So Σ = ∆(T )
being the smallest Dynkin-system containing T , we have ∆ = Σ.
To prove T ⊆ ∆: For any open E (relatively open in D), there exists a sequence of

continuous functions {fn}n∈N, 0 ≤ fn ≤ 1 such that fn(t)→ χE(t) for all t ∈ D. (Then:
‖fn‖∞ ≤ 1 and fn ∈ V for all n (since C(D) ⊆ V ), and V satisfies (2) in Lemma 2.9,
so χE ∈ V , hence E ∈ ∆.) To construct the sequence {fn}: Use Tietze-Urysohn in the
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version: For K,H closed sets, K ∩H = ∅, ∃ g continuous such that g|H = 0 and g|K = 1,
0 ≤ g ≤ 1. E is open, so Ec is closed. Use Fn = {y : dist(y,Ec) ≥ 1/n}, which is closed.
Take fn as g in Tietze-Urysohn for Ec, Fn.

We now extend the continuous functional calculus: Let x, y ∈ H, f ∈ C(σ(T )), T ∈
B(H), T = T ∗. Let `x,y(f) = 〈x, f(T ), y〉 ∈ C. Then `x,y : C(σ(T )) → C is clearly
linear (since Φ is) and |`x,y(f)| ≤ ‖f(T )‖‖x‖‖y‖ = ‖x‖‖y‖‖f‖∞, so `x,y ∈ C(σ(T ))′ (a
bounded linear functional on C(σ(T ))). By Riesz’ representation theorem (theorem 2.8),
there exists a complex measure µx,y such that

〈x, f(T )y〉 = `x,y(f) =
∫
σ(T )

f dµx,y (∗∗)

Note: the map H × H → M(σ(T )), (x, y) 7→ µx,y is sesquilinear (i.e. bilinear except
µλx,y = λµx,y). Also ‖µx,y‖ = ‖`x,y‖ ≤ ‖x‖‖y‖ (see above). So (x, y) 7→ µx,y is bounded.
(here, ‖µx,y‖ is the total variation of the complex measure µx,y. Note: the right side of
(∗∗) makes sense not only for f ∈ C(σ(T )), but for all f ∈ Mb(σ(T )), which helps to
define f(T ) for f ∈Mb(σ(T )).

Theorem 2.10 (Measurable functional calculus). Let T ∈ B(H), T = T ∗. Then there
exists a unique map Φ̂ : Mb(σ(T ))→ B(H) such that

(a) Φ̂(t) = T , Φ̂(1) = idH

(b) Φ̂ is an involutive algebra homomorphism.

(c) Φ̂ is continuous (bounded).

(d) If {fn}n∈N ⊆ Mb(σ(T )), supn ‖fn‖∞ such that fn(t) → f(t), n → ∞ ∀t ∈ σ(T ),
then

〈
x, Φ̂(fn)y

〉
→
〈
x, Φ̂(f)y

〉
∀x, y ∈ H.

(d’) Under the same assumptions as in (d), Φ̂(fn)x→ Φ̂(f)x ∀x ∈ H.c

Proof. Uniqueness: By the theorem on the continuous functional calculus, the condi-
tions (a), (b), (c) determine uniquely Φ̂(f) for f ∈ C(σ(T )). Then uniqueness for
f ∈Mb(σ(T )) follows from lemma 2.5 (see condition (d)).
Existence: Let f ∈ Mb(σ(T )), x, y ∈ H. Let µx,y be the measure constructed above

and look at the map
H ×H 3 (x, y) 7−→

∫
σ(T )

f dµx,y ∈ C

This is sesquilinear (since (x, y) 7→ µx,y is sesquilinear) and bounded since∣∣∣∣∣
∫
σ(T )

f dµx,y

∣∣∣∣∣ ≤ ‖f‖∞‖µx,y‖ ≤ ‖f‖∞‖x‖‖y‖.
Hence, by Lax-Milgram, there exists a unique operator Φ̂(f) ∈ B(H), such that∫

σ(T )
f dµx,y =

〈
x, Φ̂(f)y

〉
,

25



and ‖Φ̂(f)‖ ≤ ‖f‖∞. It remains to verify, that the map Φ̂: Mb(σ(T ))→ B(H) satisfies
conditions (a) through (d’):

(a) Note that for f ∈ C(σ(T )), Φ̂(f) = Φ(f) = f(T ) where Φ is the continuous func-
tional calculus. Hence, Φ̂(t) = Φ(t) = T and Φ̂(1) = Φ(1) = idH .

(c) This holds, because ‖Φ̂(f)‖ ≤ ‖f‖∞.

(d) This follows from Lebesgue’s theorem on dominated convergence, since constant
functions are integrable on σ(T ): There exists some C > 0 such that |fn(t)| ≤ C for
all n ∈ N and all t ∈ σ(T ), and fn(t)→ f(t) for all t ∈ σ(T ). Hence,〈

x, Φ̂(fn)y
〉

=
∫
σ(T )

fn dµx,y
n→∞−−−→

∫
σ(t)

f dµx,y =
〈
x, Φ̂(f)y

〉
, ∀x, y ∈ H.

(b) The map Φ̂ is linear by construction. To prove that Φ̂(fg) = Φ̂(f)Φ̂(g) for all f, g ∈
Mb(σ(T )), note that for continuous f and g this follows from the multiplicativity
of the continuous functional calculus. Now, let g ∈ C(σ(T )) and let

U = {f ∈Mb(σ(T )) : Φ̂(fg) = Φ̂(f)Φ̂(g)} ⊆ Mb(σ(T )).

Then C(σ(T )) ⊆ U . We will use lemma 2.9 to conclude that U = Mb(σ(T )): Let
{fn}n∈N ⊆ U such that there exists some C > 0 with ‖fn‖∞ ≤ C <∞, and f(t) :=
limn→∞ fn(t) exists for all t ∈ σ(T ). By (d)

〈
x, Φ̂(fg)y

〉
= limn→∞

〈
x, Φ̂(fng)y

〉
=

limn→∞
〈
x, Φ̂(fn)Φ̂(g)y

〉
=
〈
x, Φ̂(f)Φ̂(g)y

〉
. Hence, Φ̂(fg) = Φ̂(f)Φ̂(g), so f ∈ U .

Hence, U =Mb(σ(T )) by lemma 2.9, and Φ̂(fg) = Φ̂(f)Φ̂(g) for all f ∈Mb(σ(T ))
and g ∈ C(σ(T )). Now, for f ∈Mb(σ(T )), let

V = {g ∈Mb(σ(T )) : Φ̂(f)Φ̂(g) = Φ̂(fg)} ⊆ Mb(σ(T )).

Then the previous argument shows C(σ(T )) ⊆ V , and repeating it we get V =
Mb(σ(T )). Hence, Φ̂(fg) = Φ̂(f)Φ̂(g) for all f, g ∈ Mb(σ(T )). Similarly, it follows
that Φ̂(f) = Φ̂(f)∗ for all f ∈Mb(σ(T )).

(d’) Note that (using (d) on {fnfn}n∈N): ‖Φ̂(fn)x‖2 = ‖fn(T )x‖2 = 〈x, fn(T )∗fn(T )x〉 =〈
x, fn(T )fn(T )x

〉
=
〈
x, (fnf)(T )x

〉
→

〈
x, (ff)(T )x

〉
= ‖Φ̂(f)x‖2. Now, in a

Hilbert space weak convergence and convergence of the norms implies strong conver-
gence, Hence, Φ̂(fn)x n→∞−−−→ Φ̂(f)x.

Theorem 2.11 (Lax-Milgram). Let H be a C-Hilbert space, B : H×H → C sesquilinear.

(a) The following are equivalent:
(i) B is continuous.
(ii) B is partially continuous, i.e. x 7→ B(x, y) and y 7→ B(x, y) are continuous.
(iii) ∃M ≥ 0: |B(x, y)| ≤M‖x‖‖y‖
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(b) If B is continuous, there exists a unique S ∈ B(H) such that

B(x, y) = 〈x, Sy〉 ∀x, y ∈ H

Lemma 2.12. Let T ∈ B(H), T = T ∗.

(a) For A ⊆ σ(T ) a Borel set, EA := χA(T ) (χA ∈ Mb(σ(T ))) is an orthogonal projec-
tion.

(b) χ∅(T ) = 0, χσ(T )(T ) = idH .

(c) Let A1, A2, · · · ⊆ σ(T ) be disjoint Borel sets and let A =
⋃∞
n=1An, x ∈ H. Then∑∞

n=1 χAn(T )x = χA(T )x.

(d) For Borel sets A,B ⊆ σ(T ), χA(T )χB(T ) = χA∩B(T ).

Note: In general, one does not have
∑∞
n=1 χAn(T ) = χA(T ) (norm convergence), since,

for this to hold, we need ‖χAn‖ → 0, n→∞.

Proof.

(a) χ2
A = χA and χA = χA, so (since Φ̂ is multiplicative and involutive), χA(T )χA(T ) =
χ2
A(T ) = χA(T ), χA(T )∗ = χA(T ), so χA(T ) is an orthogonal projection.

(b) χ∅(T ) = Φ̂(0) = 0, χσ(T ) = Φ̂(1) = idH , by measurable functional calculus.

(c) Let fk =
∑k
n=1 χAn , then ‖fk‖∞ ≤ 1 (since fk(t) ∈ {0, 1}). Also fk(t)→

∑∞
n=1 χAn(t)

and
∑∞
n=1 χAn = χA(t) =: f(t) for all t ∈ σ(T ). Then, by (d’) in theorem 2.10,

fk(T )x 7→ f(T )x, i.e.
∑∞
n=1 χAn(T )x = χA(T )x.

(d) χAχB = χA∩B, so χA(T )χB(T ) = Φ̂(χA)φ̂(χB) = Φ̂(χAχB) = (̂χA∩B) = χA∩B(T ).

Lemma 2.12 says that the map E : Σ→ B(H), A 7→ χA∩σ(T )(T ) (where Σ is the Borel
σ-algebra of R) is a spectral measure in the sense of the following definition:

Definition 2.13. Let Σ be the Borel σ-algebra on R. A map E : Σ→ B(H), A 7→ EA is
called a spectral measure (projection valued measure) iff all EA are orthogonal projections
(E2

A = EA = E∗A) and

(a) E∅ = 0, ER = idH

(b) For pairwise disjoint A1, A2, · · · ∈ Σ,
∞∑
n=1

(EAnx) = EAx A =
∞⋃
n=1

An ∀x ∈ H

A spectral measure E is said to have compact support iff there exists a compact set
K ⊆ R such that EK = idH .
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Note: one easily (!) sees that EAEB = EBEA = EA∩B always hold for a spectral
measure. We shall now discuss how to integrate a measurable bounded function wrt. a
spectral measure. The idea will be to show that the measurable functional calculus is
given exactly in this way.

Step 1 Let f = χA, A ∈ Σ be a characteristic function. Let∫
f dE := EA ∈ B(H)

Step 2 Let f be a step function, f =
∑n
i=1 αiχAi , αi ∈ C, Ai ∈ Σ. Then∫

f dE :=
n∑
i=1

αiEAi ∈ B(H)

(to prove: this does not depend on the way f has been written as a step function)

Step 3 Let f be a measurable bounded function. Then there exists a sequence {fn}n∈N of
step functions which converges uniformly to f . (see ‘recall on Lebesgue theory’).
(fn → f , uniformly). Idea: Let∫

f dE = lim
n→∞

∫
fn dE ∈ B(H)

The existence of the limit and the independence of the choice of sequence {fn} fol-
lows from the following lemma, since if fn → f uniformly, then {fn} is (uniformly)
Cauchy, so: {

∫
fn dE}n∈N ⊆ B(H) is also Cauchy (by 2.14). Hence the limit exists.

