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0 Motivation and repetition

Recall the notion of a Banach space: A Banach space X is a vector space (mostly over
C) with a norm || - || such that the metric space (X,d), where d(z,y) = ||z — y||, is a
complete metric space. A Hilbert space H is a Banach space, where the norm comes
from a scalar product: ||z| = \/(x,z). For example L?(R), with

()= [ F@gl@)da

is a Hilbert space. So is ¢5(N), where

05(N) = {(a:l,...) ech: f: |72 < oo}

i=1
Note that there are norms that do not arise from an inner product. For example £,
p # 2, is a Banach space but not a Hilbert space.

The space B(X,Y) is the set of bounded linear operators X — Y, ie. T € B(X,Y)
if and only if T: X — Y is linear and there exists C' > 0 such that ||Tz||y < C|z||x for
all x € X. This definition only requires normed vector space X and Y. We will write
B(X) for B(X,X). There is a norm on B(X,Y) such that

IT]| = sup ||Tx||x.
zeX
flzll<1

If Y is a Banach space, so is B(X,Y’) with this norm.

IfY =K, ie. Y =CorY =R depending on the ground field of X and Y, we call
elements of B(X,K) bounded linear functionals and write X’ = B(X,K). X' is called
the dual of X. It always is a Banach space. Note that for Hilbert spaces H, “H' = H”,
in the sense that there exists an antilinear isometry ®: H — H' y — (y,—). One has
“X C X”” in the sense that there is a canonical embedding ¢: X — X’ that embeds
X isometrically in X”. If X = X" (i.e. «(X) = X"), then X is called reflexive. In
particular all Hilbert spaces are reflexive. So are ¢, and LP for 1 < p < oo.

Definition 0.1. Let T' € B(X) with a C-Banach space X. We define the resolvent set
p(T) of T by

p(T)={AeC: N(T — A)=0and R(T — AI) = X} C C.

We define the spectrum o(T) of T' by o(T) = C ~\ p(T).
The spectrum of T' can be split in three types. There is the point spectrum

op(T)={AeC: N(T'—XI) #0} Co(T),
the continuous spectrum
o0o(T)={A€a(T): N(T —X)=0and R(T — M) = X} C o(T),
and the rest (residual) spectrum

o (T) = {\ € o(T): N(T — \I) and R(T — M) # X} C o(T).



Remark 0.2.

1. Note that A € p(T) if and only if T'— AI: X — X is bijective. This is equivalent
to the existence of R)\(T) = (T — M)~! € B(X), called the resolvent of T at \.
The map p(T) 2 A — R\(T') € B(X) is called the resolvent map.

2. If A € 0,(T) then there exists z # 0 such that Tz = Az. Then X is called an
eigenvalue, and x an eigenvector of T. (However, if the space X is a space of
functions, x is often called an eigenfunction). In this case N(T'— AI) is called the
eigenspace of T corresponding to A. It is a T-invariant subspace of X.

Proposition 0.3. Let T € B(X). Then p(T) C C is an open set, hence o(T') is a closed
subset of C, and the resolvent map X\ — Rx(T) is a complex analytic map, with

IRA(T) 7" < dist(A, (7).

Here, “complex analytic” means for all \g € p(T') there exist r > 0 and c; € B(X) such
that

R)\(T) = ZC]‘()\ — )\0)j
j=0
for all A € B.(\o).

The aim of the course is (mainly) to study the spectrum and its properties for various
classes or types of operators and to prove theorems “in analogy” to the spectral the-
orem of linear algebra concerning diagonalization of symmetric/self adjoint/Hermitian
matrices. The theory here is, however, much more rich.

Definition 0.4. The compact (linear) operators from X to Y (normed vectorspaces)
are defined by

K(X,Y)={T € B(X,Y): T(B(0)) CY is compact}.

Remark 0.5.
1. As for B(X), we write K(X) = K(X, X).

2. If Y is Banach, then “T'(B;1(0)) is compact” can be replaced by “T'(B;(0)) is pre-
compact”.

3. That is, T € K(X,Y) iff T maps bounded sequences into sequences which has a
convergent subsequence.

4. Given k € C(I?), I = [0,1], define

TLf)e) = [ ke f)dy, z el f e,

Ty, is called an integral operator, k is called the integral kernel. Then Ty : X — X,
X = C(I), is a bounded linear operator which is compact.



Definition 0.6 (Banach space adjoints). Let T' € B(X,Y), X, Y Banach spaces, and
define, for ¢/ € Y/,

(T"y)(x) =y (Tx).

Then T7": Y’ — X’ is linear and bounded. 7" is called the (Banach space) adjoint of
T. Furthermore, || 7| = ||T]|]. In fact, —': B(X,Y) — B(Y’, X’) is a (linear) isometric
embedding. It may be not surjective.

Definition 0.7 (Hilbert space adjoint). Let H be a Hilbert space and let ®: H — H’
be the map y — (y, —) identifying H with H’, and let T € B(H). Then

T =07 'T'®

is called the Hilbert space adjoint of T. Tt satisfies (T*x,y) = (x,Ty) for all z,y € H. T
is called self-adjoint iff T = T™.

The “programme” of the course will consisct of the spectral theory for compact op-
erators, the spectral theory for self-adjoint bounded operators, unbounded operators —
in particular symmetric operators and quadratic forms — and the spectral theory for
self-adjoint unbounded operators. We will also talk about the Fourier transform.

Lemma 0.8 (Algebraic properties of the adjoint).
1) (oTh +T) =aT] +T5 for Th,T> € B(X,Y) and a € K.

1)* (o) + To)* = aTy + T3 for Ty, Ty € B(H) and o € K.

2) I'=I1forleB(X),I: X = X,z z.

(
(1)
(2)
(3) ForTi € B(X,Y), Th € B(Y,Z), (IbTy) = T{T}.
(3)* For S,Y € B(H), (ST)* = T*S*.

(4)

4) With 1x: X — X" and 1y: Y — Y" the canonical embeddings and T € B(X,Y),

we have T"vx = 1y T.
(4)* ForT € B(H), T* =T.

Proposition 0.9. Let X and Y be Banach spaces and T € B(X,Y). Then T €
B(Y, X) exists if and only if (T")~* € B(X',Y") exists and in this case, (T~1) = (T")~!
(or, in the case of X =Y being Hilbert spaces (T*)™1 = (T~1)*).

Proof. Assume T is invertible. Then (by 0.8) Ix: = (Ix)" = (T~'T) = T'(T~')" and
Iy = (Iy) = (TT~Y = (T~Y)'T".

Assume now that 7" is invertible. Then T is invertible. In particular, 7" is a
homeomorphism, hence it maps closed sets into closed sets. Recall, that T”.x = tyT and
that ¢x and ¢y are isometries. Hence R(tyT) = R(T"1x) = T"(R(tx)). This is a closed
subspace of Y| since R(tx) is closed [take a convergent sequence {tx(z,)} in R(tx);
this is Cauchy, so the corresponding sequence {x, } in X is also Cauchy, hence convergent
Ty — 2, 50 1x () = t(z) € R(tx)]. Hence, R(T) = 1y (R(tyT)) is closed. Since T



is injective, it follows that 0 = N(7”) = Ann(R(7")) by the next lemma. From this and

the following proposition (a consequence of Hahn-Banach) we have Y = R(T') = R(T).
Hence, T is surjective. Since T" is injective, N(vyT) = N(T"1x) = 0, hence T is injective.
Hence, T is a continuous linear bijection, hence T~! € B(Y, X) by the open mapping
theorem. O

Lemma 0.10. For a linear subspace Z C W, define the annihilator
Ann(Z) = {w' e W':Vz € Z. w'(z) = 0}.
For T € B(X,Y), N(T") = Ann(R(T)).

Proof. We have: ¢ € N(T") it Ty =0 iff Ve € X. T'y/(z) = 0 iff Vo € X. ¢/ (Tx) =0
iff ¥ € Ann(R(T)). O

Proposition 0.11. For Z C W, W a normed space, Z a closed linear subspace, and
uw & Z, there exists a linear functional w' € W' such that w'|; = 0, ||w'|| = 1 and
w'(u) = dist(u, Z).

Remark. For T € B(X) we have that T-! € B(X) exists if and only if 0 € p(T),
i.e. invertibility of T is a “spectral question” related to 0 € p(T') or 0 € o(T). The
proposition says (for T'€ B(X)) that 0 € o(7T) if and only if 0 € o(T").

Proposition 0.12. Let X be a Banach space, T € B(X), with ||T|| < 1. Then (I —
T)"' € B(X) and

I-T)"= i ™
n=0
in B(X).

Remark 0.13.

1. The series in proposition 0.12 is called the Neumann-series for T.

2. Of course,
(T-1-D'=T-I)'=-(I-T)"'=-> T"e B(X)
n=0

if |T'|| < 1. Hence, if [|T|| < 1, 1 € p(T).

3. The proposition is a “perturbation result” in the following sense: The identity
I: X — X is invertible. If one adds something “not too big” , then the result is
also invertible (“perturbing I a little preserves invertibility”).

Corollary 0.14. Let X andY be Banach spaces. Then the subset of invertible operators
in B(X,Y) is an open set. More precisely, if S, T € B(X,Y) such that T us invertible
and |T — S| < |T7Y|7L, then S is invertible.



Remark 0.15 (Functions of an operator).

1. For T € B(X), we have the obvious definition 7° = I, T"+*! = 77", T-! = T~ if
it exists. Also T~" = (T~1)" is the inverse of T".

2. More generally, if p: C — C is a polynomial, p(z) = 3_7 ; a;2%, then we can define,
for T € B(X), p(T) = 3" ya;T" € B(X).

3. We have already seen other “functions of 7”7, namely the resolvent of T" at A,
RA(T) = (T — XI)7Y, and, if ||T|| < 1, the Neumann-series of T'.

4. More generally, let f(z) = Y02 jan2" be a power series in K with radius of con-
vergence r > 0. Then, by the same type of argument as for the Neumann series
above, Y o7 a,T™ converges in B(X), if ||T'|] < r. Hence, one can make sense of
f(T') for such f.

In conclusion, we can define f(T") (T' € B(X)) for functions f which can be expanded into
a power series. We will enlarge the class of functions f for which we can give meaning
to f(T') considerably (possibly at the price of not making sense for all T' € B(X)). We
will also study the relationship between the spectrum of T" and that of f(T).

Example 0.16.
1. For all T € B(X), we have the exponential function

o0
1
exp(T)=e’ =) Oj ET" € B(X).
n=

For S,T € B(X), 5T = e%eT if ST = TS, otherwise this may fail.

2. For T' € B(X), define
A(s) =T € B(X), seR.

This gives amap A: R — B(X), in fact A € C*(R, B(X)) with %A(s) _TA(s) =
A(s)T and A(0) = I, where L A(s) = limy, o 26 =A0),

3. For T'e€ B(X), with ||[I —T|| < 1, define

(I-T)" € B(X).

S

log(T') = — i
n=1

4. For T' € B(X), with |T|| < 1, |s| < 1, define A(s) = log({ — sT"). Then %A(s) =
~T(I —sT)™' = —(I — sT)™'T and exp(A(s)) = I — sT.



1 Spectral theory for compact operators

For a while, we shall be interested in the point spectrum o,(7") for operators T' € B(X),
i.e. we look at the eigenvalue problem for T: Given y € X we seek all solutions A € C,
x € X to the equation (T'— M)z = y. If A € p(T), so that T'— A is invertible, then
this equation has a unique solution zg given by 2o = (T'— A)~'y € X. If, on the
other hand, A € 0,,(T"), then a solution z( to this equation (if such a thing exists) is not
unique: If x € N(T' — AI) # 0, then also x + x¢ is a solution, since (T' — A\ )(x + o) =
(T — MX)x+ (T — M)xg = 04+ y = y. So, in this case, the number of solutions —
the “number of degrees of freedom” — is given by dim N(7" — AI). On the other hand,
for a solution xy to exist, we need y to belong to R(7T — AI). This can be thought
of as a “constraint” (or several) on y. If we had a scalar product and worked in a
finite dimensional space, then y would have to be in the orthogonal complement to
U = R(T — M)+, which means (y,u;) = 0 for a basis {u;} of U; hence the number of
constraints on y would be dim U. An important class of operators are those where both
these numbers — “the number of degrees of freedom” and “the number of constraints”
— are finite.

Definition 1.1. An operator A € B(X,Y) is called a Fredholm operator if
1. dimN(A4) < oo.
2. R(A) is closed.
3. codimR(A4) < oo.
The index of a Fredholm operator A is then given by ind(A) = dim N(A) — codim R(A).

Remark 1.2. That codimR(A) < oo means that Y = R(A) & Yy with Yy C Y a linear
subspace and dimY{ < oco. In this case codimR(A) = dim Y} is independent of the
choice of Yj such that Y = R(A) @ Yy, i.e if also Y = R(A) @ Y] with a linear subspace
Y} CY and dimY; < oo, then dim Y] = dim Yp. In a Hilbert space Y = R(A) @ R(A)*,
hence codim R(A) = dim R(4)*.

A large and important class (the important) class of Fredholm operators is when
X =Y and A is a “compact perturbation” of the identity:

Theorem 1.3. Let T € K(X). Then A =1—T is a Fredholm operator with index 0.
In particular, dimN(A) < oo (1), R(A) is closed (2), N(A) = 0 implies R(A) = X (3),
codimR(A) < dimN(A) (4) and dimN(A) < codimR(A) (5).

Theorem 1.4 (Spectral theorem for compact operators, Riesz-Schauder). For every
compact operator T € B(X), where X is a C-Banach space, one has

1. o(T) ~ {0} consists of countably many eigenvalues, with 0 as the only possible
accumulation point. If o(T) contains infinitely many points then it follows that
o(T) = o,(T) U{0}.



2. For A € o(T) ~ {0} one has
1 < ny := max {n eN: N(T —AD)™™ 1) £ N(T - )\I)")} < 00

ny is the order (or index) of A (as an eigenvalue) and the dimension of N(T — \I)
is called the multiplicity of A.

3. There is a so called Riesz decomposition: For X € o(T) ~ {0},
X = N((T = A)™) @ R((T — AXI)™)

Both subspaces are closed and T-invariant and dim N((T — XI)™) < oo (“gener-
alised eigenspace”).

4 U(T\R((T_M)m)) AN = o(T) N A{A)

5. Let, for X € o(T) ~ {0}, E\ be the projection on N((T' — AI)™). Then E\E,, =
OauEn.

Proof.

1. Let A € 0p(T), A # 0. Then N(/ —T/X\) = N(A\I —T) = 0. Hence, R(T — \I) =
R(I-T/\) = X. So (T—\)~! € B(X) exists, so A € p(T). Hence, o(T) ~ {0} C
op(T). If o(T) ~\ {0} is not finite, choose A\, € o(T) ~ {0}, n € N, A\, # Ay,

and eigenvectors e, corresponding to A, and define X,, = span{ey,...,e,}. We
claim, that the e, are linearly independent: Assume that {ey,...,e,_1} are linearly
independent, but that there exist aq,...,a,_1 € C such that e, = ZZ;II Q€.

Then 0 = Te, — \pe, = 22;11 apTey, — ZZ;% QR An€n = ZZ;% (A — A\p)ex which
implies aj = 0 since A\ # A, for all 1 < k < n — 1 by assumption. Hence, e, =0
which is impossible since e;, is an eigenvector.

Hence, X,,—1 € X, is a proper closed subspace of X,,. Then, by Riesz’s lemma,
there exists an z, € X, with ||z,|| = 1 and dist(2,, X,—1) > 3. Note, that
all the X, are T-invariant. Also, there exists «, € C and 7, € X,_1 such that
Tp = apep+Ty. Then Txy— Az, = apApen+TT, —anApnen — ATy = Ty — A\ Tn,

ie. (T'— M 1)zy € Xp—1. So, for m < n,

1T (xn/An) = T(@m/Am)|| =

Ty + ;(Txn — Any) — )jﬂTﬂ:mH > %

by the choice of the x,. Hence, the sequence {T'(z,/\,)} has no accumulation
points. Since T is compact, it maps bounded sequences into sequences which have
a convergent subsequence. So, the sequence {z,/\,} cannot be bounded, hence
1/|1An] = ||zn/Anl] = oo, i.e. A, — 0. This proves that 0 is the only possible
accumulation point of o(T) \ {0}. In particular, o(T") \ B,-(0) is finite for all » > 0
(if not, it would have an accumulation point), so o(7") \. {0} is countable (for this
we need that o(7") is bounded for any 7' € B(X)).