Similarly, this limit is independent of the sequence {fn}.

Lemma 2.14. For any step function f we have∥∥∥∥∫ f dE
∥∥∥∥ ≤ ‖f‖∞

Proof. Let x ∈ H with ‖x‖ ≤ 1 and f =
∑n
i=1 αiχAi , αi ∈ C, Ai ∈ Σ. Note: Can assume,

wlog. that Ai ∩Aj = ∅ (i 6= j). Then

∥∥∥∥(∫ f dE
)
x

∥∥∥∥2
=
∥∥∥∥∥
n∑
i=1

EAi(x)
∥∥∥∥∥

2

=
〈

n∑
i=1

αiEAi(x),
n∑
j=1

αjEAj (x)
〉

=

=
n∑
i=1

n∑
j=1

αiαj〈EAi(x), EAj (x)〉 =
n∑
i=1
|αi|2〈EAi(x), EAi(x)〉 ≤

≤
(

max
1≤i≤n

|αi|2
) n∑
i=1
‖EAi(x)‖2 =

(
max

1≤i≤n
|αi|2

)∥∥∥∥∥
n∑
i=1

EAi(x)
∥∥∥∥∥

2

=

= ‖f‖2∞
∥∥∥E⋃n

i=1 Ai
(x)
∥∥∥2
≤ ‖f‖2∞.
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If E has compact support, for example EK = idH for K ⊆ R compact, and f : K → C
is bounded and measurable, then we set∫

f dE :=
∫
χKf dE =

∫
K
f dE.

This definition is independent of the choice of K, since if EK = idH and K∩A = ∅, then
EA = 0. In summary we have

Theorem 2.15. Let E be a spectral measure (on R) and f a bounded, measurable
function. Then ∫

f dE ∈ B(H)

is well-defined, and the map Mb(R) → B(H), f 7→
∫
f dE is linear and bounded. In

fact, ∥∥∥∥∫ f dE
∥∥∥∥ ≤ ‖f‖∞

If f is real, then
∫
f dE is self-adjoint. If K ⊆ R is compact with EK = idH , then it is

enough that f be defined and bounded and measurable on K.

Remark. Let E be a spectral measure with compact support. Then
∫
f dE is well-defined

for f being a polynomial. Hence,

T :=
∫
K
λ dEλ =

∫
idK dEλ

is a bounded, self-adjoint operator on H. Hence, given a bounded self-adjoint operator
T , the measurable functional calculus gives rise to a spectral measure, by E : Σ →
B(H), A 7→ χA∩σ(T )(T ) =: EA, with compact support, since σ(T ) ⊆ R is compact. On
the other hand, given a spectral measure with compact support, T =

∫
K λdEλ defines

a self-adjoint bounded operator. We will see that these are inverse operations.

Theorem 2.16. Let E be a spectral measure on R with compact support and let T be
the bounded self-adjoint operator given by

T =
∫
λ dEλ.

Then the map Ψ: Mb(σ(T )) → B(H), f 7→
∫
σ(T ) f dE is the (unique) measurable func-

tional calculus associated to T , i.e. Ψ = Φ̂ in the notation of theorem 2.10. In particular,
Eσ(T ) = idH and for measurable A ⊆ σ(T ),

χA(T ) =
∫
χA dE.

Hence, the given spectral measure and that defined through the operator T coincide.
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Proof. We will prove that Ψ satisfies (a) through (d) in theorem 2.10, which will show
that Ψ = Φ̂ by uniqueness. Let E be a spectral measure on R with compact support,
say EK = idH , and let T =

∫
K λ dEλ. Let f : σ(T ) → C be bounded and measurable

and define an extension

f̃(t) =
{

0 t 6∈ σ(T )
f(t) t ∈ σ(T )

Then f̃ is measurable and bounded, so by theorem 2.15, Ψ(f) :=
∫
f̃ dE exists, and

Ψ: Mb(σ(T )) → B(H) is linear and continuous. Ψ is also multiplicative: For A,B
measurable sets

Ψ(χA∩B) =
∫
χA∩B dE = EA∩B = EAEB =

(∫
χA dE

)(∫
χB dE

)
= Ψ(χA)Ψ(χB).

Since χA∩B = χAχB, it follows that Ψ(χAχB) = Ψ(χA)Ψ(χB). Then, by linearity,
Ψ(fg) = Ψ(f)Ψ(g) for all step functions f, g. Finally, by a limiting argument, also
Ψ(fg) = Ψ(f)Ψ(g) for f, g ∈ Mb(σ(T )). Similarly, Ψ(f) = Ψ(f)∗ since E∗A = EA.
Hence, Ψ satisfies (b) and (c) in theorem 2.10.

To prove (d), consider any sequence {fn}n∈N ⊆ Mb(σ(T )) such that ‖fn‖∞ ≤ C for
some C and f(t) = limn→∞ fn(t) exists for all t ∈ σ(T ). Note that for E a spectral
measure, and fixed x, y ∈ H, the map νx,y : Σ→ C, A 7→ 〈x,EAy〉 is a complex measure
and that

〈x,Ψ(f)y〉 =
∫
f dνx,y =

∫
f(λ) d〈x,Eλy〉,

since this is trivial for f = χA and then follows for step functions by linearity and for
arbitrary f ∈ Mb(σ(T )) by approximation. Then (d) follows for Ψ from Lebesgue’s
theorem on dominated convergence:

〈x,Ψ(fn)y〉 =
∫
fn dνx,y

n→∞−−−→
∫
f dνx,y = 〈x,Ψ(f)y〉

since constant functions are integrable by compact support of E.
It remains to prove (a), i.e. that Ψ(1) = idH and Ψ(t) = T for t : σ(T ) → C, t 7→ t.

The first is equivalent to proving Eσ(T ) = idH . The second follows from the first, since

Ψ(t) =
∫
σ(T )

λ dEλ = T

from theorem 2.15. So it remains to prove that Eσ(T ) = idH . For this we prove Eρ(T ) = 0
and use that R = σ(T ) ∪ ρ(T ) and σ(T ) ∩ ρ(T ) = ∅. E has, by assumption, compact
support K. Choose an interval (a, b] such that K ⊆ (a, b]. Then E(a,b] = EK = idH .
Let µ ∈ ρ(T ). Then there exists a neighbourhood U of µ such that EU = 0: Note that
T − µI, and hence µI − T , is invertible. It follows by 0.14 that there exists δ > 0 such
that ‖S − (µ− T )‖ ≤ δ implies that S is invertible, and ‖S−1‖ ≤ C := ‖(µ− T )−1‖+ 1.
We can assume, that δ = b−a

N for some N ∈ N and that δ < 1
C . Let ak = a + kδ for

k = 0, 1, . . . , N and consider the step function f =
∑N
k=1 akχ(ak−1,ak]. By 2.15, with

Ek = E(ak−1,ak] =
∫
χ(ak−1,ak] dE, we have∥∥∥∥∥T −

N∑
k=1

akEk

∥∥∥∥∥ =
∥∥∥∥∫ λ dE −

∫
f dE

∥∥∥∥ ≤ ‖λ− f‖∞ = max
k=0,...,N

|ak − ak−1| ≤ δ
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Note: (ak−1, ak] ∩ (aj−1, aj ] = ∅, k 6= j, so (a, b] =
⋃N
k=1(ak−1, ak] (disjoint union!), so

id = E(a,b] =
∑N
k=1E(ak−1,ak] =

∑N
k=1Ek (K ⊆ (a, b], EK = id). So µ id =

∑N
k=1 µEk,

hence ∥∥∥∥∥(µ− T )−
N∑
k=1

(µ− ak)Ek

∥∥∥∥∥ =
∥∥∥∥∥T −

N∑
k=1

akEk

∥∥∥∥∥ ≤ δ
hence, the operator

∑N
k=1(µ− ak)Ek is invertible and ‖(

∑N
k=1(µ− ak)Ek)−1‖ ≤ C. But

(since EkEj = EjEk = δkjEk, since the (ai−1, ai] are disjoint)∥∥∥∥∥∥
(

N∑
k=1

(µ− ak)Ek

)−1∥∥∥∥∥∥ = max
{
|µ− ak|−1 : Ek 6= 0

}

So |µ−ak|−1 < C implies Ek = 0. Now choose N so large that, for some ak0 , |µ−ak0 | <
1/C. Then Ek0 = 0. Hence EU = 0 for some neighbourhood U . Let now K̃ ⊆ ρ(T ) be
compact, and {Uµ : µ ∈ K̃} is an open cover, ∃µ1, . . . , µn ∈ K̃ such that K̃ ⊆

⋃n
i=1 Uµi ,

then EK̃ = 0. There exist V1, . . . , VM disjoint such that
⋃n
i=1 Uµi =

⋃M
i=1 Vi, Vi ∩ Vj = ∅

for i 6= j and ∀i∃j : Vi ⊆ Uµj . So E⋃Uµi
= E⋃Vj

=
∑M
j=1EVj = 0. Recall: ∀K̃ ⊆

R r σ(T ), K̃ compact: EK̃ = 0. It follows that, for all x ∈ H, the positive measure
Σ(K r σ(T )) → R+, A 7→ 〈x,EAx〉 is regular (see definition below). Since, for all
K̃ ⊆ R r σ(T ), 〈x,EK̃x〉 = 〈x, 0〉 = 0, it follows that this measure is 0 on K r σ(T ).
Hence, 〈x,ERrσ(T )x〉 = 0 for all x ∈ H, so ERrσ(T ) = 0. Hence, Eσ(T ) = id.

Definition. A measure on the Borel σ-algebra is called Borel-measure. A positive Borel-
measure µ is called regular iff

(a) µ(C) <∞ for all compact C.

(b) ∀A ∈ Σ (Borel-sets)

µ(A) = sup{µ(C) : C ⊆ A,C compact} = inf{µ(O) : O ⊇ A,O open}

A signed/complex measure is regular iff its variation measure |µ| is regular.

Theorem. Let T be (a) a compact metric space or (b) a complete, seperable metric space
or (c) an open subset of Rn. Then every finite Borel measure (µ(T ) < ∞) µ on T is
regular. Also, the Lebesgue measure on Rn is regular.

Recall: A ⊆ σ(T ), measurable (Borel)

χA(T ) = Ψ(χA) =
∫
χA dE = EA

so the spectral measure associated to T (A 7→ χA∩σ(T )(T )). and the spectral measure
used to define T (=

∫
λ dE, A 7→ EA) coincide.
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Theorem 2.17 (Spectral theorem for self-adjoint bounded operators). Let T ∈ B(H),
T = T ∗. Then there exists a unique spectral measure E, with compact support in R, such
that

T =
∫
σ(T )

λdEλ

The map
f 7→

∫
σ(T )

f(λ) dEλ = f(T )

defines the measurable functional calculus f(T ) given by

〈x, f(T )y〉 =
∫
σ(T )

f(λ) d〈x,Eλy〉 x, y ∈ H

Proof. Let T ∈ B(H), T = T ∗ and let E be its associated spectral measure (E : A 7→
χA∩σ(T )(T )). Define S :=

∫
σ(T ) λdEλ. We need to prove S = T . (the rest of the

statements in 2.17 are recapitulations). Firstly, E has compact support: σ(T ) ⊆ C
compact, and χσ(T )(T ) = Eσ(T ) = id (lemma 2.12 b). Let, for g ∈ Mb(σ(T )), g(T )
denote the measurable functional calculus of T (from 2.10) on g and Ψ(g) the measurable
functional calculus of S (from 2.16) on g. Let t be the function t : σ(T )→ R, t 7→ t, and
choose, for ε > 0, a step function f on σ(T ) such that ‖t− f‖∞ ≤ ε. According to 2.10
‖T −f(T )‖ = ‖t(T )−f(T )‖ ≤ ‖t−f‖∞ ≤ ε and according to 2.15 (used on the spectral
measure associated to T , and S :=

∫
σ(T ) λ dEλ), ‖S − Ψ(f)‖ = ‖

∫
σ(T )(t − f) dE‖ ≤

‖t − f‖∞ ≤ ε. Finally, with f =
∑
αiχAi (αi ∈ C, Ai ∈ Σ), and since, by definition,

EAi = χAi(T ) (the spectral measure E is the one associated to T : A 7→ χA∩σ(T )(T )

f(T )−Ψ(f) =
n∑
i=1

αiχAi(T )−
n∑
i=1

αiEAi = 0

Hence, for all ε > 0, ‖S−T‖ ≤ ‖S−Ψ(f)‖+‖Ψ(f)−f(T )‖+‖f(T )−T‖ ≤ ε+0+ε = 2ε,
so ‖S − T‖ = 0, hence, T = S =

∑
σ(T ) λ dEλ.

Remark.
(1) This is the generalization of T =

∑
µiEi for compact operators (in particular, ma-

trices) — hence, T is built of the orthogonal projections EA (weighted with λ) but
in a continuous way.

(2) The symbol d〈x,Eλy〉 means integration wrt. the Borel measure A 7→ 〈x,EAy〉
(x, y ∈ H fixed). (In the proof of 2.10 it was called µx,y).

(3) T as before (T ∈ B(H), T = T ∗), S ∈ B(H) any operator. Then A 7→ 〈x, SEAy〉 =
〈S∗x,EAy〉 (x, y ∈ H) is also a complex measure. (check!)

Corollary 2.18. Let T ∈ B(H) be self-adjoint with spectral measure E. Let S ∈ B(H).
Then ST − TS = [S, T ] = 0 if and only if [S,EA] = 0 for all A ∈ Σ.
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Proof. One has [S, T ] = 0 if and only if [S, Tn] = 0 for all n ≥ 0 if and only if 〈x, STny〉 =
〈x, TnSy〉 for all x, y ∈ H and n ≥ 0. Note that

〈x, STny〉 = 〈S∗x, Tny〉 =
∫
σ(T )

λn d〈S∗x,Eλy〉 =
∫
σ(T )

λn d〈x, SEλy〉

and
〈x, TnSy〉 =

∫
σ(T )

λn d〈x,EλSy〉.

Hence, [S, T ] = 0 if and only if∫
σ(T )

λn d〈x, SEλy〉 = 〈x, TnSy〉 =
∫
σ(T )

λn d〈x,EλSy〉

for all x, y ∈ H and n ≥ 0. So, thinking of the measures d〈x, SEλy〉 and d〈x,EλSy〉
as linear functionals on C(σ(T )), these coincide on the polynomial functions for all
x, y ∈ H if and only if [S, T ] = 0. Since the polynomial functions are dense in C(σ(T )),
the measures d〈x, SEλy〉 and d〈x,EλSy〉 for all x, y ∈ H define the same linear functional
on C(σ(T )) if and only if [S, T ] = 0. Hence, by Riesz’ representation theorem, the two
measures coincide for all x, y ∈ H if and only if [S, T ] = 0. Now,

〈x, SEAy〉 =
∫
σ(T )

χA d〈x, SEλy〉 =
∫
σ(T )

χA d〈x,EλSy〉 = 〈x,EASy〉

for all x, y ∈ H if and only if [S, T ] = 0. Hence, [S,EA] = 0 if and only if [S, T ] = 0.

Example 2.19.
(a) Assume H ∼= Cn to be finite dimensional and T a self-adjoint matrix, and assume

T has m distinct eigenvalues µ1, . . . , µm. Then T =
∑m
i=1 µiE{µi} where the E{µi}

are the orthogonal projections on the eigenspace corresponding to µi. The spectral
measure of T is EA =

∑
µi∈AE{µi}.

(b) Let T ∈ K(H) be self-adjoint. Then

T =
∞∑
i=0

µiE{µi}

in norm with the µi and E{µi} as in (a). As above, the spectral measure is, for
A ∈ Σ,

EA =
∑
µi∈A

E{µi},

but only pointwise!

(c) Let H = L2[0, 1] and (Tx)(t) = tx(t) for x ∈ L2[0, 1]. Then, T is self-adjoint,
σ(T ) = σc(T ) = [0, 1]. For A ∈ Σ, set

EAx = χA∩[0,1]x, x ∈ H = L2[0, 1].

Then E is the spectral measure of T , and

T =
∫

[0,1]
λ dEλ.
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Theorem 2.20. Let T ∈ B(H) be self-adjoint with spectral measure E. Then

(a) λ ∈ ρ(T ) iff there exists and open neighbourhood U ⊆ R of λ such that EU = 0.

(b) λ is an eigenvalue of T iff E{λ} 6= 0. In this case, E{λ} is the orthogonal projection
on the eigenspace associated to λ.

(c) The isolated point λ of σ(T ) are eigenvalues.

Proof.
(a) By construction of E, Eρ(T ) = 0. Assume U ⊆ R is an open neighbourhood of λ

such that EU = 0. Define

f(t) =
{ 1
λ−t t 6∈ U
0 t ∈ U

Then f is measurable and bounded on σ(T ), i.e. f ∈ Mb(σ(T )). So is g(t) = λ− t.
Then, by the functional calculus, f(T )(λ − T ) = f(T )g(T ) = (fg)(T ) = χUc(T ) =
EUc(T ) = idH since EU = 0. Similarly, (λ− T )f(T ) = idH . Hence, λ ∈ ρ(T ).

(b) It is enough to prove R(E{λ}) = N(λ − T ). So let x ∈ R(E{λ}), i.e. E{λ}x = x.
Therefore,

〈y, (λ− T )x〉 =
〈
y, (λ− T )E{λ}x

〉
=
∫
σ(T )

(λ− t)χ{λ}(t) d〈x,Ety〉 = 0

since (λ− t)χ{λ}(t) = 0 for all t for all y ∈ H. Hence, x ∈ N(λ− T ). On the other
hand, for x ∈ N(λ − T ), i.e. Tx = λx, by 2.4(c) f(T )x = f(λ)x for f ∈ C(σ(T ))
and therefore by 2.9(b), this also holds for any f ∈ Mb(σ(T )). In particular for
f = χ{λ} one has Eλx = x, hence x ∈ R(λ− T ).

(c) Let U ⊆ R be open such that U ∩ σ(T ) = {λ}. Then U r {λ} ⊆ R r σ(T ) = ρ(T ),
so EUr{λ} = 0. If E{λ} = 0, then EU = EUr{λ} + E{λ} = 0, i.e. λ ∈ ρ(T ). But by
assumption λ ∈ σ(T ), hence E{λ} 6= 0 and by (b) λ is an eigenvalue.

Corollary 2.21. Let T ∈ B(H) be self-adjoint with sepctral measure E. Then σ(T ) is
the smallest compact set such that Eσ(T ) = idH .

Proof. Take some compact K ⊆ R with EK = idH and λ 6∈ K. Then EKc = 0 and
λ ∈ Kc which is open. So by 2.20(a) λ ∈ ρ(T ). Hence, σ(T ) ⊆ K.

One way (among many others) of thinking of the spectral theorem for self-adjoint
matrices is: Every self-adjoint linear map T : Cn → Cn is unitarily equivalent to a
diagonal matrix, i.e. there exists a unitary map U : Cn → Cn and λ1, . . . , λn ∈ C such
that (UTU∗x)i = λixi.

Theorem 2.22. Let T ∈ B(H) be self-adjoint with spectral measure E and assume
T has a cyclic vector, i.e. there exists x0 ∈ H such that span{T ix0 : i ∈ N} = H.
Let µ be the finite positive measure d〈x0, Eλx0〉. Then there exists a unitary operator
U : H → L2(R, µ) such that

(UTU−1ϕ)(t) = tϕ(t), for all ϕ ∈ L2(R, µ).
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Proof. Let ϕ ∈ C(σ(T )), then∫
σ(T )
|ϕ(t)|2 dµ(t) =

∫
σ(T )

ϕ(t)ϕ(t) d〈x0, Etx0〉 = 〈x0, ϕ(T )∗ϕ(T )x0〉 = ‖ϕ(T )x0‖2

by the functional calculus, i.e. V̂ : C(σ(T ))→ H,ϕ 7→ ϕ(T )x0 is a linear isometry with
the L2(R, µ)-norm on C(σ(T )). Since C(σ(T )) is dense in L2(R, µ) (proposition below),
V̂ has a unieq extension to a map V : L2(R, µ) → H, which is also an isometry. Note:
The image of V is closed in H (since V is an isometry). Now for ϕ(t) = tn, ϕ ∈ C(σ(T ))
and Tnx0 = ϕ(T )x0, so Tnx0 ∈ V̂ (C(σ(T )) ⊆ V (L2(R, µ)) ⊆ H. But since x0 is cyclic,
this implies that V is onto. So V is a unitary operator. For ϕ ∈ C(σ(T )),

T (V (ϕ)) = T (ϕ(T )x0) = (T ◦ ϕ(T ))x0 = (Φ̂(t) ◦ Φ̂(ϕ))x0 = Φ̂(t · ϕ)x0 = V (t · ϕ)

So (V −1TV )ϕ = t ·ϕ for all ϕ ∈ C(σ(T )) and hence, by density, also for all ϕ ∈ L2(R, µ).
Let U = V −1 = V ∗.

Proposition. If µ is a finite regular Borel measure on a compact metric or topological
space M , then C(M) ⊆ Lp(µ), 1 ≤ p <∞, is dense (in Lp norm).

Theorem 2.23 (Multiplication operator version of the spectral theorem). Every bounded
self-adjoint operator is unitarily equivalent to a multiplication operator. More precisely,
for any self-adjoint T ∈ B(H), there exists a measure space (Ω,Σ, µ) (if H is separable,
this space is σ-finite), a bounded measurable function f : Ω→ R and a unitary operator
U : H → L2(Ω,Σ, µ) such that (UTU−1)ϕ = fϕ µ-a.e. for all ϕ ∈ L2(Ω,Σ, µ).

Proof (only for H separable). By lemma 2.24 and theorem 2.22 there exist unitary op-
erators Ui : Hi → L2(R, µi) and bounded measurable functions fi : σ(Ti)→ R such that
(UiTiU−1

i )(ϕi) = fi · ϕi µi-a.e. for all ϕi ∈ L2(R, µi). Let Ω be the disjoint union of the
sets σ(Ti) (i < N). Let Σ = {A ⊆ Ω: ∀i : A ∩ σ(Ti) is Borel} and let µ : Σ → [0,∞] be
given by µ(A) =

∑
i<N µi(A∩σ(Ti)) (recall that µi is the measure d〈xiEλxi〉, xi ∈ Hi the

cyclic vector of Ti, and Eλ the spectral measure). Then (!) Σ is a σ-algebra, and µ is a
σ-finite measure. Let f(t) = fi(t) if t ∈ σ(Ti) (really, f(t, i) = fi(t), (t, i) ∈ Ω). We write
f = {fi}i<N and ϕ = {ϕi}i<N , so ϕ ∈ L2(Ω,Σ, µ). Let U : H → L2(Ω,Σ, µ) be defined
by U ({xi}i<N ) = {Uixi}i<N , then (check!) U is unitary and (UTU−1)ϕ = f · ϕ.