2. Let A=A —T. Then N(A"!) C N(A") for all n (always). Assume N (A” D) #£
N(A™) for all n > 1. Note that N(B) is always closed when B € B(X). So we
can choose z, € N(A") such that ||z,| = 1 and dist(z,, N(A""!)) > 1. Then,
for m < n, ||Txy — Txpl = |Aen — (Azy, + Az, — Azy)|| and Az, + Azy, —
Az, € N(A™Y), since zy,, ATy, € N(A™) by construction and N(A™) C N(A"1).
Also, A" Y(Az,,) = A(A" Y (2,)) = A0 = 0 and A" 1(Az,) = A"z, = 0. So,
|Txn — Top| = |A||lzn — 1/ ANAzy + Azm — Azyy)|| > [A]/2 > 0. But, |jz,] =1
for all n € N, so {x,} is a bounded sequence such that {7z, } has no convergent
subsequence which contradicts the compactness of T. Hence, there exists n € N
such that N(A"1) = N(A"). Then for all m > n, if x € N(A™), A" "z € N(A") =
N(A" 1), ie. Aty = A LA™ 1) = 0, so # € N(A™1). Continuing in this
fashion, one sees N(A™) = N(A™) and ny < co. Also ny > 1 since N(T' — A\I) # 0.

3. Write again A = A —T = A —T/X). This A is Fredholm. We claim that
N(A™) @ R(A™) C X, i.e. that N(A™)NR(A™) = 0. For this let z € N(A™),
x = A™y, for some y. Then A2y = AMA™y = A™x = 0, so y € N(A2™) =
N(A™) and x = A™y = 0. Note, that

A™ = (X[ - T)" )\”*I+Z< )A”A F(—T)*

is Fredholm by 1.3 since the second summand is compact. Hence, R(A"*) is closed
and codimR(A™) < dimN(A™) < co. Hence, we have X = N(A™) @ R(A™).
Clearly, both these subspaces are T-invariant.

4. Write T\ = T]R((T_M)m) and take p € C~ {A}. Then pul — T is injective on

N(A™), because if v € N(A™ )NN(ul —T),i.e. (A—p)z = Az and A™*x = 0, then
(p—=AN) A1y = A=Y \—p)z = A"z = 0 whence A™x = 0. Hence by induction
x = 0. Moreover N(A™\) is finite dimensional, thus (u—T): N(A™) — N(A™) is
a bijection. Hence, wether or not p — T is invertible on X is equivalent to wether
or not p — T is invertible on R(A™) in view of the decomposition X = N(A™) @
R(A™). Therefore 1 € p(T) iff p € p(Ty). Equivalently o(T) ~{\} = o(T)) ~{A}.

5. Let \,pp € o(T) ~ {0}, X # p. Let Ay =X—-T, A, = p—T. Then, taking any
z € N(Ay"), write z = z +y with 2 € N(A}) and y € R(A}). Then 0 = Atz =
Atz + Ap'y. Both N(AY) and R(AY*) are T-invariant, hence A"z € N(A})
and A,y € R(AY). Therefore Ap*z = 0. Since 4,: N(AD) — N(AD) is a
bijection, z = 0, so z = y € R(A}") and therefore N(A4,*) C R(A}"). Therefore
R(E,) C N(Ey). 0

Theorem 1.5. Let X be a normed space, E C X an n-dimensional subspace with basis
{e1,... en} and Y C X a closed subspace such that Y N E = 0. Then there exist
el,..., e, € X' such that ejly = 0 and €(ej) = d;j. Moreover there exists a continuous
projectzon P onto E with Y C N(P).

Lemma 1.6. For all finite dimensional subspaces E C X, if Y C X is a closed subspace
with Y " E =0, we have Y & E C X s also a closed subspace.



Lemma 1.7. If X is a normed space, Y C X a closed subspace, xqg € Y, then there
exists ' € X' such that 2|y =0, ||2/|| =1 and 2'(x¢) = dist(xo, Y).

Proof of theorem 1.3. We will only prove (3). Assume N(A) = 0 and for contradiction
assume there is z € X \ R(A). Then A"z € R(A") \ R(A™) for all n > 0, for
otherwise if A"z = A"ty for some y € X, so A"(x — Ay) = 0. Since N(A) = 0, this
would imply = = Ay € R(A). Moreover, R(A™!) is closed (by part 2). By Riesz’ lemma
there exist ,, € R(A"), ||zn| = 1, such that dist(z,, R(A"™)) = 1. Then, for m > n,
T2y — Tam|| = ||zn — (Azy + 2 — Azp)|| > 3, whence no subsequence of {T'z,} can
be Cauchy. O

Proposition 1.8 (Fredholm alternative). For T € K(X) and X\ # 0, either the equation
Tz — A x = y has a unique solution, or the equation Tx — Ax = 0 has nontrivial solutions.

Proposition 1.9. Let T € K(X), A € o(T) ~{0}. Then the resolvent map p(T') > p
R,(T) = (T — p)~! has an isolated pole at p = X of order ny (see. 1.4 (2)), that is,
the map p — (. — N)" R, (T) can be continued at the point X to an analytic map and

(1 — N B, (T) 0.
Proof. We have X = N((A —T)™) @ R((A — T)™). Write E, for the projection on
N((A = T)™) and Ty = T|r(g,), T1 = T|n(E,)- Since A is an isolated point in o(7'),
there exists » > 0 such that By, ~ {A\} C p(T), whence By, ~ {A\} € p(Tp) and

By ~ {A} C p(T1) because of part (4) of theorem 1.4. Moreover, for every z € C \ {0},
Ryi:(T) = Ray»(To)Ex + Ryy.(Th)(I — Ey). Also, z +— Ry,(T1) is analytic. Setting

"
ZTTO* -

one sees that
ny T

SE(A+2)—To) =Y 2" M Ty =N = 2 T —- N =T -2 (Th - \)™ =1.
k=1 k=1

Analogously ((A + 2)I — Tp)S(z) = I, whence S(z) = Rx1.(Tp). Now it’s clear that
Ry+.(Tp) has a pole at z = 0 of order ny. O

Remark. So far the decomposition in theorem 1.4 (3) looks very impressive since it gives
us a very fine decomposition of X into a direct sum of generalised eigenspaces. But the
theorem cannot even guarantee the existence of a closed invariant subspace, let alone a
direct sum decomposition.

Proposition 1.10 (finite-dimensional case). Let dim X < oo, T': X — X linear. Then
there exist distinct \i,..., Ay, m < dim X, such that o(T) = op(T) = {A1,..., Am}-
Each X\j has multiplicity ny, with the properties 1.4 (2)-(5), that is

m

X = @N(T - 7\)™).

=1

10



Sketch of a proof. Equip X with any norm. Then X is Banach and T, I and T'— X\ are
compact. Set 1), =T — p for any pu € C and apply theorem 1.4 to Ty and 7. O

Proposition 1.11 (Jordan normal form). Let T' € K(X), A € 0,(T). For A=T — X
one has

1. Forn =1,...,ny, there exist subspaces E, C N(A") such that E, NN(A""!) =0
and N(A™) = @2, Ny, where Ny = @) A(E}).

2. The subspaces Ny are T-invariant and dy = dim A'(E}y) is independent of | €
{0,...,k—1}.

3. If{erj:j=1,...,dy} is a basis for Ey, then {Alek,j: 0<I<k<n;1<j<dg}
is a basis for N(A™) and with

l l
= apAler; and y=7) Brjidler;
k.j,l k.3,

the equation Tx = vy is equivalent to

A1
Br.j0 o k,j,0

A1
Br,jk—1 R
Sketch of a proof. If E is a subspace with N(A"™!) @ E C N(A"), then N(A" 1)) @

AYE) CN(A™ ) for 1 =0,...,n and A is injective on E. Choose E, for n = ny,...,1
such that N(A") = N(A" 1) & @2, " AY(E,4;) from which the claim follows. O

Theorem 1.12 (Schauder). We have T € K(X,Y) if and only if T' € K(Y', X").

Proof. First assume T € K(X,Y), i.e. T(B1(0)) is compact in Y. For ¢y € Y’
we have || T"y||x: = supjy<i {T"y', 2)| = supjy<i (v, T2)| = sup, 765 (V' 9)| =
Hy’HC(W), form which we learn that Bj(0) is isometric to the set & = {y =
7 ’W: g € Y ||7|| < 1}. Therefore the precompactness of T'Bj(0) is equivalent
to precompactness of .7 in C(T'B1(0)) equipped with || - ||«c. The latter follows from
Ascoli-Arzela: 7 is uniformly bounded, because ||t/ || = |T'Y|| < T || < IT||. <«

is an equicontinuous family since

1y 1) — sy = 1Y sy — va) | < 1Y 11y — well < llvr — w2l

for every y1,y2 € TB1(0).
Conversely, if 7" € K(Y’,X’), by the above T” € K(X"”,Y"). Then exploit the
canonical embedding X — X": T'(B1(0)) C T”(B1(0)) and the latter is compact. O

Remark. If X is a Hilbert space, the proof of theorem 1.12 is much shorter since one has
approximation of compact operators by finite rank operators.
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The last step of this chapter on the spectral theory of compact operators is to in-
vestigate the special case of compact and mnormal operators. We shall see that the
Riesz-Schauder decomposition results on this case in an orthonormal decomposition of
eigenspaces.

Definition 1.13. For a Hilbert space H, T' € B(H) is called normal if T*T = TT*.

Lemma 1.14. ForT € B(H), [T,T*] =0, i.e. T is normal, if and only if || Tx| = ||T*z||
forallx € H.

Proof. We have ||Tz|? — |T*z||? = (Tx,Tz) — (T*x,T*z) = (Tx,Tx) — (TT*z,z) =
(Tx,Tx) — (I"Tx,x) = (Tz,Txy — (T'z,Tx) =0, if T is normal. O

Theorem 1.15. Let T € B(X), where X # 0 is a C-Banach space. Then o(T) C C is
compact and nonempty, and

sup |\ = lim | T™"/™ < |T].
Ao (T) m—00

We call r(T') = supyeq(r) Al the spectral radius of T'.

Proof. By Proposition 0.3, p(T") C C is open, hence o(T) is closed. By Proposition 0.12,
I — T/ is invertible, if | T/A|| < 1, that is, if |[A\| > ||T||, and in this case

RA\(T) = (T — AI)7! ! (I T>_1 i L pn
\ — — [ J— _ = — n .
A ) =t

Hence, r(T) < ||T'||. So, o(T) is bounded, hence compact by Heine-Borel. Note that
T — N[ = (T — A)pm(T) = pm(T)(T — AI) for

m—1

pm(T) = N7
=0

Hence, A € o(T) implies A™ € o(T™). Hence, |\"| < |T™], i.e. |A| < ||T™]/™ for all
m. So, |A| < liminf,, o0 [|T7|™ for all X € o(T). So #(T) < liminf,, oo | T™|Y/™. Tt
remains to prove that (7)) > limsup,, . ||77|/™.

By Proposition 0.3 p(T") C C is open and the resolvent map A — R)(T) € B(X) is a
complex analytic map, i.e. for all \g € C \ B, (;)(0) there exist c,(\o) € B(X), n >0
and £(A\g) > 0 such that

RA\(T) = i cj(Mo)(A — Ao)"
n=0

for all A € B,(5,)(Mo). We will need some Complex Analysis:

Theorem (Cauchy’s integral formula). Let Q C C be open and simply connected and
assume f: Q — C is analytic. Let v: [a,b] — Q be any closed path. Then

j’{f(z) dz = 0.

12



Note that “simply connected” informally means “no holes” and a “path” means a
rectifiable curve, in particular it is enough for v to be C*.

The same holds when f: 2 — Y for a complex Banach space Y. Only the linear
structure and the completeness of Y where needed for the proof, once one can make
sense of the Riemann integral appearing in Cauchy’s formula in this setting.

Now A — R)(T) is complex analytic and by Cauchy’s formula

/ NRy(T)dX = [ MNRy(T)d\
71 72
where ~; are circles of the same orientation around the origin of radius strictly bigger
that (7). Hence, for any j > 0, s > R(T), the integral
1 .
— MR\(T)dA
27 Jos.0 A(T)
is independent of s. Recall that Ry(T) = — Y02 g A=~ 1T™ for |A\| > r(T). Hence,

1

) 1 o
— NR\(T)d\ = —7,/ M=l gy =
21 /335(0) A(T) 271 JoB4(0) nzz:o

0 27
L <sj_”/ 0= d0> " = —T9.
2m n=0 0

Hence, for j > 0 and s > (7))

; 1
17 = o
T

Ly X T) dAH —-|f 7 (56) Ry () (15" a

1 ., g2 ‘
< oo [ IR (T[40 < 5 sup [IRA(T)]
0 AEDB,(0)

<

j—o0

1/3
and hence ||T7]|/7 < 3<3'Sup>\6833(0) \R,\(T)]> I, 5. So, limsup,, . |T7Y™ <

s for all s > r(T). Hence, limsup,, ., [|T™|Y™ < »(T).
Assume for contradicition that o(7") = 0 (then r(T") := 0). For j = 0 and any s > 0,

Il = 170 < s - maxyeop, (o) |BA(D)] < s - max)y<, [RA(T)]| <= 0, which is only
possible if X = 0. 0

Proposition 1.16. Let H # 0 be a complex Hilbert space, and T € B(H). If T is
normal, r(T) = ||T|.

Proof. Let T # 0. Recall that lim,, s |77/ < ||T||, hence it is enough to prove
that || 77| > ||T"||"™ for m > 0. This is clear for m =0, 1.
For m > 1, and x € H, we have

T2 ]2 = (T2, T™2) = (T T2, T2 ) < | 77| | T 2| =
= [T a7 | < (T T ] < T ]

Hence, [T < [T 7|71 So [T > [Tm|/|T|mt > [Tom-n-b) —
|T||™ Y if | 7™ > ||T||™. Hence, by induction, the proposition follows. O

13



Definition 1.17. Let T' € B(H) be selfadjoint, i.e. 7% = T. Then T is called positive
semi-definite if (x,Tx) > 0 for all x € H. We will write T > 0. We will also write A > B
for operators A, B iff A— B > 0.

Remark. By problem 12 (z,Tx) € R if T' is selfadjoint.
Proposition 1.18. Let H be a C-Hilbert space, T € B(H).

1. If T =T%*, then o(T) C [—||T|I, [|T|]] S R. Ifalso T € K(H), then —||T|| or ||T||
is an eigenvalue of T'.

2. IfT=T* and T > 0, then o(T) C [0,||T|]] CR. Ifalso T € K(H), then |T|| is
an eigenvalue of T.

Proof. By problem 12, for T'=T*, o(T) C [infer,Hxllﬁl (z,Tx),supgep |z|<1 <3§‘,Tl‘>}.
Also, by 1.15, o(T) € By (0) € C. So o(T) € [T, [|T]]]. In fact, since s.a. implies
normal, maxc,(7) |[A| = [|T|. If T is compact, then o(T) \ {0} consists of isolated
eigenvalues by the spectral theorem for compact operators on a Banach space, so ||T|
or —||T|| is an eigenvalue.

For positive T, again using problem 12, o(T") C {0, SUPge i, |z <1 (T Tl’)} and as before
o(T) € Bypy(0). So o(T) € [0,[|T]]] € R. If also T' € K(H), then, as above ||T| is an
eigenvalue. O

Remark. In particular, if T' € K(H), T =T*, T # 0, and T" > 0, then for the largest
eigenvalue Ao of 7" one has \g = maxyc, (1) A = [|T]| = supgep |z)<1 (2, T) = Xo. Le.
maximising (z, Tx) under the constraint ||z| < 1 (or ||z| = 1) gives the largest eigenvalue
of T. In particular Ay > (z,T'z) for all x € H with ||z|| = 1. One can use this to compute
a lower bound on Ag by choosing some z. Also, one can repeat this: for A\; < Ay the
next eigenvalue, the same method works by restricting T so (span{zo})* =: X, since X
is T-invariant: for # € X one has (T, x0) = (&, Txo) = Ao(&,20) = 0, hence TF € X.
This can be used to compute the A; and their eigenvectors.

Example 1.19. Let H be a complex Hilbert space, and choose an ONS {e;};en for
some NV C N and choose a sequence {\;}jen C C with [A\z| <7 < oo for all k € N and
some r > 0. Then Tz = 3>,y Aj(ej, z)e; defines a bounded and normal operator. Also
T is compact iff \; = 0 as j — oo (if N is infinite, otherwise 7" has finite rank, hence is
compact). The following theorem shows that every compact, normal operator has this
form.