Note: the measure µ is not unique.

Lemma 2.24. Let H be a separable Hilbert space and T ∈ B(H) be self-adjoint. Then
there exists a decomposition H =

⊕
2Hi such that for all i < N , T (Hi) ⊆ Hi and the

restricted operator Ti = T |Hi : Hi → Hi has a cyclic vector xi ∈ Hi.

Proof. Let H be the set of finite or countable families {Hi}i∈I of pairwise orthogonal
closed subspaces of H, such that T (Hi) ⊆ Hi and Hi = span{Tnxi : n ≥ 0} for some
xi ∈ Hi. Note {{0}} ∈ H, so H 6= ∅. H is partially ordered by inclusion. Let K be
chain in H, i.e. a totally ordered subset of H. Write k ∈ K as k = {Hik : i < Nk}. Let
h0 =

⋃
k∈K k = {Hik : i < Nk, k ∈ K}. Then h0 ∈ H since H is separable. Hence, by
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Zorn’s lemma, H has a maximal element h ∈ H. Let U = span
⋃
k∈h k ⊆ H. If U 6= H,

then there would exists x ∈ U⊥ r {0} (U is closed). Let V = span{Tnx : n ∈ N}, then
T (V ) ⊆ V and x is a cyclic vector for T |V . Also (!!) V ⊥ U . Hence h ⊆ h ∪ {V } ∈ H.
Since h is maximal, h = h ∪ {V }. Hence, V ∈ h. Now x ∈ V , so x ∈ U . This is a
contradiction to x ∈ U⊥ r {0}.

Remark. The spectral theorem can be generalised to normal bounded operators T by
using that T = S1 + iS2 for self-adjoint operators S1 and S2 with [S1, S2] = 0:

S1 = T + T ∗

2 S2 = T − T ∗

2i
Theorem 2.25 (Spectral theorem for normal bounded operators). For any bounded,
normal operator T there exists a unique spectral measure G (with compact support) on
the Borel σ-algebra of C such that

T =
∫
σ(T )

z dGz

The formula
f(T ) =

∫
σ(T )

f(z) dGz

defines the uniquely determined measurable functional calculus. Every normal bounded
operator is unitarily equivalent to a multiplication operator defined by multiplication by
a bounded measurable (complex-valued) function.

3 Unbounded operators, symmetric operators and quadratic
forms

In functional analysis 1 we briefly saw that not all operators are bounded. The typical
examples are (partial) differential operators. We do have that T = d

dx from X =
(C1[0, 1], ‖−‖C1) to Y = (C0[0, 1], ‖−‖C0) is bounded, where ‖f‖C1 = ‖f‖∞+‖f ′‖∞ and
‖f‖C0 = ‖f‖∞, since ‖Tf‖C0 = ‖f ′‖∞ ≤ ‖f‖∞ + ‖f ′‖∞ = ‖f‖C1 . However, for many
practical purposes, the spaces X and Y are not the right thing to study d

dx , for example,
what about self-adjointness? Furthermore, we would like d

dx to be defined on a Hilbert
space. Note that (C1[0, 1], ‖−‖2) is not a Hilbert space. For example (L2[0, 1], ‖−‖2) is,
but then we have lost the ability to differentiate in a natural way. One can repair this
with the theory of distributions, weak derivatives and Sobolev spaces. However even
if one can solve these problems, there is no way to end up with a bounded operator
T : L2[0, 1] → L2[0, 1] extending the derivative: Let en(x) = einx, x ∈ [0, 1]. Then
en ∈ C∞[0, 1] ⊆ C1[0, 1] ⊆ L2[0, 1] and ‖en‖2 = 1, but

‖Ten‖22 =
∫ 1

0

∣∣∣∣ d
dxen(x)

∣∣∣∣2 dx =
∫ 1

0
n2
∣∣∣einx∣∣∣2 dx = n2.

Hence, there cannot exist any constant C > 0 such that ‖Ten‖2 ≤ C‖en‖2 for all n ∈ N.
This is motivation for the need to study unbounded operators. We will need to study
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operators defined on subspaces of Hilbert spaces, for example C1[0, 1] ⊆ L2[0, 1]. The
theory of unbounded operators is less “complete” than that of bounded operators, but
it can still be applied to a vast number of interesting problems. From now on, let H be
a complex Hilbert space.

Definition 3.1. An operator (operator in a Hilbert space) T : D(T )→ H is a linear map
whose domain D(T ) ⊆ H is a linear subspace of H. In general, D(T ) is not necessarily
a closed subspace. T is said to be densely defined (in H) if D(T ) is dense in H.
An operator S : D(S) → H is called an extension of the operator T : D(T ) → H if

D(T ) ⊆ D(S) and S|D(T ) = T . We will write T ⊂ S. Two operators S and T are equal
if and only if T ⊂ S and S ⊂ T .
An operator T : D(T )→ H is called symmetric if 〈y, Tx〉 = 〈Ty, x〉 all for x, y ∈ D(T ).

Remark. Let H = L2[0, 1] and T = i d
dx : D(T )→ H with D(T ) = {x ∈ C1[0, 1] : x(0) =

x(1) = 0}, and S = i d
dx : D(S) → H with D(S) = {x ∈ C1[0, 1] : x(0) = x(1)}. Then

both S and T are symmetric operators in H and T ⊂ S.

Proposition 3.2 (Hellinger-Toeplitz). Let H be a Hilbert space and T : H → H be a
linear operator, i.e. D(T ) = H, such that 〈y, Tx〉 = 〈Ty, x〉 for all x, y ∈ H. Then T is
bounded. Hence, T is self-adjoint as a bounded operator.

We will now define the adjoint of a densely defined operator. Let T : D(T )→ H be a
densely defined operator and set

D(T ∗) = {y ∈ H : x 7→ 〈y, Tx〉 is bounded on D(T )}.

Then D(T ∗) ⊆ H is a linear subspace of H. For y ∈ D(T ∗), x 7→ 〈y, Tx〉 is bounded on
D(T ) and D(T ) = H, hence this continuous linear functional has a unique extension to a
bounded linear functional on H. By Riesz’ representation theorem, there exists a unique
z ∈ H such that this extension is given by 〈z,−〉. We define T ∗y = z. It is easy to see,
that the map T ∗ : D(T ∗) → H is linear. Furthermore, by definition 〈T ∗y, x〉 = 〈y, Tx〉
for all x ∈ D(T ) and y ∈ D(T ∗).

Definition 3.3. The operator T ∗ described above is called the adjoint operator of T .
If T = T ∗ then T is called self-adjoint.

Remark.
1. If T ∈ B(H) then this definition coincides with the old one.

2. T = T ∗ in particular demands that D(T ) = D(T ∗).

3. If T = T ∗ then T is symmetric. In general, the opposite is false and importantly
the spectral theorem holds for self-adjoint operators, not in general for symmetric
operators.

Lemma 3.4. If T : D(T ) → H is densely defined and symmetric, then T ⊂ T ∗. In
particular, D(T ∗) ⊂ H is dense, so T ∗∗ is well-defined.
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Remark. If T is not symmetric, then it may happen, that D(T ∗) is not dense. In fact,
it is possible that D(T ∗) = 0.

For the study of self-adjointness, the concept of closed operators is important. This
topic has already been introduced in functional analysis 1.

Definition 3.5. Let X,Y be normed spaces, D ⊆ X a subspace, T : D → Y a linear
map. T is a closed operator iff for all {xn} ⊆ D, xn → x ∈ X such that {Txn} converges,
x ∈ D and Txn → Tx.

Defining the graph Γ(T ) = gr(T ) = {(x, Tx) : x ∈ D(T )} ⊆ X × Y , T is closed iff
gr(T ) ⊆ X × Y is a closed subspace in X ⊕2 Y (X × Y with the norm ‖(x, y)‖ =
(‖x‖X + ‖y‖)1/2).

Theorem 3.6 (Closed graph theorem). Let X,Y be Banach spaces, T : X → Y closed
and linear. Then T is bounded.

Proposition 3.7. Let T : D(T )→ H be a densely defined operator. Then

(a) T ∗ is closed.

(b) If T ∗ is densely defined (for example if T is symmetric), then T ⊂ T ∗∗

(c) Assume T ∗ is densely defined, S : D(S)→ H is closed and T ⊂ S. Then T ∗∗ ⊂ S.

Proof.

(a) Let {yn} ∈ D(T ∗), yn → y ∈ H, T ∗yn → z ∈ H. We need to prove y ∈ D(T ∗) and
T ∗y = z. Now, for all x ∈ D(T ),

〈y, Tx〉 = lim
n→∞

〈yn, Tx〉 = lim
n→∞

〈T ∗yn, x〉 = 〈z, x〉

Hence, x 7→ 〈y, Tx〉 is continuous, so y ∈ D(T ∗) and T ∗y = z (since T ∗y is the
unique vector such that 〈y, Tx〉 = 〈Ty, x〉).

(b) Assume T ∗ is densely defined, i.e. D(T ∗) = H. Let x ∈ D(T ), y ∈ D(T ∗), then
〈y, Tx〉 = 〈T ∗y, x〉. Hence, y 7→ 〈x, T ∗y〉 = 〈y, Tx〉 is continuous, so x ∈ D(T ∗∗)
(hence D(T ) ⊂ D(T ∗∗)) and 〈x, T ∗y〉 = 〈T ∗∗x, y〉. Since x ∈ D(T ), this implies
〈Tx, y〉 = 〈T ∗∗x, y〉 for all y ∈ D(T ∗). Since D(T ∗) = H, this implies Tx = T ∗∗x.
So T ⊂ T ∗∗.

(c) The claim follows from gr(T ) = gr(T ∗∗). First, we prove gr(T ) ⊆ gr(T ∗∗). By (b),
T ⊂ T ∗∗, i.e. gr(T ) ⊆ gr(T ∗∗), so gr(T ) ⊆ gr(T ∗∗) and by (a), T ∗∗ is closed, so
gr(T ∗∗) = gr(T ∗∗). To show gr(T ∗∗) ⊆ gr(T ), it is enough to show that gr(T )⊥ ⊆
gr(T ∗∗)⊥ (and use (V ⊥)⊥ = V ), where ⊥ means the orthogonal complement wrt.
the scalar product on H ×H:

〈(u, v), (x, y)〉 = 〈u, x〉+ 〈v, y〉

Let (u, v) ∈ gr(T )⊥, i.e. 0 = 〈(u, v), (x, Tx)〉 = 〈u, x〉 + 〈v, Tx〉. Hence, 〈v, Tx〉 =
−〈u, x〉 for all x ∈ D(T ). So x 7→ 〈v, Tx〉 is bounded on D(T ). Hence v ∈ D(T ∗)
and T ∗v = −u. Let (z, T ∗∗z) ∈ gr(T ∗∗) for z ∈ D(T ∗∗), then 〈(u, v), (z, T ∗∗z)〉 =
〈u, z〉+ 〈v, T ∗∗z〉 = 〈u, z〉+ 〈T ∗v, z〉 = 〈u, z〉+ 〈−u, z〉 = 0, so (u, v) ∈ gr(T ∗∗)⊥.
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Remark.

1) (a) shows that only closed operators can be self-adjoint (T = T ∗ ⇒ T is closed).

2) (c) means T ∗∗ is the smallest closed extension of T — called the closure T of T
(T = T ∗∗).

Corollary 3.8. Let T : D(T )→ H densely defined.

(a) T is symmetric ⇐⇒ T ⊂ T ∗. In this case, T ⊂ T ∗∗ ⊂ T ∗ = T ∗∗∗. Hence, T ∗∗ is
also symmetric.

(b) T is closed and symmetric ⇐⇒ T = T ∗∗ ⊂ T ∗.

(c) T is self-adjoint ⇐⇒ T = T ∗∗ = T ∗.

Note: So far, we have for T : D(T ) → H densely defined and symmetric: T ⊂ T ∗∗ ⊂
T ∗ = T ∗∗∗ and for T self-adjoint: T = T ∗∗ = T ∗ = T ∗∗∗. ‘Between’ these:

Definition 3.9. Let T : D(T ) → H be densely defined and symmetric. T is called
essentially self-adjoint iff T is self-adjoint (i.e. T is essentially self-adjoint iff T ⊂ T ∗∗ =
T ∗, since T ∗ = T ∗∗∗).

Remark. If T is symmetric, but not self-adjoint, then T ⊂ T ∗, T 6= T ∗. If T ⊂ S, then
T ∗ ⊃ S∗. Hence, the domain of T is too small — enlarging it (i.e. finding a symmetric
extension) will diminish the domain of the adjoint — the ‘goal’ is to find an extension
S of T such that the domains ‘meet’, i.e. S = S∗. T may or may not have self-adjoint
extensions. An essentially self-adjoint operator has exactly one self-adjoint extension.
We continue to search (!) for criterions for self-adjointness first:

Lemma 3.10. T : D(T )→ H is densely defined. Then

(a) N(T ∗ ∓ i) = R(T ± i)⊥. Hence N(T ∗ ∓ i) = {0} ⇔ R(T ± i) ⊆ H is dense.

(b) Assume T is symmetric and closed. Then R(T ± i) ⊆ H is closed.

Proof. Note that (T ± i)∗ = T ∗∓ i (use definitions, the sum T + i is defined on D(T )!) ⊇:
Let y ∈ R(T ± i)⊥. Then 〈y, (T ± i)z〉 = 0 for all z ∈ D(T ). So z 7→ 〈y, Tz〉 is continuous
(it equals ∓〈y, iz〉). Hence, y ∈ D(T ∗) and 0 = 〈(T ∗ ∓ i)y, z〉 for all z ∈ D(T ). So
(T ∗ ∓ i)y = 0 (since D(T ) ⊆ H is dense). Hence, y ∈ N(T ∗ ∓ i). For ⊆ reed the above
argument backwards. To prove (b), let T be symmetric and closed. Then 〈x, Tx〉 ∈ R
for all x ∈ D(T ). So

‖(T ± i)x‖2 = ‖Tx‖2 + ‖x‖2 ± 2 Re〈ix, Tx〉 = ‖Tx‖2 + ‖x‖2 ∓ 2 Re(i〈x, Tx〉) ≥ ‖x‖2

Hence, (T + i)−1 : R(T + i)→ D(T ) exists and is bounded. Let {xn} ⊆ D(T ) such that
(T + i)xn → y ∈ R(T + i). Then {(T + i)xn} ⊆ R(T + i) is Cauchy, hence {xn} ⊆ D(T )
is Cauchy (it is the image of {(T + i)xn} via the bounded map (T + i)−1). Hence, there
exists some x ∈ H such that xn → x as n→∞. Now Txn = (T + i)xn − ixn → y − ix
as n → ∞, so by closedness of T it follows that x ∈ D(T ) and Tx = y − ix. So
y = (T + i)x ∈ R(T + i). Hence, R(T + i) = R(T + i), i.e. R(T + i) is closed.
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Theorem 3.11. Let T : D(T )→ H be densely defined and symmetric. Then the follow-
ing are equivalent:

(i) T is self-adjoint.

(ii) T is closed and N(T ∗ ± i) = 0.

(iii) R(T ± i) = H.

Proof. First assume (i). Then by 3.7(a), T is closed. Let x ∈ N(T ∗+i), i.e. (T ∗+i)x = 0.
Recall that for symmetric S one has ‖(S + i)x‖ ≥ ‖x‖ for all x ∈ D(S). Since T ∗ is
symmetric, x = 0. Hence, N(T ∗ + i) = 0. Similarly, N(T ∗ − i) = 0. Hence, we get (ii).

Now, assuming (ii), by 3.10(b) (T is closed), R(T ± i) ⊆ H is closed. Because we have
N(T ∗ ± i) = 0, 3.10(a) gives R(T ± i) ⊆ H is dense. So R(T ± i) = H.

Lastly, assume (iii). We have T ⊂ T ∗. Hence, it remains to prove that T ∗ ⊂ T . For
this, it is enough to prove that D(T ∗) ⊆ D(T ) (then, if x ∈ D(T ∗), then x ∈ D(T ) and
Tx = T ∗x since T ⊂ T ∗). Let y ∈ D(T ∗). Then (T ∗ − i)y ∈ H = R(T − i), so there
exists some x ∈ D(T ) such that (T ∗ − i)y = (T − i)x. But T ⊂ T ∗, and x ∈ D(T ), so
Tx = T ∗x. Hence, (T ∗ − i)(y − x) = 0. But R(T ± i) = H, hence dense, so, by 3.10(a),
N(T ∗ ± i) = 0. Hence, y = x ∈ D(T ). So D(T ∗) ⊆ D(T ), so we get T = T ∗.

Corollary 3.12. Let T : D(T ) → H be densely defined and symmetric. The following
are equivalent:

(i) T is essentially self-adjoint.

(ii) N(T ∗ ± i) = 0.

(iii) R(T ± i) ⊆ H is dense.

Proof. (i) implies T ∗∗ = (T ∗∗)∗, so by corollary 3.8 T ∗∗ = T ∗∗∗ = T ∗. By 3.11 (ii) used
on T ∗∗ it follows that N(T ∗ ± i) = N(T ∗∗∗ ± i) = 0.

(ii) implies, by corollary 3.8, that T ∗∗∗ = T ∗, so N(T ∗∗∗± i) = 0 and T ∗∗ is closed. So,
by 3.11, used on T ∗∗ it follows that T ∗∗ = (T ∗∗)∗, i.e. T is essentially self-adjoint.

The equivalence of (ii) and (iii) is 3.10(a).

Definition 3.13. We call the Hilbert space dimensions dim N(T ∗ ± i) the deficiency
indices.

Theorem 3.14. Let T : D(T ) → H be symmetric and densely defined. Then T has a
self-adjoint extension if and only if dim N(T ∗ + i) = dim N(T ∗ − i).

Proof. Assume that S is a self-adjoint extension of T . Let V = (S + i)(S − i)−1 on
D(V ) = H (this is possible, because R(S− i) = H by 3.11) and U = (T + i)(T − i)−1 on
D(U) = R(T − i). Since T ⊂ S, we have U ⊂ V , and V is unitary. By ‖(S± i)x‖ ≥ ‖x‖,
V is injective, and (again by 3.11), R(S + i) = H, so V is surjective. By construction U
maps the subspace R(T − i) onto R(T + i). Since V is unitary, and U ⊂ V , V maps the
orthogonal complement of R(T − i) onto the orthogonal complement of R(T + i). But
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by 3.10(a) N(T ∗∓ i) = R(T ± i)⊥, so V maps N(T ∗+ i) unitarily onto N(T ∗− i). Hence,
the Hilbert space dimensions of N(T ∗ + i) and N(T ∗ − i) must agree.

For the other direction, assume dimN(T ∗+ i) = dimN(T ∗− i) (Hilbert space dimen-
sions). From the proof of 3.10(b) we saw that ‖(T + i)x‖2 = ‖Tx‖2 +‖x‖2 = ‖(T − i)x‖2.
So the map U : R(T − i)→ R(T + i), (T − i)x 7→ (T + i)x is well-defined, linear, isomet-
ric and surjective. Note that, by 3.10(a), R(T ± i)⊥ = N(T ∗ ∓ i). So the orthogonal
complements of R(T − i) and R(T + i) have the same (Hilbert space) dimension. Hence,
we can extend U to a unitary map V : H → H (take an ONB for R(T − i) and R(T + i),
and map one to the other). Claim: V −1 is injective. To show this, assume (V −1)y = 0,
i.e. V y = y. Then also V ∗y = V ∗V y = y or (V ∗ − 1)y = 0. Let now x ∈ D(T ), then

2i〈y, x〉 = 〈y, (T + i)x− (T − i)x〉 = 〈y, (V − 1)(T − i)x〉 = 〈(V ∗ − 1)y, (T − i)x〉 = 0

Hence, 〈y, x〉 = 0 for all x ∈ D(T ), so (sice D(T ) = H), y = 0, so V − 1 is injective. We
can then define the operator S : R(V − 1) → H,V z − z → i(V z + z) (in other words,
S = i(V + 1)(V − 1)−1). The goal is to show this S is a self-adjoint extension of T .
First we show T ⊂ S. For x ∈ D(T ) we have (see above) 1

2i(V − 1)(T − i)x = x, i.e.
x ∈ R(V −1) = D(S), and Sx = i(V −1)(V −1)−1( 1

2i(V −1)(T−i)x) = 1
2(V +1)(T−i)x =

1
2V (T − i)x− 1

2(T − i)x = 1
2(T + i)x− 1

2(T − i)x = Tx. Secondly, S is symmetric: Let
x ∈ D(S), i.e. x = V y − y for some y ∈ H, then 〈x, Sx〉 = 〈V y − y, i(V + 1)y〉 =
i(〈V y, V y〉 + 〈V y, y〉 − 〈y, V y〉 = 〈y, y〉) = i(〈V y, y〉 − 〈y, V y〉) = −2 Im〈V y, y〉. Hence,
〈x, Sx〉 ∈ R for all x ∈ D(S), so S is symmetric. To prove that S is self-adjoint we use
theorem 3.11. We need to prove R(S ± i) = H. Note that S − i = 2i(V − 1)−1 and
S + i = 2i(V − 1)−1 on D(S) and so, for all z ∈ H,

z = (S − i)(V − 1) z2i = (S + i)(V − 1)V ∗ z2i = R(S ± i)

Definition 3.15. Let T : D(T )→ H be densely defined.

(a) ρ(T ) = {λ ∈ C : T − λI : D(T )→ H is a bijection and (T − λI)−1 ∈ B(H)} is called
the resolvent set of T .

(b) R : ρ(T )→ B(H), λ 7→ Rλ = (T − λI)−1 is the resolvent map.

(c) σ(T ) = Cr ρ(T ) is the spectrum of T .

(d) If x ∈ H r {0}, λ ∈ C are such that x ∈ D(T ) and Tx = λx, then λ is an eigenvalue
and x an eigenvector of T .

Remark.
1. (T−λI)−1 : H → D(T ) ⊆ H; (T−λI)−1 : H → H need not be bijective. (T−λI)−1

is automatically bounded by the open mapping theorem if T is closed.