Theorem 1.20. Let H be a complex Hilbert space, and let T € K(H), T # 0, be normal.
Then

1. There exists an ONS {e;j}jen with N C N and {\;};en € C \ {0} such that
Tep = Mge, k € N, and o(T) ~ {0} = {\;}jen. If N is infinite, then A\, — 0 as
k — oo.

2. Forallk, ny, =1 (the order of A, i.e. the mazimaln such that N((T =\ I)" 1) #
N((T = AeI)").
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3. One has the orthogonal decomposition H = N(T') & span{e,: n € N}.
4. Tx =3 ey Meler, x)eg for allx € H.

Proof. Apply first the spectral theorem for compact operators (1.4) on T to get that
o(T) ~ {0} consists of eigenvalues Mo, k € N CN, with A, — 0as k — oo (if N is
infinite). In this enumeration, the \; are distinct. Moreover, the space Nj, = N(T — /\kI )
is finite dimensional. Let Ny = N(T), and A\g = 0. Note that N(T'— Az 1) = N(T™* — A1)
for k € N U{0}. We claim that N, L N; for k,l € N U{0}, k # [. For z; € N, and
x; € Nj, k # 1, one has

N{xg, xp) = <wk75\lwl> = (zg, Tay) = (T ag, x1) = <5\7kxk7xl> = M (w, 1)

and hence, since A\; # g, (xg, ;) = 0 as claimed. Next, we claim H = eakeﬁu{o} Ny,

.\ — -
Let y e Y : (®keNu{0} ) . Since, N, = N(T* — A1), k € N U {0}, we have, for

x € Ny, ke NU{0}: .
(x, Ty) = (T"x,y) = M\e(z,y) =0,

hence Ty € Y. Hence, Y is a T-invariant, closed subspace of H. We now look at
To =Tly:Y — Y. Then Ty € K(Y) is normal. In case Y # 0, supycq(zy) Al = 70|
and its eigenvalues pur — 0 as k — oo. Then there exists a pg € o(7Tp) such that
lo| = || Tol]. If || Tol| # 0, then pg # 0 is an eigenvalue for Ty by the spectral theorem,
hence pg is an eigenvalue for T' with corresponding eigenvector v € Y C H. Hence,
o € o(T) and u € Ny, for some k, which is a contradiction, since Y L Ny. If ||Tp|| = 0,
then Ty = 0, so Y C N(T') which is equally impossible if Y # 0. Hence, we have Y = 0.

Let Ej, k € N U {0}, be the orthogonal projection on Nj. Then x = Zkeﬁu{o} Eyx,
SO
Ter= > TEz= Y NEw=>)Y MNE
ke NU{0} ke NU{0} keN
Now the representation of 7" follows by choosing orthonormal bases {ey, ..., exq, }, di =

dim Ny, of Ni. Then Epz = Y%, (ex;, z)ey; and

Tx = Z A (ek, x)eg

keN

by relabelling the \; and €kj-

From this representation of T" it follows that N((7'— At )2) = Ny = N(T — A1), for let
z € N(T—=MI)?), 1e. 0= (T—NI)?x Z] ~(A\—Aj)2E;x. Since H = @keNu{O} ks
this implies Ejz = 0 for all j # k. Hence z = Ekx, so € Ny. O

Let (as before) Ej, be the orthogonal projection on Ny = N(T' — A\ I), that is Eyz =
Z?il (erj, x)ey; for an orthonormal basis {ex1,...,exq,} of Ni. The spectral theorem

says that Tox =, - MeEpz, ie. the sum T = D okeN e Ej converges pointwise.
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Corollary 1.21 (Spectral theorem for compact operators; Projection Ve~rsion). Let the
assumptions be as in theorem 1.20. Then, in the notation of above, Y. n Ak Ey converges
in norm to T'.

Proof. We have

M 0o
5 3 3 M
HT — Z /\kEk = Z AkEk = SUQ ’/\| = ‘)\M+1| i) 0
k=1 k=M+1 Aea(D A Er)
since > A\iE}, is normal. O

Theorem 1.22. Let T € K(H), T* =T, T > 0. Then there exists a unique, positive,
self-adjoint operator S € K(H) such that S* = T. We write T*/? = 8.

Proof. Write Tz = Y,y Ak (ex, x)ey for all x € H. Since T' > 0, we have A\;, > 0. Let
St = > pen VAkler, x)ey for £ € H. This defines a compact normal operator, since
VAr — 0 as k — oco. In fact, S is self-adjoint and S > 0. Also, one computes

S%2x =89Sz =25 Z VAk{eg, x)e, = Z Ai(eg, x)er = Tx.

keN keN

Assume R € K(H) with R = R*, R > 0 and R? = T. Using the spectral theorem
on R, we have R = >, v F), with vy, the eigenvalues of R and corresponding orthogonal
projections Fy. Then T = R? = (X, vk Fi) (X0 VmFm) = Yp Vi Fi and the v} are the
eigenvalues of T" with corresponding orthogonal projections Fjy. Hence, R = S, since
vy > 0by R>0. O

Let T': Hy — Hs be a compact operator between two Hilbert spaces. Then T%T: H; —
H; is positive and self-adjoint. Its unique square root is denoted |T'| := (T*T)/2.

Theorem 1.23 (Polar decomposition). For T' € K(H;, Hs) there exists an operator
U € B(Hy, Hs) with T = U|T|, such that Ulyys is an isometry between N(U)* and
R(U). U is uniquely determined by the demand that N(U) = N(T).

Proof. |T| is self-adjoint, so |||T|z||?> = (|T|z,|T|z) = (x,T*Tz) = (Tx,Tx) = ||Tz|>
Hence, U(|T|x) = Tx defines an isometry from R(|T|) to R(T") which extends uniquely
to a bounded operator U: R(|T|) — R(T). Let Uz = 0 for z € R(|T|)* = N(|T)).
This proves the existence of U with the stated properties. The uniqueness follows from
N(|T|) = N(T). O

Remark.

1. An operator with the properties of U is called a partial isometry.

2. T = U|T| reminds of A\ = €|\, however, in general, |S + T| £ |S| + |T].
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Theorem 1.24 (Singular Value Decomposition). For any T € K(Hy, Hy) there exist
orthonormal systems {e;}ien € Hi, {fitien C Ha and numbers s; > sy > --- > 0,
s — 0 as k — oo if [N| = oo, such that

Ty = Z silex, =) fr, for all x € Hy.
keN

The numbers si are the eigenvalues of T*T, counted with multiplicities. The s, are
called the singular values of T'.

Proof. Write T = U|T| by polar decomposition, and use the spectral theorem on |T| to
get
|T|x = Z sk{ek, T)eg
keEN
where the e, and the s; have the properties in the theorem. Then let fr = Uei to get
an orthonormal system { f}ren (since U is a partial isometry) and

Tx=U|T|z = Z silex, x)Uey, = Z sk{ek, ) f. a
keN keN

Remark.

1. There is no condition that T" be normal or self-adjoint!
2. SVD is important, also on matrices, in Numerics.

Much remains to be said about compact operators. They occur (and were first studied)
as integral operators (T f)(z) = [ok(z,y)f(y)dy, f € X, for various types of k, and
various choices of X. We have seen the cases X = C[0, 1] and k: [0, 1]?> — C a continuous
function, and X = L2[0,1] and k € L?([0,1] x [0,1]), and “weakly singular integral
operators” where k(x,y) ~ | — y|™®. Compact operators also occur as embeddings of
certain spaces into certain spaces: i: X — Y. We have seen this (most often) where ¢
is bounded. Better yet, often ¢ is even compact. Both situations are important in the
study of boundary value problems; for example, the Dirichlet problem: Take an open
bounded domain @ C R? (or more generally Q C RY) and ¢ € C(99). The problem
then is to find u: Q — C such that u € C(Q2), u € C?(Q2), solving Au = 0 on  and
uloa = .

One can study compact operators according to the properties of their singular values.
More precisely, let the p-th Schatten-class S, be defined by

Sp={T € K(H): |T], = (i sn(T)p)l/p < oo}

n=1

with s,(T) the singular values of 7. Then [—||, is a norm on Sy, and (S, ||—|p) is
Banach. These spaces have many properties in common with £, for example S; = 5,
for ¢ the Holder conjugate of p. Of special interest are Si, since it allows to define the
trace of operators, and Sy, the Hilbert-Schmidt operators. In fact, Sy is a Hilbert space.
In particular, Ty, € So(L?[0,1]) when k € L?([0,1] x [0, 1]).
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For compact operators between Banach spaces, there is a notion of “nuclear operators”:
T € B(X,Y) is nuclear iff Tx = > 0%, 2} (x)y, for all z € X, with {z/,} C X’ and
{yn} C Y, such that >, ||}, |||lyn|l < co. For more on these operators, see for examples
Werner, Alt.

2 Spectral theory for bounded, self-adjoint operators

As before, everything takes place on a complex Hilbert space. If T: C" — C" is nor-
mal, then it can be diagonalised, i.e. T is unitarily equivalent to a diagonal matrix D:
UTU~! = D for some unitary U. The diagonal elements of D are of course the eigenval-
ues A, ..., A,. Hence, (UTU*I:U)i = Az, i.e. D can be thought of as a multiplication
operator. This form can be used to define f(T') for certain f by (U f(T)U 1x); = f(\i).
We have already seen something similar for compact operators, namely, when defined,
S = T2, Another way of thinking of UTU ! =D is T = > By with py # py, wehen
k # j and orthogonal projections E; onto the eigenspaces. Then f(T) = >, f(u;)E;-
We shall elaborate on these various approaches.

Theorem 2.1 (Continuous functional calculus). Let T € B(H) be self-adjoint. Then
there exists a unique map ®: C(o(T')) — B(H) such that

(a) ®(t) =T, wheret: o(T) — C,t —t, and ®(1) =idy, where 1: o(T) — C,t > 1.

(b) ® is an involution and a homomorphism of algebras, i.e. ®(af +g) = a®(f)+ (g),

(fg) = (f)®(g), and &(f) = (f)".

(c) ® is continuous, i.e. bounded from (C(o(T)),|—|lec) to (B(H),|—|). In fact,
1Al = [Iflloo = supseq(ry [ (#)]-

The map ® is called the continuous functional calculus of T'.

Proof. We will use Weierstraf3’ approximation theorem. The required properties fix ®
on the polynomials, which are dense in C'(¢(T")), and by continuity there exists a unique
bounded extension of ® to C(a(T)). O

Theorem 2.2 (Weierstrafl’ approximation theorem). Let f € C[a,b], € > 0. Then there

exists a polynomial p such that || f —pllec < €. In other words, the polynomials are dense
in (Cla, ], || =|ls0)-

Theorem 2.3 (Tietze-Urysohn extension theorem for metric spaces). Let M be a metric
space and A C M a closed subset. For all continuous functions f: A — [c,d] there exists
a continuous extension F: M — [e,d] (i.e. F is continuous and F|s = f). In particular:
Vito & A: Jp: M — [0,1] continuous with p|a =0, ¢(ty) = 1.

Proof. Tt is enough to look at ¢ =0, d = 1. Let
f(t) te A

F(t) = 4 inf{f(s)d(s,t): s € A}
inf{d(s,t): s € A}

tg A
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where inf{d(s,t): s € A} = d(t,A) > 0 since t ¢ A and A is closed. One easily (!)
sees that F' is continuous. (For tg ¢ A: Define (for Ag := AU {to}) po: Ao — [0, 1] by
vola =0, ¢o(tp) = 1 and then extend ¢g to ¢, as above). O

Recall: For T' € B(H), o(T) C C is compact and in particular, closed. Let f €
C(o(T)) (i.e. f:o0(T) — C is continuous). Then, by Tietze-Urysohn there exists
f: B,(1y(0) — C continuous with f\U(T) = f. For T self-adjoint (T" = T*), we have:
Im,M € R: o(T) C [m,M] C R. In other words, there exists f: [m, M] — R con-
tinuous and f lo¢ry = f. Then, by Weierstra}, for ¢ > 0 there exists a polynomial p
such that ||f — plleo < € (here ||g]leo = SUPem,m] 19(t)]). In particular, for all ¢ € o(T):

£(t) = p()] = [7) = p(8)] < 2, 50 1 — plloc < £ (here lglloo = uDyeo(r) lg(t)]). Hence
(1) the polynomials are dense in (C(a(T)), | - |loo)-

Proof of the continuous functional calculus. Uniqueness: Last time (!). Existence: Let
p € P, then, if p: t — I ;a;t’, we define ®¢(p) := Y1 ya;T" € B(H). Clearly (!),
g satisfies (a) and (b). It remains to prove that ®3: P — B(H) is bounded. Then,
by density of P in C(o(T)) we will have a unique bounded (linear) extension ® of ®
with the desired properties. That ® satisfies (a) is clear, linearity and boundedness
too, remains: @ is involutive and multiplicative: This is done by a limit argument. For
involutive (®(f) = (®(f))*): Let f € C(o(T)) then, choose a sequence {p,}nen of
polynomials, so ||f — pnl|loc — 0, n = co. Then

°(7) =@ (Jim o) = @ (Jim ) = Jim @) =
= Jim o) = limn (@(p))") = (Jim Po(pn)” =

(i #00))" = (0 ()" = 00

To prove ®p: P — B(H) is bounded we shall in fact prove that | ®Po(p)|| = ||pllec =
SUp)eo(r) [P(A)]. For this, we need (problem 16, week 4)
a(®o(p)) = o(p(T)) = o(Tiga:T") = {p(N): A€ o(T)} =
= {XioaiX: A € o(T)} = p(o(T))
(OK: for T € B(X,Y), XY Banach).
120 (p)1* = [[@0(p)* Po(p)l| = [L0(B) Lo (p)|l = |Po(Bp)l| = sup{|A|: A € o(Po(pp))} =
= sup{|(Bp)(V)|: A € o(T)} = sup{[p(N)[*: A € o(T)} =
= (sup{lp(V)|: A € o(1)})’

since, by properties of ®(, ®o(pp) is self-adjoint, hence, normal, so its norm equals to its
spectral radius. O

Theorem 2.4. T € B(H), T = T*, f — f(T) is the functional calculus of T (on
C(a(T))). Then
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(a) [ F(T)]| = [flloo

(b) If f >0 then f(T) is a positive semi-definite operator.
(c) Tx =\ = f(T)x = f(\)x

(d) o(f(T)) = f(o(T)) (spectral mapping theorem)

(e) o :={f(T): feC(o(T))} C B(H) is a commutative algera of operators. f(T) is
normal for all f € C(o(T)). f(T) self-adjoint < f = f (f is real).

Proof.

(a) Follows from the proof of theorem 2.1, since true for polynomials, and these are

dense.
(b) Let f >0 (on o(T)!). Let f = g*> with g € C(a(T)) and g > 0 (i.e. g = /f on o(T)).
Then, for all z € H, (w, f(T)z) = (z,g*(T)z) = (z,9(T)g(T)z) = (g(T)*, g(T)z) =

(g(T)z, g(T)z) = (9(T)z,9(T)z) = [lg(T)z|? > 0.

(c) This is true for f € P. For general f it follows from a limiting argument: For
f € C(a(T)), choose polynomials {py,}nen such that ||p, — fllcc — 0 as n — oo.
Then (1) ||[pn(T) — f(T)]| = 0, n — oo, in particular.

IF(T)z = fFNz] = [(f(T)x = pu(T)z) + (pn(T)z — pu(N)2) + (pn(Mz = fF(M)z]| <
< AT = pa (D)l + [lpn (T2 = pa (N2l + [pn(A = FV ]l

n—00
——0

(d) OK if f is a polynomial (problem 16, week 4). Let f € C(o(T)) and u & f(o(T)).
That is, u # f(t) Vt € o(T), so g(t) = (u— f(t))~L, t € o(T) is well-defined, and
g(W)(p = f(t)) = (= f(t))g(t) = 1Vt € o(T). Note g € C(a(T)), so g(T)(p —

f)=w—f(T)g ( ) = idg, hence p € p(f(T)), hence p & o(f(T')). This shows
o(f(T)) C f(o(T)). On the other hand: Let u = f(\) for some X € o(T). Let n € N:
Choose polynomials p,, with ||p, — f|lcc < 1/n, then also |p,(A\) — f(A)| < 1/n for all
A€ o(T) and ||p(T) — f(T)|| < 1/n (since @ is a linear isometry). As noted above,
A€ o(T) = pu(N\) € o(pn(T)) (since p, is a polynomial). Hence (exercise 18(iii),

sheet 5) there exists z,, € H, ||z,|| =1 and

H( n(T) _pn()‘))an <

S

Hence

[((T) = waall = [ (f(T) = f(A)zn] =
= [[(f(T) = pn(T) 4+ pn(T) = Pn(A) + pu(A = f(A))zall <
< f(T) = pu(D)lznll + [[(r(T) = pr(A))zn ||+
+ [P (N) = FM)llzall <
<1l/n+1/n+1/n=3/n
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Hence there exists a sequence {x, }nen C H, ||,|| = 1, such that ||(f(T) — p)zn| —
00, n — 00. S0 {xp}nen is a Weyl sequence for f(T') at pu (= f(A\)). Hence p €

o(f(T)), so f(o(T)) Co(f(T)). So, in total o(f(T)) = f(o(T)).
(e) f(T) is normal, since f(T)f(T)" = f(T)f(T) = (fF)(T) = (F/)(T) = f(T) F(T).

The rest is clear. O

Remark (Holomorphic functional calculus). Let 2 C C open, f: 2 — C holomorphic, T’
a rectifiable, closed curve in €2, then, by Cauchy’s Integral Formula,

f(z) = ;mﬁg(_g)zdg for any z inside (!) T’

This allows the following construction (due to Dunford-Schwartz) of a holomorphic func-
tional calculus:

For T € B(X) (X is a C-Banach space), o(T) C D C C open, f: D — C holomorphic,
I' = {vi}!_; a collection of (Jordan) curves in D, such that o(7') lies inside I" and each
7 is positively oriented. Then let (!)

FT) 1= o § Q€ - T g

Then f — f(T) is an involutive linear algebra homomorphism from H(o(T')) to B(X)
(and the map is continuous in an appropriate sense).

The continuous functional calculus now allows (!) to ‘compute’ f(T") € B(H) for T
bounded and self-adjoint, and f continuous. However, there is nothing on diagonaliza-
tion.

Remark. Recall: Assume T' € K(H), T* =T and let T' = Y72, prEx be the spectral
decomposition of T' from the spectral theorem for compact normal operators (1.20 +
1.21). (here, o = 0 € o(T') and Ep is the orthogonal projections on N(T), {ur}3,
is the sequence of distinct and real eigenvalues of T, uxr # 0, k # 0. E} are the
corresponding projections on eigenspaces. From 1.20 and 1.21 it follows (!) that the
map

C(o(T)) — B(H)

oo
f———> f(u)Ex
k=0
satisfies (a), (b) and (c) in theorem 2.1 (continuous functional calculus) — hence, this
map s the continuous functional calculus of T'.

That is, diagonalistation of '€ K(H), T* = T allowed already to define the continu-
ous calculus of 7. On the other hand (in this case!), the continuous calculus allows to
re-find’ the orthogonal spectral projections Ej. Recall that o(T") ~ {0} consists of iso-
lated points. Hence, define for j > 1, fj: o(T) = {0} U {p1, 2, ...} = R by fi(p;) =1
and f;(t) = 0 otherwise. Then (!!) f; is continuous on o(7") and (po = 0!)

3

fj(T):ifj(Mk)Ek:Ej = T= iﬂkfk(T)

k=1 k=1
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Problem: If we imagine(!) there is, also for general bounded self-adjoint operators,
something like spectral projections, one could hope to ‘compute’ them by using — as
above — a function f with values in {0,1} and define an operator f(7"). But: f has
to be continuous to use the continuous calculus — but in general, ‘f € C(o(T))’ and
‘f(o(T)) € {0,1} are incompatible. Note: For f(T') to be an orthogonal projection, f
needs to take alues in {0,1}. (if B> = E,E* = E,E = f(T), f has to be real and
f(T)=E = E? = f(T)? = f2(T), so f> = f, so f can only take the values 0 and 1
on o(T').) This is one (major!) motivation for the following: Extending the continuous
functional calculus to define f(7") for bounded, measurable functions on o(T") (i.e. Borel-
measurable).

Definition. Let T be a set. A family of subsets ¥ C 2T i called a o-algebra iff
(a) DeXx

(b FeX=T\FEeX

(c) {Eitien CE = Ujen Ei € X

For any family I' C 27 there exists a smalles o-algebra ¥ = Y(I'), containing I'. The
smallest o-algebra in a topological space that contains the topology is called the Borel-
o-algebra. Its elements are called Borel-sets.

Definition. A family of subset A C 27 is called a Dynkin-system iff
(a) TeA

(b) E,FEA ECF = F~\FEcA.

(c) Er,Ey,---€ A, E;NE;j=0fori# j = Uyl En € A

For a family I" C 27 tehre exists a smallest Dynkin-system A(T) containing 7. (Note:
Y o-algebra = 3 Dynkin-system).
A family I" C 2T is called stable under intersection if A, BeT = ANBeT.

Proposition 2.5. If ' C 27 is stable under intersection, X(I') = A(T).

Definition. A function f: T — R is called measurable (Borel-measurable) iff f~1([a, b))
is a Borel-set for all a,b € R.
A function f: T — C is measurable iff both Re f and Im f are measurable.

Definition. A function of the form
n
fzzaiXEi a; € C E,eXx
=1

is called a step function. All step functions are measurable.

Proposition 2.6. Let f,g, fn: T — K be measurable functions, a € K.
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(a) Then f+g, fg, flg (9 #0), af, |fl, max{f,g}, min{f,g} (if K = R), sup, fn,

inf,, f,, liminf, f,, limsup,, f, (and hence, lim, f,) are all measurable.

(b) There exists a sequence {pn }nen of step functions such that f(t) = hmn_>OO gpn(t) for
allt € T. If f >0, then the ¢, can be chosen such that p1(t), < @o(t) < --- < f(t)
forallteT.

(c) If f is measurable and bounded, then there exists a sequence of step functions that
converges uniformly (on T) to f.

Definition. Let T be a set, ¥ a c-algebra, u: ¥ — R (or C) is called a signed (or
complex) measure iff for all sequences {A;}ien C X, A;NA; =0 (i # 7), p(Ui2y 4i) =

1 1(A;). (so u(A) > 0is not needed!). M(T,Y) is the space of all complex measures
on X. It s a vectorspace (!). If T' is a topological /metric space, we let X be the Borel
o-algebra.

Definition. The variation of a measure p € M (T, ) is the positive measure |p| defined

by
ul(A) = = sup > lu(E
FeZ

where the sup is over all decompositions Z of A in finitely many disjoint elemnts of X.
Then (") |u|(T) < co. The variation norm (!) of u is ||u|| = |u|(T).

Proposition 2.7. (M(T,%),| - ||) is a Banach space.

Theorem 2.8 (Riesz’ representation theorem). Let K be a compact topological space
(ex. [a,b]). Then C(K)' (i.e. the dual of C(K), with || - ||ec) is isometrically isomorphic
to M(K,Y), C(K) 2 M(K,X), ¥ being the Borel-sets on K, via the map T: M(K) —
C(K),u— Tu given by

(T)(f) = [ f
K
and ||pll = 1T pllciry -
Proof. See Rudin ‘Real & Complex Analysis’.

Fact: [|S||? = [|S*S| for all S € B(H), since ||Sz|? = (Sz,Sz) = (x,5*Sz) =
|{(x, S*Sx)|.

Definition. Let D C C be compact. Let My (D) be the set of (Borel) measurable
and bounded (complex valued) functions on D. (f € Myp(D) <= f: D — C, f Borel-
measurable and bounded).

We will need the following lemma:
Lemma 2.9.
(a) (My(D), |- |loo) % a Banach space.
(b) Assume U C My(D) satisfies:
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(1) ¢(D)cU

(2) {fn}nen S U, supy, [[fnlloo < 00, f(t) :=limpy o0 fu(t) Vi € D = f € U.
Then U = My(D). So My,(D) is the smallest space of functions which

(1) contains all continuous functions

(2) is closed under pointwise limits of uniformly bounded sequences.

Proof. (a) follows from the fact that the space of all bounded functions on D, with the
supremum norm, is a Banach space, and that My, (D) is closed under pointwise limits.
To prove (b) let

F ={S CMy(D): SO C(D) and S satisfies (2) in lemma 2.9}

and let V = N.%. Note that o(D) C V C My(D). Then V is a vector space: for
fo € V define Vi, = {g € My(D): fo+g € V} 2 {0}. For fy € C(D) C V, we have
C(D) C Vy,. Now, Vy, satisfies condition (2) for any fo € V, for assume {fy,}nen € Vy,,
with [|fu]lee < C < 00, and f(t) = lim, o0 fn(t) exists for all t € D. Since f, € Vy,
for all n, we have fo + f, € V for all n. Setting h, := f, + fo we have [yl <
Walloo + 1o < C+Lfoll = € and hu(t) = fu(t)+ folt) “= £(t)+ fo(t) for all t € D
and {hy,}neny € V. By definition of V, it follows that f + fo € V, ie. f € Vj,. Hence,
V, satisfies condition (2).

In summary, for f € C(D), C(D) C Vy,, and, for any fo € V, Vy, satisfies condition
(2). Hence, V C Vy, for fo € C(D). In other words, for fo € C'(D) and g € V, it follows
that fo +g € V. Now, take go € V. Then the above shows that f + g9 € V for all
f € C(D), hence C(D) C V. Also, Vg, satisfies condition (2), hence V' C V, for any
go € V, which shows that V is closed under addition. Also, g € V and a € C implies
ag € V. Hence, V is a linear subspace of My, (D).

We will show that V' = My, (D). For this it suffices to show that all step functions lie
in V, since the step functions are dense in My(D): For any f € My(D) there exists a
sequence { fy, }nen of step functions such that || f,, — f|lcc — 0. In particular, || fu|lcc < C
for some C' > 0 and lim,, o fn(t) = f(t) for all t € D. Then f € D since V satisfies
condition (2).

We still need to prove that yg € V for all E € ¥ (the Borel o-algebra on D). Let
A={FEe€X: xg € V}. Claim: A is a Dynkin-system. First yp =1 P C C(D) C V.
Let E,F € A, C F, then xp g = xXr — XE and so, since xg,xr € V, also xp. g =
xr —xg € V. With Fq,Es,--- € A E; NE; = 0 fori # 5, B = Ur=, Ek, we have
XE = Y pe1 XE, (pointwise convergence). Let f, := > 1 x&,, then {fplnen €V (V
vectorspace). |[fnlloo < 1 (E, disjoint), and f,(t) — xg(t) as n — oo for all t € D, so
XE € V, hence, E € A. So A is a Dynkin-system. Claim: 7 C A (the open sets). Idea:
Use 2.5 with I' =7. Then A(T) =3(T) =X and T CACE=A(T). So £ =A(T)
being the smallest Dynkin-system containing 7", we have A = 3.

To prove 7 C A: For any open E (relatively open in D), there exists a sequence of
continuous functions { f, }nen, 0 < f, < 1 such that f,,(t) — xg(t) for all t € D. (Then:
|lfrlloe <1 and f,, € V for all n (since C(D) C V), and V satisfies (2) in Lemma 2.9,
so xg € V, hence E € A.) To construct the sequence {f,}: Use Tietze-Urysohn in the
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version: For K, H closed sets, KN H = (), 3 g continuous such that g|y = 0 and g|x = 1,
0<g<1. Eisopen,so Eis closed. Use F,, = {y: dist(y, E€) > 1/n}, which is closed.
Take f,, as g in Tietze-Urysohn for E€, F,. O

We now extend the continuous functional calculus: Let z,y € H, f € C(o(T)), T €
B(H), T =T*. Let £yy(f) = (x, f(T),y) € C. Then l;,: C(c(T)) — C is clearly
linear (since @ is) and |y, (/)| < (IS (D)= lHyl = lzlylllflloc; 50 lzy € C(a(T))" (a
bounded linear functional on C(c(7'))). By Riesz’ representation theorem (theorem 2.8),
there exists a complex measure i, , such that

(. f(T)y) = o) = [

a(

fdpzy (%)
T)

Note: the map H x H — M(o(T)),(z,y) = i,y is sesquilinear (i.e. bilinear except
Mgy = Mbzy). Also ||tz yll = eyl < |lz]/lly]] (see above). So (x,y) + pig,y is bounded.
(here, ||pz .y is the total variation of the complex measure ji,,. Note: the right side of
(**) makes sense not only for f € C(o(T)), but for all f € My (c(T)), which helps to
define f(T) for f € My(o(T)).

Theorem 2.10 (Measurable functional calculus). Let T' € B(H), T = T*. Then there
exists a unique map ®: My(o(T)) — B(H) such that

(a) D) =T, ®(1) =idy
(b) ® is an involutive algebra homomorphism.

(¢) ® is continuous (bounded).

(d) If {fn}neAN - Mb(U(T))A, sup,, || fnlloo such that fn(t) — f(t), n = oo Vt € o(T),
then <x,¢(fn)y> — <a:,<1>(f)y> Ve,y € H.

(d’) Under the same assumptions as in (d), ®(f,)z — ®(f)z Yz € H.c

Proof. Uniqueness: By the theorem on the continuous functional calculus, the condi-
tions (a), (b), (c) determine uniquely ®(f) for f € C(c¢(T)). Then uniqueness for
f € My(a(T)) follows from lemma 2.5 (see condition (d)).

Existence: Let f € My(o(T)), z,y € H. Let p,, be the measure constructed above
and look at the map

HxHB(x,y)}—>/

a(

fdug, €C
)

This is sesquilinear (since (z,y) — 2,y is sesquilinear) and bounded since

J dpg,
/J(T) Y

Hence, by Lax-Milgram, there exists a unique operator &D( f) € B(H), such that

/U'(T) fdﬂx,y = <$v§)(f)y>a

< [ flloslltayll < L ool Iyl
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and ||®(f)|| < ||f]lso- It remains to verify, that the map ®: My,(o(T')) — B(H) satisfies
conditions (a) through (d’):

(a) Note that for f € C(o(T)), ® B(f) = @(f) = f(T) where @ is the continuous func-
tional calculus. Hence, ®(t) = ®(¢t) =T and ®(1) = ®(1) = idy.

(¢) This holds, because ||B(f)|| < ||f]lco-

(d) This follows from Lebesgue’s theorem on dominated convergence, since constant
functions are integrable on o(7"): There exists some C' > 0 such that |f,(¢)| < C for
alln € Nand all t € o(T), and f,,(t) — f(t) for all t € o(T). Hence,

[

<$v$(fn)y> = /( fn de,y R /(t) fdﬂamy = <$,<f>(f)y>, Vx,y € H.

(b) The map ® is linear by construction. To prove that ®(fg) = ®(f)®(g) for all f,g €
My, (o(T')), note that for continuous f and g this follows from the multiplicativity
of the continuous functional calculus. Now, let g € C'(o(T)) and let

U ={f € My(o(T)): B(fg) = D(f)P(9)} < My (a(T)).

Then C(o(T)) C U. We will use lemma 2.9 to conclude that U = My(o(T")): Let
{fn}nen C U such that there exists some C' > 0 with || f||cc < C < 00, and f(t) :=

lim,, o0 fn(t) exists for all t € o(T"). By (d) <$, &J(fg)y> = limy, 00 <x, i)(fng)y> =
limy, o0 (2, 8(f)(9)y) = (7, 8(f)B(g)y). Hence, &(fg) = &(f)®(g), so f € U.

Hence, U = My,(o(T)) by lemma 2.9, and ®(fg) = ®(f)®(g) for all f € My(o(T))
and g € C(o(T)). Now, for f € My(a(T)), let

V = {g € My(a(T)): 2(f)®(g) = (fg)} € My(a(T)).

Then the previous argument shows C(o(T)) C V, and repeating it we get V =
My(a(T)). Hence, B(fg) = B(f)®(g) for all f,g € My(o(T)). Similarly, it follows
that ®(f) = ®(f)* for all f € My(o(T)).

(&) Note that (using () on {Fxfune): [S()al? = fu(Dall® = (a, fulT)" fu(T)z) =
(2, Fa(T) fu(D)z) = (&, (Fal)(D)z) = (2,(FH(T)x) = [|B(f)z]? Now, in a

Hilbert space weak convergence and convergence of the norms implies strong conver-
gence, Hence, ®(f,)z =22 &(f)x. O

Theorem 2.11 (Lax-Milgram). Let H be a C-Hilbert space, B: Hx H — C sesquilinear.

(a) The following are equivalent:
(i) B is continuous.
(i) B is partially continuous, i.e. x — B(x,y) and y — B(x,y) are continuous.
(i) 3IM = 0: |B(z,y)| < Mz|[|y]
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(b) If B is continuous, there exists a unique S € B(H) such that

B(z,y) = (z,Sy) Vax,ye H

Lemma 2.12. Let T € B(H), T =T".