2. If T is not closed, then σ(T ) = C. This is the reason, why we only study the
spectral theory of closed operators.

3. Clearly, λ ∈ σ(T ) if λ is an eigenvalue.
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Proposition 3.16. Let T : D(T )→ H be densely defined. Then

(a) ρ(T ) ⊆ C is open, hence σ(T ) ⊆ C is closed.

(b) The resolvent map is analytic and

Rµ −Rλ = (µ− λ)RµRλ.

Proof. The proof proceeds just as for bounded operators (modulo domains).

Remark.
1. σ(T ) need not be compact.

2. σ(T ) = ∅ is possible.

4 Spectral theory for unbounded self-adjoint operators
For the spectrum of a self-adjoint (unbounded) operator we first prove:

Proposition 4.1. Let T : D(T )→ H be self-adjoint. Then σ(T ) ⊆ R.

Proof. Let z = λ+ iµ ∈ CrR (i.e. µ 6= 0). Let S = T/µ−λ/µ on D(S) := D(T ). Then
S = S∗, in particular (since S is symmetric)

‖(T − z)x‖2 = ‖µ(S − i)x‖2 = µ2‖(S − i)x‖2 = µ2(‖Sx‖2 + ‖x‖2) ≥ µ2‖x‖2

Hence, (T −z)−1 : R(T −z) = R(S− i)→ D(T ) exists and is bounded (put y = (T −z)x,
then ‖(T−z)−1y‖ = ‖x‖ ≤ 1

µ2 ‖(T−z)x‖ = 1
µ2 ‖y‖2). Since S = S∗, we have R(S±i) = H

(theorem 3.11), i.e. (T − z)−1 : H → H is a bounded operator (T − z)−1 ∈ B(H), hence
z ∈ ρ(T ).

Theorem 4.2 (Spectral theorem, multipliation operator version). Let T : D(T ) → H
be self-adjoint. Then there exists a measure space (Ω,Σ, µ) (if H is separable, it is σ-
finite), a measurable function f : Ω→ R (not necessarily bounded) and a unitary operator
U : H → L2(Ω, µ) such that

(a) x ∈ D(T )⇐⇒ f · Ux ∈ L2(Ω, µ).

(b) UTU∗φ = fφ =: Mfφ for φ ∈ D(Mf ) = {φ ∈ L2(Ω, µ) : fφ ∈ L2(Ω, µ)}.

Proof. We know from the previous theorem that σ(T ) ⊆ R, so ±i ∈ ρ(T ). Hence,
R = (T + i)−1 = R−i ∈ B(H) is well-defined. Our aim is to prove R is normal and then
use the multiplication operator version of the spectral theorem for bounded, normal (!!)
operators (discussed briefly in theorem 2.25 and problem 37). Let z1, z2 ∈ H. Since T
is self-adjoint, theorem 3.11 gives that T + i and T − i are surjective. Hence, there exist
x, y ∈ D(T ) such that z1 = (T + i)x, z2 = (T − i)y. Then

〈z2, R−iz1〉 = 〈(T − i)y, x〉 = 〈(T ∗ − i)y, x〉 = 〈y, (T + i)x〉 = 〈(T − i)−1z2, z1〉
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so R∗−i = (T−i)−1 = Ri. Hence, by 3.16(b), R−iR∗−i = R−iRi = 1
−2i(R−i−Ri) = 1

2i(Ri−
R−i) = RiR−i = R∗−iR−i. Therefore, by 2.25, we have URU∗ = Mg (multiplication
operator) for a bounded, measurable function g : Ω→ C and a unitary operator U : H →
L2(Ω, µ). We need to construct a multiplication operator representation of T out of this.
Note that (τ + i)−1 = γ ⇔ τ = γ−1 − i for all τ, γ ∈ C, τ 6= −i, γ 6= 0. We shall
use this on T and R: Let f(ω) = g(ω)−1 − i for almost every ω ∈ Ω. Note: R−i is
injective (but maybe not surjective, R−i : H → D(T )), hence Mg is injective. Hence,
{ω ∈ Ω: g(ω) = 0} is of measure 0 (otherwise, one can construct a function ϕ 6= 0 such
that Mgϕ = 0).
Now let x ∈ D(T ). Since R−i : H → H has range equal to D(T ), we have x = R−iy

for some y ∈ H, hence Ux = UR−iy = g · Uy. Also, f · Ux = fg · Uy. Now (fg)(ω) =
1− ig(ω) for almost every ω ∈ Ω, and g ∈ L∞(Ω, µ), so fg is essentially bounded. Also,
Uy ∈ L2(Ω, µ), hence fg · Uy ∈ L2(Ω, µ), i.e. f · Ux ∈ L2(Ω, µ). On the other hand,
assume (for x ∈ H) that f · Ux ∈ L2(Ω, µ). Since Ux ∈ L2(Ω, µ), i · Ux ∈ L2(Ω, µ),
hence (f + i) · Ux ∈ L2(Ω, µ). Since U : H → L2(Ω, µ) is a bijection, there exists
some y ∈ H such that Uy = (f + i) · Ux. Hence, g · Uy = g(f + i) · Ux = Ux. So
x = U∗UX = U∗(g · Uy) = (U∗MgU)y = R−iy ∈ D(T ).
By (a), D(Mf ) = U(D(T )), and (as above), for x ∈ D(T ) there exists some y ∈ H

such that x = R−iy, so (T + i)x = y, i.e. Tx = y − ix. Hence, UTx = Uy − i · Ux =
g−1 ·Ux− i ·Ux = f ·Ux = MfUx, i.e. UTU∗ϕ = f · ϕ. Since T is symmetric, also Mf

is symmetric, so f is real.

Theorem 4.3 (Spectral decomposition of self-adjoint operators). Let T : D(T )→ H be
self-adjoint. Then there exists a unique spectral measure A 7→ EA such that

〈y, Tx〉 =
∫
R
λd〈y,Eλx〉

for all x ∈ D(T ) and y ∈ H. If h : R→ C is measurable and

Dh =
{
x ∈ H :

∫
R
|h(λ)|2 d〈x,Eλx〉 <∞

}
then

〈y, h(T )x〉 =
∫
R
h(λ) d〈y,Eλx〉

for x ∈ Dh and y ∈ H defines a normal operator h(T ) : Dh → H, which is self-adjoint iff
h is real-valued. Note that d〈x,Eλx〉 is given as A 7→ 〈x,EAx〉 = ‖EAx‖2 ≤ ‖x‖2 < ∞,
so if h is also bounded, then Dh = H.

Proof. By 4.2, there exists a measure space (Ω,Σ, µ), a measurable function f : Ω → R
and a unitary operator U : H → L2(Ω, µ) such that UTU∗ϕ = f · ϕ = Mfϕ µ-almost
everywhere for ϕ ∈ D(Mf ) = {ϕ ∈ L2(Ω, µ) : f · ϕ ∈ L2(Ω, µ)}. Let h ∈ Mb(R).
Then define the operator h(Mf ) := Mh◦f , i.e. (h(Mf )ϕ)(ω) = h(f(ω))ϕ(ω) µ-almost
everywhere. Note that h ◦ f : Ω → C is bounded, hence h(Mf ) ∈ B(L2(Ω, µ)). Also,
h(Mf ) is normal.

43



The map Mb(R) → B(L2(Ω, µ)), h 7→ h(Mf ) is linear, bounded and multiplica-
tive: Let h, g ∈ Mb(R) and α ∈ C. Then ((αh + g)(Mf )ϕ)(ω) = αh(f(ω))ϕ(ω) +
g(f(ω))ϕ(ω) = (αh(Mf )ϕ+ g(Mf )ϕ)(ω) and similarly we have (h(Mf )g(Mf ))(ϕ)(ω) =
h(f(ω))g(f(ω))ϕ(ω) = (hg)(f(ω))ϕ(ω) = (hg)(Mf )(ϕ)(ω). Additionally, one has, for
any ϕ ∈ L2(Ω, µ),

‖h(Mf )ϕ‖2L2(Ω,µ) =
∫

Ω
|h(f(ω))ϕ(ω)|2 dµ(ω) ≤

∫
Ω
‖h‖2∞|ϕ(ω)|2 dµ(ω) ≤ ‖h‖2∞‖ϕ‖2L2(Ω,µ),

hence ‖h(Mf )‖B(L2(Ω,µ)) ≤ ‖h‖∞.
Hence, in particular, for any Borel set A ⊆ R the characteristic function χA is mea-

surable and bounded. So we define FA = χA(Mf ) = MχA◦f = Mχf−1(A)
. Then A 7→ FA

defines a spectral measure (however, in general, F does not have compact support):
Clearly F ∗A = FA = F 2

A and we have F∅ = Mχ∅◦f = 0 and FR = MχR◦f = id. Let
A1, A2, . . . be disjoint Borel sets in R, and let ϕ ∈ L2(Ω, µ). Then

∞∑
n=1

(FAnϕ)(ω) =
∞∑
n=1

(MχAn◦fϕ)(ω) =
∞∑
n=1

(χAn(f(ω))ϕ(ω)

Since An ∩ Am = ∅ for n 6= m, there exists at most one n0 ∈ N such that f(ω) ∈ An0 .
In any case

∞∑
n=1

χAn(f(ω)) = χ⋃∞
n=1 An

(f(ω))

for all ω. Hence ∞∑
n=1

FAnϕ = F⋃∞
n=1 An

ϕ

for all ϕ ∈ L2(Ω, µ). It follows that

h(Mf ) =
∫
R
h(λ) dFλ

for all h ∈ Mb(R) and that this uniquely determines F , i.e. there is only one spectral
measure such that this equation holds. Now, let EA = U∗FAU . Then A 7→ EA defines
a spectral measure, since U is unitary. We can now, for h ∈Mb(R) define

h(T ) :=
∫
R
h(λ) dEλ.

The mapMb(R) → B(H), h 7→ h(T ) is linear and bounded, in fact one has the bound
‖h(T )‖B(H) ≤ ‖h‖∞. Hence, this defines h(T ) for h ∈ Mb(R). Note that, for all
h ∈Mb(R), h(T ) = U∗h(Mf )U , since this is true for h = χA:

h(T ) =
∫
R
χA dE = EA = U∗FAU = U∗χA(Mf )U = U∗h(Mf )U,

and the general case follows by linearity and continuity. The map h 7→ h(T ) has the
properties of a measurable functional calculus.
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Let now h : R → C be measurable (but not necessarily bounded). For x ∈ H,
d〈x,Eλx〉 is a positive (finite) measure: A 7→ 〈x,EAx〉 = 〈x,E2

Ax〉 = 〈E∗Ax,EAx〉 =
〈EAx,EAx〉 = ‖EAx‖2. Let

Dh :=
{
x ∈ H :

∫
R
|h(λ)|2 d〈x,Eλx〉 <∞

}
.

If h is bounded, then Dh = H. We claim

(1) Dh ⊆ H is dense.

(2) The integral
∫
h(λ) d〈y,Eλx〉 exists for all x ∈ Dh, y ∈ H (here, d〈y,Eλx〉 is a

complex measure).

(3) Therefore (!) there exists h(T )x ∈ H such that

〈y, h(T )x〉 =
∫
R

d〈y,Eλx〉 ∀y ∈ H

This defines the map Dh 3 x 7→ h(T )x ∈ H.