(a) For A C o(T) a Borel set, E4 := xa(T') (xa € My(c(T))) is an orthogonal projec-

tion.
(b) x0(T) =0, Xo()(T') = idn-
(c) Let A1, As,--- C o(T) be disjoint Borel sets and let A = ;> An, © € H. Then

D1 XAy (T)x =xa(T)z.
(d) For Borel sets A, B C o(T), xa(T)x5B(T) = xans(T).

Note: In general, one does not have > >2 1 x4, (T) = x4(T") (norm convergence), since,
for this to hold, we need ||x4, | = 0,n — 0.

Proof.

(a) x4 = x4 and XYz = x4, so (since ® is multiplicative and involutive), x 4(T)xa(T) =
XA(T) = xa(T), xa(T)* = xa(T), so xa(T) is an orthogonal projection.

(b) xg(T) = ®(0) =0, Xo(T) = ®(1) = idy, by measurable functional calculus.

() Let fx = Yno1 XAy, then [| filloo < 1 (since fi(t) € {0,1}). Also fi(t) = 32021 xa,, (1)
and Y 0% x4, = xa(t) =: f(t) for all t € o(T). Then, by (d’) in theorem 2.10,

Je(TD)x = f(T)x, ie. 3021 xa,(T)x = xa(T)zx.
(d) xaxB = xanB; 50 XA(T)x5(T) = ®(xa)d(xB) = ®(xaxB) = (xanB) = xana(T).
O

Lemma 2.12 says that the map E: ¥ — B(H), A+~ X ano(r)(T) (where X is the Borel
o-algebra of R) is a spectral measure in the sense of the following definition:

Definition 2.13. Let X be the Borel o-algebra on R. Amap E: ¥ — B(H),A— Ey4 is
called a spectral measure (projection valued measure) iff all E4 are orthogonal projections
(E% = E4 = E%) and

(a) E@ == 0, ER == idH

(b) For pairwise disjoint A, Ag,--- € X,

ZEAn =Ear  A=|JA, VzeH

A spectral measure FE is said to have compact support iff there exists a compact set
K C R such that Fxg = idy.
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Note: one easily (!) sees that E4Ep = EgpE4 = Eanp always hold for a spectral
measure. We shall now discuss how to integrate a measurable bounded function wrt. a
spectral measure. The idea will be to show that the measurable functional calculus is
given exactly in this way.

Step 1 Let f = x4, A € ¥ be a characteristic function. Let
/de .—E, ¢ B(H)
Step 2 Let f be a step function, f =" aixa,, a; € C, A; € 3. Then
n
/de =Y a;Es, € B(H)
i=1

(to prove: this does not depend on the way f has been written as a step function)

Step 3 Let f be a measurable bounded function. Then there exists a sequence { fy, }nen of
step functions which converges uniformly to f. (see ‘recall on Lebesgue theory’).
(fn, — f, uniformly). Idea: Let

/de:nli_{xgo/fndE € B(H)

The existence of the limit and the independence of the choice of sequence {f,,} fol-
lows from the following lemma, since if f,, — f uniformly, then {f,} is (uniformly)
Cauchy, so: {[ fndE},en € B(H) is also Cauchy (by 2.14). Hence the limit exists.
Similarly, this limit is independent of the sequence {f,}.

Lemma 2.14. For any step function f we have

|/ 7] <11l

Proof. Let xz € H with ||z|| <1land f =31 aixa,, a; € C, A; € £. Note: Can assume,
wlog. that A; N A; =0 (i # j). Then

|(frar)«

2

n

Z E 4, (1’)
=1

2 n n
= <Z a;Ea, (), Z ajBa, (ac)> =
i—1 =1

=D @aj(Ba,(2), Eay(w) = Y| (Ba,(2), Ba,(2)) <
i=1j=1 i=1
2

n n
< |2 . 2 |2 ,
< ([ loil) > 154 @] (s foul) >

= 1712 || B 4@ < 151 0
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If E has compact support, for example Fx = idy for K C R compact, and f: K — C
is bounded and measurable, then we set

/de ::/XdeE:/deE.

This definition is independent of the choice of K, since if Fx = idy and KNA = (), then
E4 =0. In summary we have

Theorem 2.15. Let E be a spectral measure (on R) and f a bounded, measurable
function. Then

/de € B(H)

is well-defined, and the map Mp(R) — B(H), f — [ fdE is linear and bounded. In
fact,

| raz] <171

If f is real, then [ fdE is self-adjoint. If K C R is compact with Ex = idg, then it is
enough that f be defined and bounded and measurable on K.

Remark. Let E be a spectral measure with compact support. Then [ f dF is well-defined
for f being a polynomial. Hence,

T::/ )\dE,\:/idK dE)
K

is a bounded, self-adjoint operator on H. Hence, given a bounded self-adjoint operator
T, the measurable functional calculus gives rise to a spectral measure, by E: ¥ —
B(H), A = Xano(r)(T) =: E4, with compact support, since o(7') C R is compact. On
the other hand, given a spectral measure with compact support, T = [, AdE) defines
a self-adjoint bounded operator. We will see that these are inverse operations.

Theorem 2.16. Let E be a spectral measure on R with compact support and let T be
the bounded self-adjoint operator given by

T = /AdE,\.
Then the map ¥: My(o(T)) — B(H), f — fU(T) fdE is the (unique) measurable func-

tional calculus associated to T, i.e. W = ® in the notation of theorem 2.10. In particular,
Eyry = idy and for measurable A C o(T),

xa(T) = /XAdE-

Hence, the given spectral measure and that defined through the operator T coincide.
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Proof. We will prove that ¥ satisfies (a) through (d) in theorem 2.10, which will show
that U = & by uniqueness. Let E be a spectral measure on R with compact support,
say Fx = idy, and let T = [ AdE). Let f: o(T) — C be bounded and measurable
and define an extension

. {0 t & o(T)

TO=w teom

Then f is measurable and bounded, so by theorem 2.15, ¥(f) := [ fdE exists, and
U: My(o(T)) — B(H) is linear and continuous. WV is also multiplicative: For A, B
measurable sets

xanm) = [ xanwdE = Banp = EaBp = ( [xa dE) ( [xs dE) = W(xA)¥(xn).

Since xAnB = XxAXB, it follows that ¥(xaxp) = ¥(xa)¥(xp). Then, by linearity,
U(fg) = ¥(f)¥(g) for all step functions f,g. Finally, by a limiting argument, also
U(fg) = ¥(f)¥(g) for f,g € Myp(o(T)). Similarly, ¥(f) = ¥(f)* since E% = Ea.
Hence, ¥ satisfies (b) and (c) in theorem 2.10.

To prove (d), consider any sequence { f, }nen € Mp(a(T")) such that ||fp||cc < C for
some C' and f(t) = lim, o fn(t) exists for all t € o(T). Note that for E a spectral
measure, and fixed z,y € H, the map v,,: ¥ = C, A — (z, E4y) is a complex measure

and that
@ () = [ Fdvey = [ FO) dle Exg),

since this is trivial for f = x4 and then follows for step functions by linearity and for
arbitrary f € My(o(T)) by approximation. Then (d) follows for ¥ from Lebesgue’s
theorem on dominated convergence:

@ W) = [ Fudvey 222 [ fdve, = @ 9(0y)

since constant functions are integrable by compact support of E.
It remains to prove (a), i.e. that ¥(1) = idyg and ¥(¢t) = T for t: o(T) — C,t — t.
The first is equivalent to proving E, 1) = idg. The second follows from the first, since

0 :/ AEy =T
o(1)

from theorem 2.15. So it remains to prove that E, ) = idg. For this we prove E ) =0
and use that R = o(T) U p(T) and o(T) N p(T) = (. E has, by assumption, compact
support K. Choose an interval (a,b] such that K C (a,b]. Then Eyp = Ex = idy.
Let p € p(T). Then there exists a neighbourhood U of u such that Ey = 0: Note that
T — ul, and hence ul — T, is invertible. It follows by 0.14 that there exists § > 0 such
that ||S — (u — T)|| < 6 implies that S is invertible, and ||S7!|| < C = ||(u — T)7 1| + 1.
We can assume, that § = b_T“ for some N € N and that § < % Let ap, = a + kd for
k = 0,1,...,N and consider the step function f = Zévzl kX (ap_y1,a5]- BY 2.15, with
Ek = E(ak—lvak] = fX(ak—lyak] dE, we have

N
HT — Z a,Fr,
k=1

= | [ 2B~ [7aB| 1A~ Fle = max, Jo— o] <0

=U,...,
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Note: (ar—1,ar] N (aj—1,a;] =0, k # j, so (a,b] = Uévzl(ak_l,ak] (disjoint union!), so
id = By = Yne B =S By (K C (a,b], Ex =id). So pid = S8 uEy,

hence
N
= HT - > arE
k=1

hence, the operator S0, (1 — ax) Ey, is invertible and ||(X0_ (n — ax)Ex) ™| < C. But
(since EyEj = E;E), = 6;E), since the (a;_1,a;] are disjoint)

So | —ay|™! < C implies B}, = 0. Now choose N so large that, for some ay,, |1 — ax,| <
1/C. Then Ej, = 0. Hence Ey = 0 for some neighbourhood U. Let now K C p(T) be
compact, and {U,: u € K} is an open cover, 3uy, ..., un € K such that K C J, Uy,
then Fz = 0. There exist V4,..., Vys disjoint such that U, U, = UM, Vi, VinV; =0
for ¢ # j and Vidj: V; C Uy,. So By, = By, = Y i By, = 0. Recall: VK C
R~ o(T), K compact: E % = 0. It follows that, for all x € H, the positive measure
Y(KNo(T) - Ry, A — (x,Exx) is regular (see definition below). Since, for all
K CR~o(T), (z,Egz) = (x,0) = 0, it follows that this measure is 0 on K ~ o(T).
Hence, (7, Eg. o(ryr) = 0 for all x € H, so Eg._ o) = 0. Hence, Ey() = id. O

ak—1 vak]

<4

N
(1 =T) = > (n—ar) By
k=1

-1
= max{\u —ag|t: By # 0}

(ﬁf:(u - ak)Ek>

k=1

Definition. A measure on the Borel o-algebra is called Borel-measure. A positive Borel-
measure p is called regular iff

(a) pu(C) < oo for all compact C.
(b) VA € ¥ (Borel-sets)

wu(A) =sup{u(C): C C A,C compact} = inf{u(O): O D A, O open}

A signed/complex measure is regular iff its variation measure |u| is regular.

Theorem. Let T be (a) a compact metric space or (b) a complete, seperable metric space
or (¢) an open subset of R™. Then every finite Borel measure (u(T) < oo) p on T is
reqular. Also, the Lebesgue measure on R™ is reqular.

Recall: A C o(T'), measurable (Borel)

xa(T) =¥(xa) = /XA dE = Ey4

so the spectral measure associated to T' (A +— Xane(1)(T)). and the spectral measure
used to define T' (= [ AdE, A+ E,) coincide.
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Theorem 2.17 (Spectral theorem for self-adjoint bounded operators). Let T € B(H),
T =T*. Then there exists a unique spectral measure E, with compact support in R, such
that
T= AdE)
o(T)
The map

g [ BN = £(T)
o(T)

defines the measurable functional calculus f(T) given by

{z, f(T)y) = fA)d(z, Exy)  w,yeH
a(T)

Proof. Let T' € B(H), T = T* and let E be its associated spectral measure (E: A —
Xano(r)(T)). Define S := fU(T) AdE). We need to prove S = T. (the rest of the
statements in 2.17 are recapitulations). Firstly, F has compact support: o(7') C C
compact, and Xq(7)(T) = Eyr) = id (lemma 2.12 b). Let, for g € My(o(T)), g(T)
denote the measurable functional calculus of 7" (from 2.10) on g and ¥(g) the measurable
functional calculus of S (from 2.16) on g. Let ¢ be the function t: o(T') — R,t — ¢, and
choose, for £ > 0, a step function f on o(7') such that ||t — f|lec < e. According to 2.10
T — (D) = 1t(T)— f(T)]| < |It— flloo < € and according to 2.15 (used on the spectral
measure associated to T, and S := [, ) AdEL), IS = Y(f)|| = [| [¢r(t = f)dE| <
It — flloo < e. Finally, with f = > a;xa, (o € C, 4; € ¥), and since, by definition,
Ea, = xa,(T) (the spectral measure E is the one associated to T A = X gne (1) (T)

FT) = () =3 aa 1) = Y aiBa, =0
=1 =1
Hence, for all & > 0, |S—T1| < [|S = W(f)|+ | W(f)~ F(T)||+ /(1) ~T|| < e+0+e = 2,

so [|S —T| =0, hence, T'= S = 31y AdE). O

Remark.

(1) This is the generalization of T' = " u; E; for compact operators (in particular, ma-
trices) — hence, T is built of the orthogonal projections E4 (weighted with \) but
in a continuous way.

(2) The symbol d(z, F)\y) means integration wrt. the Borel measure A — (z, E4y)
(z,y € H fixed). (In the proof of 2.10 it was called fiz ).

(3) T as before (T' € B(H), T =T*), S € B(H) any operator. Then A — (x,SEy) =
(S*x,Eay) (z,y € H) is also a complex measure. (check!)

Corollary 2.18. Let T € B(H) be self-adjoint with spectral measure E. Let S € B(H).
Then ST — TS = [S,T] =0 if and only if [S, Ea] =0 for all A € X.
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Proof. One has [S,T] = 0 if and only if [S,7™] = 0 for all n > 0 if and only if (z, ST"y) =
(x,T"Sy) for all z,y € H and n > 0. Note that
(x,ST"y) = (S*z, T"y) = / A" d(S*z, E\y) :/ A" d(x, SEyy)
o(T) o(T)

and

(x, T"Sy) = / A" d(x, E\Sy).
o(T)

Hence, [S,T] = 0 if and only if

/ A" d(z, SE\y) = (x, T"Sy) :/ A" d(z, E)\Sy)
o(T) o(T)

for all z,y € H and n > 0. So, thinking of the measures d(z, SE,y) and d(z, E)Sy)
as linear functionals on C(o(T)), these coincide on the polynomial functions for all
x,y € H if and only if [S,T] = 0. Since the polynomial functions are dense in C(c (7)),
the measures d(z, SE)\y) and d(z, E)Sy) for all z,y € H define the same linear functional
on C(o(T)) if and only if [S,T] = 0. Hence, by Riesz’ representation theorem, the two
measures coincide for all z,y € H if and only if [S,T] = 0. Now,

(2, SEay) = |

g

)XA d(z, SE\y) :/ )XA d(z, ExSy) = (x, EASy)

o(T

for all z,y € H if and only if [S,T] = 0. Hence, [S, E4] = 0 if and only if [S,T] =0. O

Example 2.19.

(a) Assume H = C" to be finite dimensional and 7" a self-adjoint matrix, and assume
T has m distinct eigenvalues pi1, ..., ti. Then T = 37", j1; Fy, .y where the Ey,.y
are the orthogonal projections on the eigenspace corresponding to p;. The spectral
measure of T is Eq =3, ca By

(b) Let T'e K(H) be self-adjoint. Then
o0
T =2 miBiu
i=0
in norm with the p; and Ey,;; as in (a). As above, the spectral measure is, for

Ael,
Ba= ) By,
ui€A

but only pointwise!

(c) Let H = L?[0,1] and (Tx)(t) = tz(t) for * € L?[0,1]. Then, T is self-adjoint,
o(T) =o0.(T) =10,1]. For A€ X, set

Ear = xanpyzr, z€H= L0, 1].
Then E is the spectral measure of T', and

T = NdE).
0,1]
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Theorem 2.20. Let T € B(H) be self-adjoint with spectral measure E. Then
(a) X\ € p(T) iff there exists and open neighbourhood U C R of A such that Ey = 0.

(b) X is an eigenvalue of T iff Eyny # 0. In this case, Eyyy is the orthogonal projection
on the eigenspace associated to .

(c) The isolated point \ of o(T) are eigenvalues.

Proof.
(a) By construction of E, E,7) = 0. Assume U C R is an open neighbourhood of A
such that Eyy = 0. Define
1
£) = {H ev

0 teU

Then f is measurable and bounded on o(7T), i.e. f € My(a(T)). Sois g(t) =\ —t.
Then, by the functional calculus, f(T)(A —T) = f(T)g(T) = (f9)(T) = xv(T) =
Eye(T) =idy since Ey = 0. Similarly, (A —T') f(T") = idy. Hence, A € p(T).

(b) It is enough to prove R(Eyfyy) = N(A —T). So let x € R(Eyyy), i.e. Epyr = o
Therefore,

(y,(A = T)a) = (y,(\ = T)Epyyw) = /(T)()\ — t)xpay () d{z, Ery) =0
since (A —t)xgxy(t) = 0 for all ¢ for all y € H. Hence, x € N(A —T). On the other
hand, for z € N(A = T), i.e. Te = Az, by 2.4(c) f(T)x = f(Nzx for f € C(a(T))
and therefore by 2.9(b), this also holds for any f € My (o(T")). In particular for
[ = Xgxy one has E\z =, hence v € R(A - T).

(c) Let U C R be open such that U No(T) = {A}. Then U N {A} CR~o(T) = p(T),
SO EU\{)\} =0. If E{/\} = (0, then Ey = EU\{A} + E{/\} =0,ie X € p(T). But by
assumption A € o(7'), hence Eyy, # 0 and by (b) A is an eigenvalue. O

Corollary 2.21. Let T € B(H) be self-adjoint with sepctral measure E. Then o(T) is
the smallest compact set such that Eyry = idg.

Proof. Take some compact K C R with Fx = idg and A\ € K. Then Fx. = 0 and
A € K€ which is open. So by 2.20(a) A € p(T'). Hence, o(T) C K. O

One way (among many others) of thinking of the spectral theorem for self-adjoint
matrices is: Every self-adjoint linear map 7: C* — C" is unitarily equivalent to a
diagonal matrix, i.e. there exists a unitary map U: C* — C™ and Aq,..., A\, € C such
that (UTU*$)Z = )\1.%1

Theorem 2.22. Let T € B(H) be self-adjoint with spectral measure E and assume
T has a cyclic vector, i.e. there exists o € H such that span{Tzq: i€ N} = H.
Let p be the finite positive measure d{xg, Exxg). Then there exists a unitary operator
U: H— L*(R,u) such that

(UTU o) (t) = tp(t), for all o € L*(R, ).
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Proof. Let ¢ € C(o(T)), then

[ JePant) = [ G0 diwo, Brro) = (w0, o) ¢(T)o) = (D)ol
o(T) o(T)

by the functional caleulus, i.e. V: C(o(T)) — H,p — o(T)zq is a linear isometry with
the L?(R, u1)-norm on C(o(T)). Since C(a(T)) is dense in L*(R, u) (proposition below),
V has a unieq extension to a map V: L*(R,p) — H, which is also an isometry. Note:
The image of V' is closed in H (since V' is an isometry). Now for p(t) = t", ¢ € C(o(T))
and T"zo = @(T)xg, so Tz € V(C(o(T)) C V(L2(R, 1)) C H. But since zq is cyclic,
this implies that V' is onto. So V' is a unitary operator. For ¢ € C(o(T)),

o~ ~ ~

T(V(p)) = T(e(T)zo) = (T o p(T))zo = (D(t) 0 D(p))x0 = P(t - )0 = V(L - )

So (V7ITV)p =t for all ¢ € C(o(T)) and hence, by density, also for all ¢ € L%(R, p).
Let U=V~t=V* O

Proposition. If u is a finite reqular Borel measure on a compact metric or topological
space M, then C(M) C LP(u), 1 < p < oo, is dense (in LP norm).

Theorem 2.23 (Multiplication operator version of the spectral theorem). Fvery bounded
self-adjoint operator is unitarily equivalent to a multiplication operator. More precisely,
for any self-adjoint T € B(H), there exists a measure space (2,3, u) (if H is separable,
this space is o-finite), a bounded measurable function f: Q — R and a unitary operator
U: H— L*(Q,%, 1) such that (UTU Yo = fo p-a.e. for all o € L*(,3, ).

Proof (only for H separable). By lemma 2.24 and theorem 2.22 there exist unitary op-
erators U;: H; — L?(R, i1;) and bounded measurable functions f;: o(T;) — R such that
(UiTZ-Ul-_l)(Lpi) = fi - i pi-a.e. for all p; € L2(R, ;). Let Q be the disjoint union of the
sets 0(T;) (i < N). Let ¥ = {A C Q: Vi: ANo(T;) is Borel} and let p: ¥ — [0, 00] be
given by p(A) = >,y pi(ANo(T;)) (recall that p; is the measure d(x; Exx;), x; € H; the
cyclic vector of T;, and E) the spectral measure). Then (!) ¥ is a o-algebra, and p is a
o-finite measure. Let f(t) = f;(t) if t € o(T;) (veally, f(t,1) = fi(t), (¢,1) € Q). We write
f={fi}tien and ¢ = {p;}icn, s0 @ € L2(Q, 2, ). Let U: H — L*(Q, %, 1) be defined
by U ({zi}i<n) = {Uiz;}, ., then (check!) U is unitary and (UTU ') = f - . O

Note: the measure p is not unique.

Lemma 2.24. Let H be a separable Hilbert space and T' € B(H) be self-adjoint. Then
there exists a decomposition H = @y H; such that for all i < N, T(H;) C H; and the
restricted operator T; = T'|y,: Hy — H; has a cyclic vector x; € H;.

Proof. Let H be the set of finite or countable families {H;};cr of pairwise orthogonal
closed subspaces of H, such that T'(H;) C H; and H; = span{T"z;: n > 0} for some
x; € H;. Note {{0}} € H, so H # 0. H is partially ordered by inclusion. Let K be
chain in #, i.e. a totally ordered subset of H. Write k € K as k = {H;: i < Ni}. Let
ho = Upex kB = {Hir: @ < N,k € K}. Then hg € H since H is separable. Hence, by
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Zorn’s lemma, H has a maximal element h € H. Let U = spanJyc, k C H. f U # H,
then there would exists x € U+ . {0} (U is closed). Let V = span{T"x: n € N}, then
T(V) CV and z is a cyclic vector for T'|yy. Also (') V' L U. Hence h ChU{V} € H.
Since h is maximal, h = h U {V}. Hence, V € h. Now z € V, so x € U. This is a
contradiction to x € U+ ~ {0}. O

Remark. The spectral theorem can be generalised to normal bounded operators T' by
using that T'= S + 152 for self-adjoint operators S; and Sy with [S, Sa] = 0:
T+ T - T-T

1= S2=—5;

Theorem 2.25 (Spectral theorem for normal bounded operators). For any bounded,
normal operator T there exists a unique spectral measure G (with compact support) on
the Borel o-algebra of C such that

T = / zdG,
a(T)

The formula
@)= [ 1e)ac.
o(T)

defines the uniquely determined measurable functional calculus. FEvery normal bounded
operator is unitarily equivalent to a multiplication operator defined by multiplication by
a bounded measurable (complex-valued) function.

3 Unbounded operators, symmetric operators and quadratic
forms

In functional analysis 1 we briefly saw that not all operators are bounded. The typical
examples are (partial) differential operators. We do have that T = % from X =
(CH10, 1], [|lln) to ¥ = (C°[0, 1] ||| o) is bounded, where [|fllcs = || floo+ | #lloo and
I£llco = [|flloes since [I7fllco = 1Floc < I flloc + 1 loc = [ fllcr. However, for many
practical purposes, the spaces X and Y are not the right thing to study ddTw for example,
what about self-adjointness? Furthermore, we would like % to be defined on a Hilbert
space. Note that (C1[0,1], ||—||2) is not a Hilbert space. For example (L?[0,1],[—]|2) is,
but then we have lost the ability to differentiate in a natural way. One can repair this
with the theory of distributions, weak derivatives and Sobolev spaces. However even
if one can solve these problems, there is no way to end up with a bounded operator
T: L?[0,1] — L?[0,1] extending the derivative: Let e,(x) = €™ x € [0,1]. Then
en € C%[0,1] C C1[0,1] C L?[0,1] and ||e,|]2 = 1, but

2 1
dx:/ n?
0

Hence, there cannot exist any constant C' > 0 such that ||T'e,||2 < C||ey||2 for all n € N.
This is motivation for the need to study unbounded operators. We will need to study

2 1 d . 2 9
[Tenll5 = / ‘den(l‘) e™| dx = n”.
o |dz
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operators defined on subspaces of Hilbert spaces, for example C'[0,1] C L?[0,1]. The
theory of unbounded operators is less “complete” than that of bounded operators, but
it can still be applied to a vast number of interesting problems. From now on, let H be
a complex Hilbert space.

Definition 3.1. An operator (operator in a Hilbert space) T': D(T) — H is a linear map
whose domain D(T) C H is a linear subspace of H. In general, D(T') is not necessarily
a closed subspace. T is said to be densely defined (in H) if D(T') is dense in H.

An operator S: D(S) — H is called an extension of the operator T': D(T') — H if
D(T) € D(S) and S|p(ry = T. We will write T' C S. Two operators S and T are equal
if and only if " C S and S CT.

An operator T': D(T) — H is called symmetric if (y, Tz) = (T'y, z) all for x,y € D(T).

Remark. Let H = L?[0,1] and T = i1 : D(T) — H with D(T) = {z € C*[0,1]: z(0) =
z(1) = 0}, and S = il: D(S) —» H with D(S) = {z € C1[0,1]: 2(0) = z(1)}. Then
both S and T are symmetric operators in H and T' C S.

Proposition 3.2 (Hellinger-Toeplitz). Let H be a Hilbert space and T: H — H be a
linear operator, i.e. D(T) = H, such that (y, Txz) = (Ty,z) for all z,y € H. Then T is
bounded. Hence, T is self-adjoint as a bounded operator.

We will now define the adjoint of a densely defined operator. Let T: D(T) — H be a
densely defined operator and set

D(T*)={y€ H: z — (y,Tx) is bounded on D(T")}.

Then D(T™*) C H is a linear subspace of H. For y € D(T%), x — (y,Tx) is bounded on
D(T) and D(T) = H, hence this continuous linear functional has a unique extension to a
bounded linear functional on H. By Riesz’ representation theorem, there exists a unique
z € H such that this extension is given by (z, —). We define T*y = z. It is easy to see,
that the map T%: D(T*) — H is linear. Furthermore, by definition (T%y,z) = (y, Tz)
for all z € D(T') and y € D(T™).

Definition 3.3. The operator T* described above is called the adjoint operator of T'.
If T =T* then T is called self-adjoint.

Remark.
1. If T € B(H) then this definition coincides with the old one.

2. T =T* in particular demands that D(T") = D(T™).

3. If T'=T* then T is symmetric. In general, the opposite is false and importantly
the spectral theorem holds for self-adjoint operators, not in general for symmetric
operators.

Lemma 3.4. If T: D(T) — H is densely defined and symmetric, then T C T*. In
particular, D(T*) C H is dense, so T** is well-defined.
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Remark. If T is not symmetric, then it may happen, that D(T*) is not dense. In fact,
it is possible that D(T™) = 0.

For the study of self-adjointness, the concept of closed operators is important. This
topic has already been introduced in functional analysis 1.

Definition 3.5. Let X,Y be normed spaces, D C X a subspace, T: D — Y a linear
map. T is a closed operator iff for all {z,} C D, z,, — = € X such that {Tz,} converges,
r€Dand Tx, — Tx.

Defining the graph I'(T") = gr(T) = {(z,Tx): v € D(T)} C X xY, T is closed iff
gr(T) € X xY is a closed subspace in X @2 Y (X X Y with the norm ||(z,y)| =
(el x + 1y D).

Theorem 3.6 (Closed graph theorem). Let X,Y be Banach spaces, T: X — Y closed
and linear. Then T is bounded.

Proposition 3.7. Let T': D(T) — H be a densely defined operator. Then

(a) T* is closed.

(b) If T* is densely defined (for example if T is symmetric), then T C T**

(c) Assume T is densely defined, S: D(S) — H is closed and T C S. Then T™* C S.
Proof.

(a) Let {yn} € D(T™), yo -y € H, T*y, — z € H. We need to prove y € D(T*) and
T*y = z. Now, for all x € D(T),

(y, Ta) = lim (yn, Tx) = lim (T"yn, ) = (2, z)

Hence, x + (y,Tx) is continuous, so y € D(T*) and T*y = z (since T*y is the
unique vector such that (y, Tx) = (Ty,x)).

(b) Assume T* is densely defined, i.e. D(T*) = H. Let x € D(T), y € D(T*), then
(y, Tx) = (T*y,z). Hence, y — (x,T*y) = (y,Tx) is continuous, so x € D(T**)
(hence D(T) € D(T**)) and (x,T%y) = (I"™*x,y). Since x € D(T), this implies
(Tx,y) = (T™*z,y) for all y € D(T*). Since D(T*) = H, this implies Tz = T**z.
So T C T™.

(¢) The claim follows from gr(7) = gr(7**). First, we prove gr(T) C gr(T**). By (b),
T C T%, ie. gr(T) C gr(T™), so gr(T) C gr(7T**) and by (a), T"* is closed, so
gr(T**) = gr(T**). To show gr(T**) C gr(T), it is enough to show that gr(T)+ C

gr(T**)* (and use (V)L = V), where | means the orthogonal complement wrt.
the scalar product on H x H:

((u,0), (2,9)) = (u, z) + (v,9)

Let (u,v) € gr(T)*, ie. 0= ((u,v), (x,Tz)) = (u,z) + (v, Tx). Hence, (v, Tx)
—(u,z) for all z € D(T). So x + (v, Tx) is bounded on D(T'). Hence v € D(T*
and T%v = —u. Let (2, 7""2) € gr(T™*) for z € D(T*"), then ((u,v), (z,7%*z))

(u, 2) + (v, T*2) = (u, 2) + (T*v, 2) = (u, 2) + (—u, z) = 0, so (u,v) € gr(T**)*.

~—

Ol
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Remark.
1) (a) shows that only closed operators can be self-adjoint ("= T* = T is closed).

2) (c) means T** is the smallest closed extension of T — called the closure T of T

(T =T%*).
Corollary 3.8. Let T: D(T) — H densely defined.

(a) T is symmetric <= T C T*. In this case, T C T** C T* = T***. Hence, T** is
also symmetric.

(b) T is closed and symmetric <= T =T** C T*.
(c) T is self-adjoint <= T =T =T*.

Note: So far, we have for T': D(T) — H densely defined and symmetric: T C T** C
T* =T** and for T self-adjoint: T = T** = T* = T***. ‘Between’ these:

Definition 3.9. Let T: D(T) — H be densely defined and symmetric. T is called
essentially self-adjoint iff T is self-adjoint (i.e. T is essentially self-adjoint iff T C T** =
T*, since T™* = T™*).

Remark. If T is symmetric, but not self-adjoint, then T" C T, T' £ T*. If T C S, then
T* O S*. Hence, the domain of 7' is too small — enlarging it (i.e. finding a symmetric
extension) will diminish the domain of the adjoint — the ‘goal’ is to find an extension
S of T such that the domains ‘meet’, i.e. S = S*. T may or may not have self-adjoint
extensions. An essentially self-adjoint operator has exactly one self-adjoint extension.

We continue to search (!) for criterions for self-adjointness first:
Lemma 3.10. T: D(T) — H is densely defined. Then
(a) N(T* Fi) = R(T £ i)*. Hence N(T* F1i) = {0} & R(T +14) C H is dense.
(b) Assume T is symmetric and closed. Then R(T +1i) C H is closed.

Proof. Note that (T'+4)* = T Fi (use definitions, the sum 7'+ is defined on D(T)!) D:
Let y € R(T'+4)*. Then (y, (T'+4)z) = 0 for all z € D(T). So z + (y,Tz) is continuous
(it equals F(y,iz)). Hence, y € D(T*) and 0 = ((T* F i)y, z) for all z € D(T). So
(T* F 1)y = 0 (since D(T) C H is dense). Hence, y € N(T™ Fi). For C reed the above
argument backwards. To prove (b), let T" be symmetric and closed. Then (z,Tz) € R
for all z € D(T). So

(T £ d)z||* = |T|* + ||2]|* £ 2Re(iz, Ta) = || Tx||* + 2] F 2Re(i(z, Tz)) > ||z
Hence, (T +4)~': R(T +1i) — D(T) exists and is bounded. Let {z,} C D(T) such that

(T+i)xy, =y € R(T +14). Then {(T + i)z, } C R(T +14) is Cauchy, hence {z,} C D(T)
is Cauchy (it is the image of {(T +4)z,} via the bounded map (T +4)~!). Hence, there
exists some z € H such that z,, — z as n — oo. Now Tz, = (T + i)z, — ixy, = y — ix
as n — 00, so by closedness of T it follows that z € D(T) and Tx = y — iz. So

y=(T+ i)z € R(T + ). Hence, R(T' +1i) = R(T + i), i.e. R(T + 1) is closed. O
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Theorem 3.11. Let T: D(T) — H be densely defined and symmetric. Then the follow-
ing are equivalent:

(i) T is self-adjoint.
(i) T is closed and N(T* +1i) = 0.
(iii) R(T +i) = H.