To prove this, we transport things to the concrete setting on L2(Ω, µ) via the unitary
operator U : H → L2(Ω, µ). Let x, y ∈ H and write ϕ = Ux, ψ = Uy. Then

〈y,EAx〉 = 〈U∗ψ,EAU∗ϕ〉 = 〈ψ,UEAU∗ϕ〉 = 〈ψ, FAϕ〉 = 〈ψ, χA(Mf )ϕ〉 =

= 〈ψ,Mχf−1(A)
ϕ〉 =

∫
Ω
ψMχf−1(A)

ϕdµ =
∫

Ω
ψχf−1(A)ϕdµ =

∫
f−1(A)

ψϕdµ

Let ν(B) :=
∫
B ψϕdµ (B ∈ Σ). Then

〈y,EAx〉 =
∫
f−1(A)

ψϕdµ = ν(f−1(A)) A Borel

That is, the measure d〈y,Eλx〉 is the pushforward f∗ν of ν via f . Hence, by the
transformation theorem:∫

R
g(λ) d〈y,Eλx〉 =

∫
Ω

(g ◦ f) dν =
∫

Ω
(g ◦ f)ψϕdµ (∗)

for g : R→ C integrable. Using this we get that x ∈ Dh iff ϕ = Ux satisfies∫
Ω

(
|h|2 ◦ f

)
ψϕdµ =

∫
Ω
|h ◦ f |2|ϕ|2 dµ <∞

By exercise 47(i) the set (in L2(Ω, µ)) of such ϕ’s is dense in L2(Ω, µ), hence (since U is
unitary) Dh ⊆ H is also dense. Note: For h : R→ C, x ∈ Dh, y ∈ H, we have∣∣∣∣∫

R
h(λ) d〈y,Eλx〉

∣∣∣∣ ≤ ∫
R
|h(λ)| d |〈y,Eλx〉|

where d |〈y,Eλx〉| is the variation (measure) of the complex measure d〈y,Eλx〉. (i.e.,
the ‘smallest’ positive finite measure |ρ| for a measure ρ such that |ρ(A)| ≤ |ρ|(A) for all
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measurable A. Since |〈y,EAx〉| is a positive measure, it is the variation of d〈y,EAx〉).
Using the analogue of (∗) on d |〈y,Eλx〉| we get∫

R
|h(λ)|d|〈y,Eλx〉| =

∫
Ω
|h ◦ f ||ψϕ|dµ ≤

(∫
Ω
|h ◦ f |2|ϕ|2

)1/2 (∫
Ω
|ψ|2 dµ

)1/2
=

=
(∫

Ω
|h ◦ f |2|ϕ|2 dµ

)1/2
‖ψ‖L2 =

(∫
Ω
|h ◦ f |2|ϕ|2 dµ

)1/2
‖y‖H

Hence, since x ∈ Dh ⇔ (h ◦ f)ϕ ∈ L2(Ω, µ), we have that, for x ∈ Dh and y ∈ H,∣∣∣∣∫
R
h(λ) d〈y,Eλx〉

∣∣∣∣ ≤ C‖y‖H C =
(∫

Ω
|h ◦ f |2|ϕ|2 dµ

)1/2
<∞

so that y 7→
∫
Ω h(λ) d〈y,Eλx〉 is a (anti-)linear, bounded functional on H. Hence, by

Riesz-Fischer, this functional is given by the scalar product with a (unique) element
z ∈ H. Denote this element by h(T )x := z. Then, for all x ∈ Dh and y ∈ H,

〈y, h(T )x〉 =
∫
R
h(λ) d〈y,Eλx〉 ∀x ∈ Dh ∀y ∈ H (�)

This defines a map h(T ) : Dh → H,x 7→ h(T )x (which is well-defined by the uniqueness
of the z above). This is clearly (!) linear and we write

h(T ) =
∫
R
h(λ) dEλ

but this only holds in the sense of (�) above. Let h : R → R be the function h(t) = t.
Let, as before, x ∈ Dh, y ∈ H, and write ϕ = Ux, ψ = Uy. Note (h ◦ f)(ω) = f(ω) for
all ω ∈ Ω. Hence,∫

R
h(λ) d〈y,Eλx〉 =

∫
R
λ d〈y,Eλx〉 =

∫
Ω

(h ◦ f)ψϕdµ =
∫

Ω
fψϕdµ

=
∫

Ω
(Mfϕ) dµ = 〈ψ,Mfϕ〉L2 = 〈Uy,MfUx〉L2 = 〈y, U∗MfUx〉H = 〈y, Tx〉H

So Dh = D(T ) and

〈y, Tx〉H =
∫
R
λd〈y,Eλx〉 x ∈ D(T ) y ∈ H (��)

i.e. T =
∫
R λ dEλ in the weak sense of (��). Similarly, of course, 〈y, h(T )x〉 =

〈y, U∗Mh◦fUx〉, x ∈ Dh = D(h(T )), y ∈ H.
That h(T ) is self-adjoint if h : R → R (h is real), follows from this last formula and

exercise 47(ii).

Corollary 4.4. Let T : D(T )→ H, T ∗ = T . Then there is a unique map Φ̂ : Mb(R)→
B(H) such that

(i) Φ̂ is an involutive algebra-homomorphism.
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(ii) Φ̂ is continuous. In fact, ‖h(T )‖B(H) ≤ ‖h‖∞.

(iii) If {hn}n∈N ⊆ Mb(R), supn∈N ‖hn‖∞ ≤ C < ∞ and hn(t) → h(t) as n → ∞ for
all t ∈ R, then hn(T )x→ h(T )x as n→∞ for all x ∈ H.

Corollary 4.5. Let T : D(T )→ H be self-adjoint.

(a) If x ∈ Dh (h : R→ C is measurable), then ‖h(T )x‖2H =
∫
|h(λ)|2 dEλ.

(b) If {hn}n∈N ⊆Mb(R) with
(i) hn(t)→ t as n→∞ for all t ∈ R (a.e.)
(ii) |hn(t)| ≤ |t| for all t ∈ R, n ∈ N
Then, for any x ∈ D(T ), hn(T )→ Tx as n→∞.

Proof.
(a) Assume first that h : R→ C is measurable and bounded. Then

‖h(T )x‖2 = 〈h(T )x, h(T )x〉 = 〈x, h(T )∗h(T )x〉 =

=
〈
x, |h|2(T )x

〉
=
∫
R
|h(λ)|2 d〈x,Eλx〉

for all x ∈ H. In general, i.e. for some measurable but not necessarily bounded
h : R→ C, we proved that for all x ∈ Dh and y ∈ H,∣∣∣∣∫

R
h(λ) d〈y,Eλx〉

∣∣∣∣ ≤ C‖y‖H ,
with

C =
(∫

R
|h ◦ f |2|ϕ|2 dµ

)1/2

where U : L2(µ) is such that UTU∗ = Mf and ϕ = Ux, so that

y 7→
∫
R
h(λ) d〈y,Eλx〉

defines a bounded, antilinear functional on H, which hence is equal to the scalar
product with some vector h(T )x ∈ H and ‖h(T )x‖ ≤ C. So we have

‖h(T )x‖2 ≤
∫
R
|h ◦ f |2|ϕ|2 dµ =

∫
R
|h(λ)|2 d〈x,Eλx〉.

Set now (for h unbounded), for n ∈ N

hn(t) =
{
h(t) |h(t)| ≤ n
0 |h(t)| > n

Note that hn(t)→ h(t) as n→∞ for all t ∈ R. Then hn ∈Mb(R) and Dh = Dh−hn
and, for x ∈ Dh,

‖(h(T )− hn(T ))x‖2 = ‖(h− hn)(T )x‖2 ≤
∫
R
|(h− hn)(λ)|2 d〈x,Eλx〉

n→∞−−−→ 0
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by dominated convergence, since

|hn(λ)− h(λ)|2 ≤ (|hn(λ)|+ |h(λ)|)2 ≤ 3|hn(λ)|2 + 3|h(λ)|2 ≤ 6|h(λ)|2

and h ∈ L2(d〈x,Eλx〉). Hence, hn(T )x→ h(T )x as n→∞ for all x ∈ Dh. Also,∫
R
|hn(λ)|2 d〈x,Eλx〉

n→∞−−−→
∫
R
|h(λ)|2 d〈x,Eλx〉.

Since
‖hn(T )x‖2 =

∫
R
|hn(λ)|2 d〈x,Eλx〉

for all x ∈ Dh, this implies

‖h(T )x‖2 =
∫
R
|h(λ)|2 d〈x,Eλx〉.

The proof of (b) uses the same method.

There are other approaches to the spectral theorem. For example (à la Teschl) one
studies spectral measures (i.e. integrate with respect to them) and proves that this
implies a measurable functional calculus. But one gets back in a different way (i.e. given
a self-adjoint operator, how to construct the spectral measure). Namely, the resolvent
RT (z) should be

RT (z) =
∫
R

(λ− z)−1 dEλ.

i.e. for x, y ∈ H
〈y,RT (z)x〉 =

∫
R

1
λ− z

d〈y,Eλx〉.

So one can start by

Fx(z) = 〈x,RT (z)x〉 =
∫
R

1
λ− z

d〈x,Eλx〉.

For a Borel measure µ, the map

Fµ(z) :=
∫
R

1
λ− z

dµ(λ)

is called the Borel-transform of µ. It turns out that Fx : H → H is holomorphic. Such
functions have been studied to great extend, they are called Herglatz or Nevanlinna
functions. One can reconstruct the measure µ from Fµ(z) by the Stieltjes inversion
formula:

µ(λ) = lim
δ↘0

lim
ε↘0

1
π

∫ λ+δ

−∞
Im(Fµ(t+ iε)) dt.

So if Fx(z) = 〈x,RtT (z)x〉 is a Herglatz function satisfying |Fx(z)| ≤ M/ Im(z) for all
z ∈ H and some M > 0, then it is Borel-transform of a unique Borel measure µx,x, with
µx,x(R) ≤ M . So, one lets Fx(z) = 〈x,RT (z)x〉 and proves that this is holomorphic,
maps H into H and satisfies |Fx(z)| ≤ ‖x‖2/ Im(z). That Fx : H → H follows from the
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first resolvent formula. Then one gets the unique measure µx,x by the Stieltjes inversion
formula and by polarization one can then get the complex measures µx,y. One then
defines operators (which will be the EA) by

sA(y, x) =
∫
R
χA(λ) dµy,x.

By Lax-Milgram there exists a unique operator EA such that sA(y, x) = 〈y,EAx〉 for all
x, y ∈ H. Then one shows that A 7→ EA is a projection valued measure and that the
corresponding self-adjoint operator ∫

R
λdEλ

is equal to the original operator. This procedure needs a lot of complex analysis.
There is a concept called “Resolution of the identity”. One sets Eλ = E(−∞,λ]. Then

E(λ) is an orthogonal projection, E(λ1) ≤ E(λ2) for λ1 ≤ λ2, limλn↘λE(λn)x = E(λ)x
and limλ→−∞E(λ)x = 0 and limλ→∞E(λ)x = x. A map λ 7→ Eλ satisfying these
properties is called a resolution of the identity. There is a bijective correspondence
between resolutions of the identity and projection-valued measures. One then defines
for f : R→ C, ∫

R
f(λ) d〈x,E(λ)x〉

as the Riemann-Stieltjes integral, i.e. the limit of Riemann sums of the form∑
f(ξi)[〈x,E(ti+1)x〉 − 〈x,E(ti)x〉].