Proof. First assume (i). Then by 3.7(a), T is closed. Let x € N(T*+1), i.e. (T*+i)x = 0.
Recall that for symmetric S one has ||(S + i)z| > ||z| for all z € D(S). Since T* is
symmetric, x = 0. Hence, N(T™* + i) = 0. Similarly, N(7™* — i) = 0. Hence, we get (ii).

Now, assuming (ii), by 3.10(b) (7" is closed), R(T'+4) C H is closed. Because we have
N(T* +4) =0, 3.10(a) gives R(T'+£14) C H is dense. So R(T'+1¢) = H.

Lastly, assume (iii). We have T" C T™*. Hence, it remains to prove that 7% C T. For
this, it is enough to prove that D(T*) C D(T) (then, if x € D(T*), then x € D(T) and
Tx = T*x since T C T*). Let y € D(T*). Then (T™* —i)y € H = R(T — 1), so there
exists some z € D(T) such that (T* — i)y = (T — i)z. But T C T*, and « € D(T), so
Tz =T*z. Hence, (T* —i)(y —x) = 0. But R(T £ i) = H, hence dense, so, by 3.10(a),
N(T* £4) = 0. Hence, y =2 € D(T'). So D(T*) C D(T), so we get T' = T™*. O

Corollary 3.12. Let T: D(T) — H be densely defined and symmetric. The following
are equivalent:

(i) T is essentially self-adjoint.
(ii) N(T* +1i) = 0.
(ii) R(T +1i) C H is dense.

Proof. (i) implies T** = (T%*)*, so by corollary 3.8 T** = T%** = T"*. By 3.11 (ii) used
on T** it follows that N(T™ +¢) = N(T** +4) = 0.

(ii) implies, by corollary 3.8, that 7% = T, so N(T"** £ i) = 0 and T™* is closed. So,
by 3.11, used on T** it follows that T** = (T**)*, i.e. T is essentially self-adjoint.

The equivalence of (ii) and (iii) is 3.10(a). O

Definition 3.13. We call the Hilbert space dimensions dim N(7T* + i) the deficiency
indices.

Theorem 3.14. Let T: D(T) — H be symmetric and densely defined. Then T has a
self-adjoint extension if and only if dim N(T™* + ¢) = dim N(T* — ).

Proof. Assume that S is a self-adjoint extension of T. Let V = (S +4)(S —i)~! on
D(V) = H (this is possible, because R(S —i) = H by 3.11) and U = (T'+i)(T —4)~! on
D(U) =R(T —1i). Since T C S, we have U C V, and V is unitary. By |[(S£7)z| > ||z]|,
V is injective, and (again by 3.11), R(S +i) = H, so V is surjective. By construction U
maps the subspace R(T — i) onto R(T + ). Since V is unitary, and U C V, V maps the
orthogonal complement of R(7T" — i) onto the orthogonal complement of R(7T + ). But
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by 3.10(a) N(T* F4) = R(T i)+, so V maps N(T* +1) unitarily onto N(T* — 7). Hence,
the Hilbert space dimensions of N(T™ + ) and N(T™ — ¢) must agree.

For the other direction, assume dim N (7™ + i) = dim N (7™ — i) (Hilbert space dimen-
sions). From the proof of 3.10(b) we saw that ||(T +i)x||? = | Tz|]*>+ ||z|* = |(T —i)x|>.
So the map U: R(T' —i) — R(T' +1),(T — i)z — (T + i)z is well-defined, linear, isomet-
ric and surjective. Note that, by 3.10(a), R(T £+ i)+ = N(T* F14). So the orthogonal
complements of R(T"—i) and R(T + i) have the same (Hilbert space) dimension. Hence,
we can extend U to a unitary map V: H — H (take an ONB for R(T —1i) and R(T + 1),
and map one to the other). Claim: V —1 is injective. To show this, assume (V —1)y =0,
i.e. Vy=1y. Then also V*y=V*Vy=yor (V*—1)y =0. Let now x € D(T), then

21y, ) = (y, (T + i)x — (T = i)x) = (y, (V = (T —i)z) = (V" = D)y, (T —i)x) = 0
Hence, (y,z) = 0 for all 2 € D(T), so (sice D(T) = H), y =0, so V — 1 is injective. We
can then define the operator S: R(V —1) - H,Vz — 2z — i(Vz + 2) (in other words,
S = i(V 4+ 1)(V —1)71). The goal is to show this S is a self-adjoint extension of T.
First we show T' C S. For € D(T) we have (see above) 5 (V — 1)(T — i)z = z, i.e.
z € R(V—1) = D(5), and Sz = i(V—-1)(V-1)"Y(5(V-1)(T—i)z) = 3 (V+1)(T—i)z =
V(T — i)z — (T — i) = (T + i)z — (T — i)z = Tx. Secondly, S is symmetric: Let
x € D(S), ie. * = Vy—y for some y € H, then (z,Sz) = (Vy —y,i(V + 1)y) =
i(Vy, Vy) + Vy.y) — (. V) = (g, ) = i(Vy,y) — (v, Vy)) = —2Im(Vy, y). Hence,
(x,Sx) € R for all z € D(S), so S is symmetric. To prove that S is self-adjoint we use
theorem 3.11. We need to prove R(S 4 i) = H. Note that S —i = 2i(V — 1)~ and
S+i=2i(V—-1)"! on D(S) and so, for all z € H,

z z

5 = (SHNV =1V = R(S £1) 0

Definition 3.15. Let T: D(T) — H be densely defined.

z=(S—-9)(V-1)

(a) p(T) ={\e€C: T — \: D(T) — H is a bijection and (T'— M)~ € B(H)} is called
the resolvent set of T'.

(b) R: p(T) — B(H),A+ Ry = (T — \I)~! is the resolvent map.
(¢) o(T) =C~ p(T) is the spectrum of T.

(d) If z € H~ {0}, A € C are such that € D(T') and Tx = Az, then A is an eigenvalue
and x an eigenvector of T.

Remark.
1. (T-X)"': H— D(T) C H; (T—-\)~': H — H need not be bijective. (T'—\I)~*
is automatically bounded by the open mapping theorem if 7" is closed.

2. If T is not closed, then ¢(7T") = C. This is the reason, why we only study the
spectral theory of closed operators.

3. Clearly, A € o(T) if A is an eigenvalue.
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Proposition 3.16. Let T: D(T) — H be densely defined. Then
(a) p(T) C C is open, hence o(T) C C is closed.
(b) The resolvent map is analytic and

R, — Ry = (11— A)R,R;.

Proof. The proof proceeds just as for bounded operators (modulo domains). O

Remark.

1. o(T) need not be compact.

2. o(T) =0 is possible.

4 Spectral theory for unbounded self-adjoint operators

For the spectrum of a self-adjoint (unbounded) operator we first prove:
Proposition 4.1. Let T: D(T) — H be self-adjoint. Then o(T) C R.

Proof. Let z = A+ipu € C\R (i.e. p#0). Let S=T/pu—A/pon D(S) := D(T). Then
S = §*, in particular (since S is symmetric)

(T = 2)a|® = ||u(S — D)zl|* = k(IS — i)z ]|* = p(|Sz|® + [|z]*) > p? ]

Hence, (T —2)"': R(T —z) = R(S—1i) — D(T) exists and is bounded (put y = (T — 2)x,
then ||(T—2)"ty|| = [|z| < ﬁH(T—z)xH = M%HyHQ) Since S = S*, we have R(S+i) = H
(theorem 3.11), i.e. (T —2)~': H — H is a bounded operator (T — z)~! € B(H), hence
z € p(T). O

Theorem 4.2 (Spectral theorem, multipliation operator version). Let T': D(T) — H
be self-adjoint. Then there exists a measure space (2,3, u) (if H is separable, it is o-
finite), a measurable function f: Q — R (not necessarily bounded) and a unitary operator
U: H— L*(Q, i) such that

(a) v € D(T) <= f-Ux € L*(Q, u).
(b) UTU*6 = fé =: Mso for ¢ € D(My) = {6 € L*(Qp): fé € L3, )}.

Proof. We know from the previous theorem that o(7T) C R, so +i € p(T'). Hence,
R=(T+i)"! = R_; € B(H) is well-defined. Our aim is to prove R is normal and then
use the multiplication operator version of the spectral theorem for bounded, normal (!!)
operators (discussed briefly in theorem 2.25 and problem 37). Let 21,29 € H. Since T
is self-adjoint, theorem 3.11 gives that T'+¢ and T — i are surjective. Hence, there exist
x,y € D(T) such that z; = (T'+ i)z, 20 = (T — i)y. Then

(22, R_iz1) = (T —i)y,x) = (T" — i)y, z) = (y, (T + i)a) = (T —0) "' 22, 21)
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so R*; = (T—i)~! = R;. Hence, by 3.16(b), R_;R*; = R_;R; = - (R_;—R;) = 2 (Ri—
R_;) = RiR_; = R*,R_;. Therefore, by 2.25, we have URU* = M, (multiplication
operator) for a bounded, measurable function g: 2 — C and a unitary operator U: H —
L2(£2, 11). We need to construct a multiplication operator representation of T out of this.
Note that (1 4+i) ' =y < 7 =~"t—iforall 7,7 € C, 7 # —i, v # 0. We shall
use this on 7" and R: Let f(w) = g(w)™! — i for almost every w € . Note: R_; is
injective (but maybe not surjective, R_;: H — D(T)), hence M, is injective. Hence,
{w € Q: g(w) = 0} is of measure 0 (otherwise, one can construct a function ¢ # 0 such
that Myp = 0).

Now let € D(T). Since R_;: H — H has range equal to D(T'), we have z = R_;y
for some y € H, hence Ux = UR_;y = g-Uy. Also, f-Ux = fg-Uy. Now (fg)(w) =
1 —ig(w) for almost every w € Q, and g € L*>°(, 1), so fg is essentially bounded. Also,
Uy € L*(Q,p), hence fg-Uy € L*(Q, pn), i.e. f-Ux € L?>(Q, ). On the other hand,
assume (for x € H) that f-Uz € L*(Q,u). Since Uz € L*(Q,p), i - Uz € L*(Q, p),
hence (f + i) - Ux € L*(Q,u). Since U: H — L?(Q,u) is a bijection, there exists
some y € H such that Uy = (f + i) - Uz. Hence, g-Uy = g(f + 1) - Uz = Uz. So
r=UUX=U%g -Uy) =U*M,U)y = R_jy € D(T).

By (a), D(My) = U(D(T)), and (as above), for x € D(T) there exists some y € H
such that © = R_;y, so (T +i)x =y, i.e. Te =y —ix. Hence, UTz = Uy —i-Ux =
gV Ur—i-Ur=f Uzxr= MUz, ie. UTU*p = f- . Since T' is symmetric, also My
is symmetric, so f is real. O

Theorem 4.3 (Spectral decomposition of self-adjoint operators). Let T': D(T) — H be
self-adjoint. Then there exists a unique spectral measure A — FE4 such that

(y, Tz) = /R Ad(y, Exx)

forallx € D(T) andy € H. If h: R — C is measurable and

Dy ={zcH: /R|h()\)|2d(1:,E,\x> < oo}

then
(w.h(T)z) = [ W\ d(y, Exa)

forxz € Dy, andy € H defines a normal operator h(T'): Dy, — H, which is self-adjoint iff
h is real-valued. Note that d(z, Exx) is given as A — (x, Eaz) = |[|[Eaz|]? < ||z]|? < oo,
so if h is also bounded, then Dy = H.

Proof. By 4.2, there exists a measure space (£, %, i), a measurable function f: Q@ — R
and a unitary operator U: H — L*(Q, ) such that UTU*p = f - ¢ = Mo p-almost
everywhere for ¢ € D(My) = {p € L*(Q,u): f-¢ € L*(Q,u)}. Let h € Mp(R).
Then define the operator h(My) := Myoy, ie. (h(Myf)p)(w) = h(f(w))p(w) p-almost
everywhere. Note that ho f: Q — C is bounded, hence h(M;) € B(L*(2, u)). Also,
h(My) is normal.
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The map My(R) — B(L*(Q,u)),h + h(M;) is linear, bounded and multiplica-
tive: Let h,g € Mp(R) and o € C. Then ((ah + g)(My)p)(w) = ah(f(w))e(w) +
90/ ())9(w) = (ah(My)p + g(My)p)(w) and similarly we have (h(M;)g(My))(p)(w) =
h(f(@))g(f(w)p(w) = (hg)(f(w))p(w) = (hg)(Mf)(#)(w). Additionally, one has, for
any ¢ € L*(Q, p),

1 (M)l Z2 0, Z/th(f(w))so(w)IQdu(w) S/gzllhlliolso(w)IQdu(W) < Rl g -

hence [|[h(My)||pr2(p)) < [P ]loo-
Hence, in particular, for any Borel set A C R the characteristic function x4 is mea-
surable and bounded. So we define Fy = xa(My) = M, ,of = My, - Then A= Fy

defines a spectral measure (however, in general, F' does not have compact support):
Clearly F} = Fy = F,?l and we have Fy = My, oy = 0 and Fr = M,,oy = id. Let
A1, A, ... be disjoint Borel sets in R, and let ¢ € L?(£2, u). Then

[e.9]

o0
Z FA 90 Z XAnOfSD Z w)
n=1

Since A, N A, = 0 for n # m, there exists at most one ng € N such that f(w) € A,.
In any case

> X (F@) = x4, (F@)
n=1 -
for all w. Hence -
Z FA"(P - FUZofl AP
n=1 B
for all ¢ € L?(Q, u). Tt follows that

h(M;) = /R h(\) dF,

for all h € Mp(R) and that this uniquely determines F', i.e. there is only one spectral
measure such that this equation holds. Now, let E4 = U*F,U. Then A — E4 defines
a spectral measure, since U is unitary. We can now, for h € M(R) define

T) :/Rh(/\) dE.

The map Myp(R) — B(H),h — h(T) is linear and bounded, in fact one has the bound
I1A(T)lgzy < IIllo- Hence, this defines h(T') for h € My(R). Note that, for all
h € My(R), h(T) = U*h(My)U, since this is true for h = x a:
- / XA dE = Eq = U*FAU = U*x o(M)U = U*h(M;)U,
R

and the general case follows by linearity and continuity. The map h +— h(T') has the
properties of a measurable functional calculus.
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Let now h: R — C be measurable (but not necessarily bounded). For =z € H,
d(z, Exz) is a positive (finite) measure: A — (x, Eax) = (v, E4x) = (E%x, Eaz) =
(Eaz, Epx) = |[Egx||?. Let

Dy = {:p cH: / B2 d(z, Exz) < oo}.
R
If A is bounded, then Dy, = H. We claim
(1) D € H is dense.

(2) The integral [h(\)d(y, Exz) exists for all x € Dy, y € H (here, d(y, Exx) is a
complex measure).

(3) Therefore (!) there exists h(T)xz € H such that

() = [ dy.Bra)  vyeH

This defines the map Dy, 3 = — h(T)x € H.

To prove this, we transport things to the concrete setting on L?(€2, 1) via the unitary
operator U: H — L*(Q, ). Let 2,y € H and write ¢ = Uz, ¢ = Uy. Then

(y, Eax) = (U™, EAU* ) = (Y, UEAU" @) = (¢, Fap) = (1, xa(My)p) =
= (b, My, %) =/Qibef_l(A)sodu:/waf—lm)sodu:/f_l(A)Wdﬂ

Let v(B) := [gYpdu (B € ¥). Then

(v Baz) = |

Podu=v(f'(A) A Borel
F1(A)

That is, the measure d(y, Exz) is the pushforward f.v of v via f. Hence, by the
transformation theorem:

[ o). Bxe) = [ (go fyav= [ (g0 e (4
for g: R — C integrable. Using this we get that x € Dy, iff ¢ = Ux satisfies
o £ybedn= [ ho Rl du < oo

By exercise 47(i) the set (in L?(€2, u)) of such ¢’s is dense in L2(Q, i), hence (since U is
unitary) Dy C H is also dense. Note: For h: R — C, x € Dy, y € H, we have

LV, Bae)
R

< /R ()| d |{y, Bxz)]

where d|(y, Exz)| is the variation (measure) of the complex measure d(y, Exz). (i.e.,
the ‘smallest’ positive finite measure |p| for a measure p such that |p(A)| < |p|(A) for all
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measurable A. Since |(y, E4x)| is a positive measure, it is the variation of d(y, Exx)).
Using the analogue of (%) on d |(y, Exz)| we get

/R|h()\)|d|<y,E>\x>| :/Q]hofuﬂﬂd# < (/Q|hof|2|gp\2)l/2 (/Q W}’Qdu)lm _
= (/Q |hof|2|§0|2dﬂ>1/2||@b||p _ </Q|hof|280|2dﬂ>l/2“y||H

Hence, since z € Dy, < (ho f)p € L*(Q, 1), we have that, for z € Dy, and y € H,

1/2
[0 B < Clul €= ([ o sPloPdu) < oo

so that y — [, h(\)d(y, Exx) is a (anti-)linear, bounded functional on H. Hence, by
Riesz-Fischer, this functional is given by the scalar product with a (unique) element
z € H. Denote this element by h(T")z := z. Then, for all z € Dy, and y € H,

(y, h(T)z) = /R h(A)d(y, Ext)  Va € DyVyc H 0)

This defines a map h(T): Dy — H,z — h(T)x (which is well-defined by the uniqueness
of the z above). This is clearly (!) linear and we write

I(T) = /]R h(\) dEy

but this only holds in the sense of ((J) above. Let h: R — R be the function h(t) = t.
Let, as before, x € Dy, y € H, and write ¢ = Uz, 1p = Uy. Note (ho f)(w) = f(w) for
all w € . Hence,

/Rh(/\)d@,Em =/Rx\d<y,Ew> Z/Q(hOf)Wduz/ﬂdeu

= /Q (My) dp = (1, Myg) g2 = (Uy, MUz) g2 = (y, U"M;Uz) gy = (y, T} g

So Dy, = D(T) and
(y, Ty gy = /R)\d<y, Ext) a2e€DT)yecH @0

ie. T = [gAdE) in the weak sense of (JO). Similarly, of course, (y,h(T)z) =
<y, U*MhofU$>, r €Dy = D(h(T)), y€e H.

That h(T) is self-adjoint if h: R — R (h is real), follows from this last formula and
exercise 47(ii). O

Corollary 4.4. Let T: D(T) — H, T* = T. Then there is a unique map ®: My(R) —
B(H) such that

(i) ® is an involutive algebra-homomorphism.
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(ii) ® is continuous. In fact, 1A (D)l By < [1A]oo-

(tit) If {hn}tnen € Mp(R), sup,en [|hnlloc < C < 00 and hy,(t) — h(t) as n — oo for
allt € R, then hy,(T)x — h(T)x as n — oo for all x € H.

Corollary 4.5. Let T: D(T) — H be self-adjoint.
(a) If x € Dy, (h: R — C is measurable), then ||h(T)x||3 = [ |h(\)|? dEy.
(b) If {hn}tnen € Mp(R) with
(i) hn(t) =t asn — oo for allt € R (a.e.)
(ii) |hn(t)| < |t| for allt e R, n € N
Then, for any v € D(T), hy(T) — Tz as n — 0.

Proof.
(a) Assume first that A: R — C is measurable and bounded. Then

[R(T)l? = (A(T )z, h(T)) = (o, h(T)*h(T)z) =
= (@ hP(T)x) = [ bV dGe, Bx)

for all x € H. In general, i.e. for some measurable but not necessarily bounded
h: R — C, we proved that for all x € Dy, and y € H,

LV, Bae)
R

1/2
¢ = ([ o sPloP o)

where U: L?(p) is such that UTU* = M; and ¢ = U, so that

< Cllyln,

with

v [ WV dly, Bxe)

defines a bounded, antilinear functional on H, which hence is equal to the scalar
product with some vector h(T)z € H and ||h(T)x| < C. So we have

INT)al? < [ ho Pl du = [ 1MV dle, Bx)
Set now (for h unbounded), for n € N

() = h(t) [h@)] <n
" 0 |h®)|>n

Note that hy,(t) — h(t) as n — oo for all t € R. Then h,, € My(R) and Dy, = Dj,_p,,
and, for x € Dy,

I(A(T) = A (T))]|* = [|(h — o) (T)z ]| < /R\(h — h)(N)? d{z, Exz) 7= 0
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by dominated convergence, since
B (A) = RN < (Iha(N)] + [R(A)])? < 3lha (V) + 3[R(A)[* < 6]A(A)]?
and h € L?(d(x, Exz)). Hence, h,(T)x — h(T)z as n — oo for all z € Dy,. Also,
/yh )2 d(z, Exx) "_’—°°>/\h )2 d(z, Exz).
Since
(@)l = [ 1hn(V d(a, Bra)

for all x € Dy, this implies

INT)2]? = [ b dle, Bx)

The proof of (b) uses the same method. O

There are other approaches to the spectral theorem. For example (a la Teschl) one
studies spectral measures (i.e. integrate with respect to them) and proves that this
implies a measurable functional calculus. But one gets back in a different way (i.e. given
a self-adjoint operator, how to construct the spectral measure). Namely, the resolvent
Ryp(2) should be

Ro(z) = /R(A _ )" 1dE,.

ie. forx,y € H

(e Rr2)a) = [ 5 dly. Baa).
So one can start by
1
Fu(2) = (&, Re(2)z) = / d(z, Exz).
RA—2Z2
For a Borel measure u, the map
= dup(A
> 1(A)

is called the Borel-transform of u. It turns out that F,.: H — H is holomorphic. Such
functions have been studied to great extend, they are called Herglatz or Nevanlinna
functions. One can reconstruct the measure p from Fj,(z) by the Stieltjes inversion

formula:
1 A+6

= lim lim — Im(F ; .
p(A) = lim limy I (F (t + de)) dt
So if F,(z) = (x, RiT(z)z) is a Herglatz function satisfying |F,(z)| < M/Im(z) for all
z € H and some M > 0, then it is Borel-transform of a unique Borel measure ji; ., with
fez(R) < M. So, one lets F(2) = (x, Rr(z)x) and proves that this is holomorphic,
maps H into H and satisfies |F,.(z)| < ||z|?/Im(z). That F,: H — H follows from the
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first resolvent formula. Then one gets the unique measure y, . by the Stieltjes inversion
formula and by polarization one can then get the complex measures i, ,. One then
defines operators (which will be the E4) by

sa(2) = [ xal)

By Lax-Milgram there exists a unique operator E4 such that s4(y,z) = (y, Eax) for all
z,y € H. Then one shows that A — FE4 is a projection valued measure and that the
corresponding self-adjoint operator
/ AdE,
R

is equal to the original operator. This procedure needs a lot of complex analysis.

There is a concept called “Resolution of the identity”. One sets E)\ = E(_,, 5. Then
E()) is an orthogonal projection, E(A1) < E(A2) for A; < Ao, limy ~\\ E(A\p)z = E(\)x
and limy, o E(A)x = 0 and limy o F(A\)z = . A map A — FE) satisfying these
properties is called a resolution of the identity. There is a bijective correspondence
between resolutions of the identity and projection-valued measures. One then defines
for f: R — C,

JRCORIERZEVS
R

as the Riemann-Stieltjes integral, i.e. the limit of Riemann sums of the form

> f&){x, Etip1)z) — (z, B(t;)z)].

5 Banach algebras

As an outlook, we will now discuss the Banach algebra approach to spectral theory.

Definition 5.1. A complex algebra is a complex vectorspace A with a multiplication
such that for all z,y,z2 € Aand a € C

(i) 2(yz) = (zy)z
(i) (x+y)z =22z +yz, z(y+2) =xy +z2
(iif) a(ry) = z(ay)

Definition 5.2. A Banach algebra is a complex algebra with a norm || — || and a distin-
guished unit element e such that it is a Banach space and satisfies

(iv) flzyll < l|=]lly]l for all z,y € A
(v) xze =ex =z for all x € A.

(vi) fleff =1
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Remark.
(1) It is not assumed that A is commutative with respect to multiplication.

(2) If A has no unit then there is a natural way of ‘adding a unit’, making, in a canonical
way, a new algebra with unit. For a complex Banach algebra A, let A1 = A x C
with the following operations

(i) (a,a) + (b,8) = (a+b,a+pB)
(i) Bla, @) = (Ba, fa)
(iii) (a,a) - (b,B) = (ab+ ab+ pa,af)
Define ||(a, @)|| := ||a|| + |e|. Then A; with this norm and the algebraic operations

defined in (i), (ii), (iii) is a Banach algebra with unit (0,1) and a + (a,0) is an
isometric embedding of A into A;.

llzyl| < ||=|||ly]| implies that multiplication is continuous, i.e. for all a € A, z — az is
continous.

Example.

(a) Let K be a nonempty compact Hausdorff space, C(K) the set of all complex-
valued continuous functions on K. C(K) forms a Banach algebra with pointwise
addition and multiplication and the usual sup norm || f|lc(x) = supgex |f(k)| =
maxkex | f(k)|. This algebra is commutative.

(b) If K is a finite set, say K = {1,...,n}, then C(K) = C", with coordinatewise
multiplication.

(c) Let X be a Banach space. Then B(X) is a Banach algebra with the operator norm
and the identity as unit element. If dimX = n < oo, then B(X) ~ M,(C). If
dim X > 1, then B(X) is not commutative.

(d) Let K C C be nonempty and compact, and A C C(K) be the subset of holomorphic
functions K° — C. Then A is a Banach algebra (in the norm of C(K)). If K =D C
C (D C C being the open unit disc), then A is called the disc algebra. (In fact, one
can take K C C").

(e) L'(R™) with convolution as multiplication:

(Fr9@ = [ fwele—ydy  fgel'®)=frge l'®)

is almost a Banach algebra. One can make it a commutative Banach algebra by
adding a unit as above, or concretely enlarge L!'(R") to the algebra of all complex
Borel measures 1 on R™ of the form du = fdA\" + adé, where f € L}(R"), a € C,
A™ is the n-dimensional Lebesgue measure and § is the Dirac measure.

(f) Let M(R™) be the algebra of all complex Borel measures, with convolution (of mea-
sures) as multiplication, and with the total variation as norm. This is a commutative
Banach algebra with unit.
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(g) Let (X,Q,u) be a o-finite measure space, and A = L>®(X,Q, i), then A is a com-
mutative (abelian) Banach algebra with unit (using pointwise defined operations).

(h) Let X be a Banach space, and let A = K(X) be the space of compact operators on
X. Then K (X) is a Banach algebra without a unit — it has no unit iff dim X = occ.
A is and ideal of B(X) — in particular, it is a subalgebra of B(X).

(i) The construction in (e) (L'(R™) with convolution) can be generalized, as soon as
one has a measure space which is a group. Let G be a og-compact locally compact
topological group and m a (right) Haar-measure on G. For f,g € L*(G, dm), let

2) = [ fay e dm(y)

then f*g € LY(G, dm). L}(G) is abelian iff G is abelian.
Definition 5.3. If A is a Banach algebra, and there is a map (—)*: A — A satisfying
(i) (27)" =
(ii
(iii
(i

then A is called a *-Banach algebra. If the norm on A satisfies the *-identity ||z*z| =
llx*[|||z]|, then A is called a C*-algebra.

(
(zy)* =y z*
(x+y)" =z"+y*

)
)
i)
v)

(Az)* = Az*

Definition 5.4.
(i) An element z € A is invertible iff there exists 27! € A such that 271z = 227! = e.
(ii) Let G(A) C A be the set of all invertible elements in A.

(iii) For x € A the spectrum o(xz) C C is the set of all A € C such that A\e — z is not
invertible (in the algebra A). The complement of o(x) is the resolvent set p(x).

(iv) The spectral radius of x is r(x) := sup{|A|: A € o(x)}.

Theorem 5.5.

(0) The inverse x~1 is unique.

(1) G(A) C A is an open subset and x — x~ ! is an homeomorphsm of G(A) onto G(A).

(2) o(x) C C is compact and nonempty for all x € A.
(3) r(x) satisfies

r(z) = lim [lz"|"/" ol

= inf ||z
n—00 n>1

Proposition 5.6. Let A be a Banach algebra, x € A, ||z|| < 1. Then
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(a) e — x is invertible.
(b) (e —x)~t =322 2™ (converging in norm,).

Theorem 5.7 (Gelfand-Mazur). Let A be a Banach algebra such that every nonzero
x € A is invertible. Then A= C.

Remark. If B C A is a subalgebra and = € B, then x may have no inverse as element in
B, but have an inverse as element in A. Hence, o(y) depends on with respect to which
algebra it is computed. But, since 7(z) = lim,_« ||2"||*/™, r(z) does not.

As for B(X), if € A, where A is some Banach algebra, then p(x) € A makes sense
for any polynomial function p: C — C. Also, if f: C — C is entire, i.e. holomorphic on
all of C, one can write f as a everywhere convergent power series

F) = agth;
n=0

then f(x) := >.0° ;' € A makes sense, i.e. is norm convergent. Here, 20 = e € A. If
f(t) = (a—1t)"' a € C, then f(x) := (ae — x)~! makes sense in A, if a € o(x). So, if
f: @ — C is holomorphic on an open set 2 C C containing o(z) and we put a closed
curve around o(z) inside €, then by Cauchy’s formula for all ¢ inside I', in particular for

all t € o(x),
1 -1
t) = — —t dz.
1) = 5= fe =071 ()
Defining integrals of Banach space valued functions (Bochner integrals), one gets

Lemma 5.8. For all x € A one has
1
3 ﬁ(a —2)"(ze — )"t dz = (e — x)" € A.
Then one defines:

Definition 5.9. Let A be a Banach algebra with unit, let a € A and let Q C C be
open with o(a) C 2 and let I' be a contour surrounding o(a) in . Let f: Q@ — C be
holomorphic. Then we define
~ 1
fa) =5 ?fr F(2)(ze —a)~tdz € A.
This turns out to be independent of I' and €, ie. if g: 1 — C, ola) €, Ty a
contour surrounding o(a) in Q1, and g|lonq, = flono,, then f(a) = g(a).
Let Hol(a) = {f: 32 C C,Q D o(a), f: Q@ — C is holomorphic} for any a € A. Hol(a)
is an algebra, but in general not a Banach algebra.

Theorem 5.10 (Riesz functional calculus; Dunford-Schwartz). Let A be a Banach alge-
bra, a € A. Then the map ®: Hol(a) — A, f — f(a) is an algebra homomorphism. If
f=1, then f(a) =e € A. If f =id, then f(a) = a. If f(2) = X% a;z* has radius of
convergence strictly larger than r(a), then f € Hol(a) and f(a) = S0 aqal.

Let { fu}nen be holomorphic on some open G C C with G O o(a), and assume that
fu(2) = f(2), n — oo, uniformly on compact subsets of G. Then || fn(a) — f(a)| — 0,
n — 0o. The map ®: Hol(a) — A, f +— f(a) is uniquely determined by these properties.
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Definition 5.11. For Q C C, let H(Q2) be the algebra of all holomorphic functions on .
Let Ag = {z € A: o(z) C Q} C A. Note that if a € Ag and f € H(Q), then f(a) € A is
well-defined.

Let H(Aq) be the set of A-valued functions § with domain Aq which arise from
g € H(Q) by the formula

1
i) = 5= § S (e — )t dz
with some contour I' surrounding o(x) in €.

Theorem 5.12. H(Aq) is a complex algebra and the map H(Q) — H(Aq), f — f is an
algebra isomorphism, which is continuous in the following sense: If {fnlnen C H(Q),
fn — [ uniformly on compact subsets of Q, then f(z) = lim, o0 fn(z) in norm for all
x € Aq. Ifu(t) =1t and v(t) =1 in Q, then a(x) =z and v(z) = e for all x € Aq.

Theorem 5.13. Let x € Ag, f € H(Q). Then f(x) € A is invertible iff f(t) # 0 for all

teo(2), and o(f(x)) = f(o(x).

Recall that for a self-adjoint compact operator T: H — H on a complex Hilbert space
H, there exists an orthonormal basis {e;} and {\;} C C such that

Tr = Z i (eg, x)e = Z)\kek(x)ek
k k

for all x € H. More generally one has the singular value decomposition for a compact
operator T' € K(Hi, Hs), i.e. there exist orthonormal systems {e;} C Hy, {fi} C Ho
and s1 > s9 > -+ >0, s — 0 as kK — oo, such that

T =Y spler, o) fv =Y sker(r) fi
k: i

forall z € H.

Studying how fast the convergence A\ — 0 is for compact operators on a Hilbert space
leads to the study of the Schatten classes Sy, i.e. those operators for which {A;}; € £,.
For example f(—iV)g(z) € S, iff f,g € LP(R?).

On Banach spaces, one also studies operators 7' € B(X,Y') which can be written as
Tz =) agry(x)y; for oy € C, z), € X' and y, € Y, so called nuclear operators.
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