5 Banach algebras
As an outlook, we will now discuss the Banach algebra approach to spectral theory.

Definition 5.1. A complex algebra is a complex vectorspace A with a multiplication
such that for all x, y, z ∈ A and α ∈ C

(i) x(yz) = (xy)z

(ii) (x+ y)z = xz + yz, x(y + z) = xy + xz

(iii) α(xy) = x(αy)

Definition 5.2. A Banach algebra is a complex algebra with a norm ‖− ‖ and a distin-
guished unit element e such that it is a Banach space and satisfies

(iv) ‖xy‖ ≤ ‖x‖‖y‖ for all x, y ∈ A

(v) xe = ex = x for all x ∈ A.

(vi) ‖e‖ = 1
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Remark.

(1) It is not assumed that A is commutative with respect to multiplication.

(2) If A has no unit then there is a natural way of ‘adding a unit’, making, in a canonical
way, a new algebra with unit. For a complex Banach algebra A, let A1 = A × C
with the following operations
(i) (a, α) + (b, β) = (a+ b, α+ β)
(ii) β(a, α) = (βa, βα)
(iii) (a, α) · (b, β) = (ab+ αb+ βa, αβ)
Define ‖(a, α)‖ := ‖a‖+ |α|. Then A1 with this norm and the algebraic operations
defined in (i), (ii), (iii) is a Banach algebra with unit (0, 1) and a 7→ (a, 0) is an
isometric embedding of A into A1.

‖xy‖ ≤ ‖x‖‖y‖ implies that multiplication is continuous, i.e. for all a ∈ A, x 7→ ax is
continous.

Example.

(a) Let K be a nonempty compact Hausdorff space, C(K) the set of all complex-
valued continuous functions on K. C(K) forms a Banach algebra with pointwise
addition and multiplication and the usual sup norm ‖f‖C(K) = supk∈K |f(k)| =
maxk∈K |f(k)|. This algebra is commutative.

(b) If K is a finite set, say K = {1, . . . , n}, then C(K) ∼= Cn, with coordinatewise
multiplication.

(c) Let X be a Banach space. Then B(X) is a Banach algebra with the operator norm
and the identity as unit element. If dimX = n < ∞, then B(X) ' Mn(C). If
dimX > 1, then B(X) is not commutative.

(d) Let K ⊆ C be nonempty and compact, and A ⊆ C(K) be the subset of holomorphic
functions K◦ → C. Then A is a Banach algebra (in the norm of C(K)). If K = D ⊆
C (D ⊆ C being the open unit disc), then A is called the disc algebra. (In fact, one
can take K ⊆ Cn).

(e) L1(Rn) with convolution as multiplication:

(f ∗ g)(x) =
∫
Rn
f(y)g(x− y) dy f, g ∈ L1(Rn)⇒ f ∗ g ∈ L1(Rn)

is almost a Banach algebra. One can make it a commutative Banach algebra by
adding a unit as above, or concretely enlarge L1(Rn) to the algebra of all complex
Borel measures µ on Rn of the form dµ = f dλn + α dδ, where f ∈ L1(Rn), α ∈ C,
λn is the n-dimensional Lebesgue measure and δ is the Dirac measure.

(f) Let M(Rn) be the algebra of all complex Borel measures, with convolution (of mea-
sures) as multiplication, and with the total variation as norm. This is a commutative
Banach algebra with unit.
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(g) Let (X,Ω, µ) be a σ-finite measure space, and A = L∞(X,Ω, µ), then A is a com-
mutative (abelian) Banach algebra with unit (using pointwise defined operations).

(h) Let X be a Banach space, and let A = K(X) be the space of compact operators on
X. Then K(X) is a Banach algebra without a unit — it has no unit iff dimX =∞.
A is and ideal of B(X) — in particular, it is a subalgebra of B(X).

(i) The construction in (e) (L1(Rn) with convolution) can be generalized, as soon as
one has a measure space which is a group. Let G be a σ-compact locally compact
topological group and m a (right) Haar-measure on G. For f, g ∈ L1(G, dm), let

(f ∗ g)(x) =
∫
G
f(xy−1)g(y) dm(y)

then f ∗ g ∈ L1(G, dm). L1(G) is abelian iff G is abelian.

Definition 5.3. If A is a Banach algebra, and there is a map (−)∗ : A→ A satisfying

(i) (x∗)∗ = x

(ii) (xy)∗ = y∗x∗

(iii) (x+ y)∗ = x∗ + y∗

(iv) (λx)∗ = λx∗

then A is called a ∗-Banach algebra. If the norm on A satisfies the ∗-identity ‖x∗x‖ =
‖x∗‖‖x‖, then A is called a C∗-algebra.

Definition 5.4.

(i) An element x ∈ A is invertible iff there exists x−1 ∈ A such that x−1x = xx−1 = e.

(ii) Let G(A) ⊆ A be the set of all invertible elements in A.

(iii) For x ∈ A the spectrum σ(x) ⊆ C is the set of all λ ∈ C such that λe − x is not
invertible (in the algebra A). The complement of σ(x) is the resolvent set ρ(x).

(iv) The spectral radius of x is r(x) := sup{|λ| : λ ∈ σ(x)}.

Theorem 5.5.

(0) The inverse x−1 is unique.

(1) G(A) ⊆ A is an open subset and x 7→ x−1 is an homeomorphsm of G(A) onto G(A).

(2) σ(x) ⊆ C is compact and nonempty for all x ∈ A.

(3) r(x) satisfies
r(x) = lim

n→∞
‖xn‖1/n = inf

n≥1
‖xn‖1/n

Proposition 5.6. Let A be a Banach algebra, x ∈ A, ‖x‖ < 1. Then
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(a) e− x is invertible.

(b) (e− x)−1 =
∑∞
n=0 x

n (converging in norm).
Theorem 5.7 (Gelfand-Mazur). Let A be a Banach algebra such that every nonzero
x ∈ A is invertible. Then A ∼= C.
Remark. If B ⊆ A is a subalgebra and x ∈ B, then x may have no inverse as element in
B, but have an inverse as element in A. Hence, σ(y) depends on with respect to which
algebra it is computed. But, since r(x) = limn→∞ ‖xn‖1/n, r(x) does not.
As for B(X), if x ∈ A, where A is some Banach algebra, then p(x) ∈ A makes sense

for any polynomial function p : C→ C. Also, if f : C→ C is entire, i.e. holomorphic on
all of C, one can write f as a everywhere convergent power series

f(t) =
∞∑
n=0

αit
i;

then f(x) :=
∑∞
n=0 αix

i ∈ A makes sense, i.e. is norm convergent. Here, x0 = e ∈ A. If
f(t) = (α − t)−1, α ∈ C, then f(x) := (αe − x)−1 makes sense in A, if α 6∈ σ(x). So, if
f : Ω → C is holomorphic on an open set Ω ⊆ C containing σ(x) and we put a closed
curve around σ(x) inside Ω, then by Cauchy’s formula for all t inside Γ, in particular for
all t ∈ σ(x),

f(t) = 1
2πi

∮
Γ
(z − t)−1f(z) dz.

Defining integrals of Banach space valued functions (Bochner integrals), one gets
Lemma 5.8. For all x ∈ A one has

1
2πi

∮
Γ
(α− z)n(ze− x)−1 dz = (αe− x)n ∈ A.

Then one defines:
Definition 5.9. Let A be a Banach algebra with unit, let a ∈ A and let Ω ⊆ C be
open with σ(a) ⊆ Ω and let Γ be a contour surrounding σ(a) in Ω. Let f : Ω → C be
holomorphic. Then we define

f̃(a) = 1
2πi

∮
Γ
f(z)(ze− a)−1 dz ∈ A.

This turns out to be independent of Γ and Ω, i.e. if g : Ω1 → C, σ(a) ⊆ Ω1, Γ1 a
contour surrounding σ(a) in Ω1, and g|Ω∩Ω1 = f |Ω∩Ω1 , then f̃(a) = g̃(a).

Let Hol(a) = {f : ∃Ω ⊆ C,Ω ⊇ σ(a), f : Ω→ C is holomorphic} for any a ∈ A. Hol(a)
is an algebra, but in general not a Banach algebra.
Theorem 5.10 (Riesz functional calculus; Dunford-Schwartz). Let A be a Banach alge-
bra, a ∈ A. Then the map Φ̃ : Hol(a) → A, f 7→ f̃(a) is an algebra homomorphism. If
f = 1, then f̃(a) = e ∈ A. If f = id, then f̃(a) = a. If f(z) =

∑∞
i=0 αiz

i has radius of
convergence strictly larger than r(a), then f ∈ Hol(a) and f̃(a) =

∑∞
i=0 αia

i.
Let {fn}n∈N be holomorphic on some open G ⊆ C with G ⊇ σ(a), and assume that

fn(z) → f(z), n → ∞, uniformly on compact subsets of G. Then ‖f̃n(a) − f̃(a)‖ → 0,
n→∞. The map Φ̃ : Hol(a)→ A, f 7→ f̃(a) is uniquely determined by these properties.
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Definition 5.11. For Ω ⊆ C, let H(Ω) be the algebra of all holomorphic functions on Ω.
Let AΩ = {x ∈ A : σ(x) ⊆ Ω} ⊆ A. Note that if a ∈ AΩ and f ∈ H(Ω), then f̃(a) ∈ A is
well-defined.

Let H̃(AΩ) be the set of A-valued functions g̃ with domain AΩ which arise from
g ∈ H(Ω) by the formula

g̃(x) = 1
2πi

∮
Γ
f(z)(ze− x)−1 dz

with some contour Γ surrounding σ(x) in Ω.

Theorem 5.12. H̃(AΩ) is a complex algebra and the map H(Ω)→ H̃(AΩ), f 7→ f̃ is an
algebra isomorphism, which is continuous in the following sense: If {fn}n∈N ⊆ H(Ω),
fn → f uniformly on compact subsets of Ω, then f̃(x) = limn→∞ f̃n(x) in norm for all
x ∈ AΩ. If u(t) = t and v(t) = 1 in Ω, then ũ(x) = x and ṽ(x) = e for all x ∈ AΩ.

Theorem 5.13. Let x ∈ AΩ, f ∈ H(Ω). Then f̃(x) ∈ A is invertible iff f(t) 6= 0 for all
t ∈ σ(x), and σ(f̃(x)) = f(σ(x)).

Recall that for a self-adjoint compact operator T : H → H on a complex Hilbert space
H, there exists an orthonormal basis {ej} and {λk} ⊆ C such that

Tx =
∑
k

λk〈ek, x〉ek =
∑
k

λkek(x)ek

for all x ∈ H. More generally one has the singular value decomposition for a compact
operator T ∈ K(H1, H2), i.e. there exist orthonormal systems {ei} ⊆ H1, {fi} ⊆ H2
and s1 ≥ s2 ≥ · · · ≥ 0, sk → 0 as k →∞, such that

Tx =
∑
k

sk〈ek, x〉fk =
∑
k

skek(x)fk

for all x ∈ H.
Studying how fast the convergence λk → 0 is for compact operators on a Hilbert space

leads to the study of the Schatten classes Sp, i.e. those operators for which {λk}k ∈ `p.
For example f(−i∇)g(x) ∈ Sp iff f, g ∈ Lp(R3).

On Banach spaces, one also studies operators T ∈ B(X,Y ) which can be written as
Tx =

∑
αkx

′
k(x)yk for αk ∈ C, x′k ∈ X ′ and yk ∈ Y , so called nuclear operators.
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