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0 Introduction

Example. Consider the ordinary differential equation §%(t) = f(t,z(t)) with boundary
conditions x(t = tg) = xo with z: I — R"™ for some interval I C R and f: I x R" — R™.
By integrating both sides, we get an integral equation for z:

z(t) = zo + /t f(s,z(s)) ds.

to
Define a map K: C(I;R™) — C(I;R"™) by

(K (2))(t) = 20 + 2f]"(s,x(s)) ds.

to

Now the integral equation becomes the fixed point equation K(z) = x. But K is not
linear (consider for example f(¢,z) = t(z, x)x).

Example. For an example of a linear problem consider a map k: [0,1]> — R and for
xz:[0,1] = R let

(Kx)(t) = /0 " k(t $)a(s) ds.

This defines a linear map K: C(I;R) — C(I;R). The idea now is to study the linear
map K and solutions to the equations Kz = y and Kz = Az.

1 Topological and metric spaces

We will start by generalising the concept of “continuous functions”, i.e. of “continuity”.
We will first talk about the euclidean topology on R"™. For x,y € R™ let

n

lz = yllwa = | D (@i — )

=1

and let dgyel(z,y) = || — yl|Euc- A subset U C R™ is called open if and only if (iff) for
all g € U there exists € > 0 such that (s.t.) if ||y — zo||puc < € then y € U. Writing
B.(z9) = {y € R": ||z — y||gua < €} we can say that U is open iff for all g € U there
exists € > 0 s.t. Be(zg) C U. In particular B.(z) is open for all z € R™ und all € > 0.
We denote Fgue the family of all open subsets of R™:

Tiuel = {U CR"™: U is open}.
Note that Fyue is a subfamily of the powerset 28" of R”. The following should be known:

Proposition 1.1.
e () and R™ are open.
o IfU1,Us € Trual, then U1 NUs € Tgyal-
o If I is some index set and (U;)icr is a family of sets in Fpya, then Uic; Ui € Tiual-



We used all of this to study continuity of functions. Let f: R®™ — R™ be any map. f
is called continuous at xo € R™ iff for all € > 0 there exists § > 0 s.t. if ||z — zg||gn < 0
then || f(z) — f(zo)||lrm < ¢, ie. f(Bs(zo)) € Be(f(wo)). We say fis continuous iff it is
continuous at all zp € R™. Recall the following:

Proposition 1.2. A map f: R" — R™ is continuous iff f~1(U) is open (in R™) for all
open U C R™,

We shall use Proposition 1.1 and 1.2 to generalise the concept of continuity of maps
between other sets than R™ and R™.

Definition 1.3. A topological space T = {A, T} consist of a non-empty set A and a
family .7 of subsets of A (i.e. .7 C 24) satisfying

1. 0,Ae 7.
2. HU,Uy € 7,then Uy NUy € 7.
3. If I is some index set and (U;)er is a family of sets in .7, then U,c; U; € 7.

Then the collection 7 of subsets of A is called a topology on/for A and the elements of
A are called points. The elements of .7 are called open sets.

Remark.

1. In general, .7 C 24, but .7 # 24,

2. It follows, by induction, that the intersection of finitely many open sets is open.

3. Let A# () and let 7 = {0, A}. Then {A, 7} is a topological space; it is called an
indiscrete space.

4. Let A # 0 and let .7 =24, Then {4, .7} is also a topological space; it is called a
discrete space. In particular any set (with at least two points) can be given several
topologies.

Definition 1.6. Let 77, 9 be two topologies on the same set A, then we say that 7] is
stronger or finer than % iff 73 D %, and that then % ist weaker or coarser than 7.

Remark.
1. Given two topologies .71, % on the same set these do not need to be comparable
in the sense above.
2. The discrete topology (24) is stronger than any other topology and the indiscrete
topology is ({0, A}) is weaker than any other topology.

Using the notion of topologies and inspired by Proposition 1.2, we can generalise
continuity.

Definition 1.7. Given two topological spaces T; = {4;, Z;},i = 1,2, amap f: A} — A
is called continuous iff f~1(U) € 7 for all U € 5. For emphasis, we say that f is
(S, F)-continuous.

Definition 1.8. For T3, 15 as above, and a € Ay, f is said to be continuous at a iff for
any Uy € 5, with f(a) € U, there exists a Uy € Z s.t. a € Uy and f(Uy) C Us.



Remark. f is continuous iff f is continuous at all a € A.

Proposition 1.9.
1. Let T = {A, T} be a topological space and let id: A — A be the identity map.
Then id is (7, T )-continuous.
2. Any constant map f: Ay — As is continuous.

Proof.
1. Let U C A be open. Then id ' (U) =U € 7.
2. Let U C Ay be open. Then if f~}(U) =0ifa ¢ U and f~1(U) = A1 ifa € U. In
either case f~!(U) is open. O

The result of Proposition 1.9 is reassuring (but not surprising); same for the next
result, which however shows the strength of the definitions.

Proposition 1.10. Let T; = {A;, Z;}, i = 1,2, 3, be three topological spaces and assume
that f: Ay — A and g: As — As are continuous maps. Then go f is continuous.

Proof. Let U € Z3. Then since g is (%, Z3)-continuous, g~ *(U) € 5. Also f~1(V) €
F for any V € P since f is (F1, Ja)-continuous. In particular f~1(¢71(U)) € &3 —
but f~1 (g™ (U)) = (9o /)~H(V) O

Definition 1.11. Let 7= {A, 7} be a topological space and let H C A, H # (). Then
the induced topology (or relative topology) on H is defined by

In={VCH:3UeT.V=HnNU}={UNH:U e T}.
Then {H, T} is called a topological subspace of T = {A, T }.

Definition 1.12. Let T; = {A;, Z;}, i = 1,2, be two topological spaces. A map f: A} —
Ao is called a homeomorphism of topological spaces iff f is a bijection and both f and
f~! are continuous. If such a map exists, 71 and Ty are called homeomorphic.

Definition 1.13. Let T' = {4, .7} be a topological space. We call V' C A closed iff
ANV € 7. le. aset is closed if its complement is open.

Example 1.14.
1. [a,b] C R is closed in the euclidean topology since R \ [a,b] = (—o0, a) U (b, 00).
2. [a,b) C R is closed in the discrete topology. (Obviously, [a,b) C R is not closed in
the euclidean topology.)
3. [a,00) C R is closed in the euclidean topology on R since R \ [a, 00) = (—00,a) is
open.

Proposition 1.15. Let T = {A, T} be a topological space. Then
1. 0 and A are closed.
2. The union of two (and, hence by induction any finite number) of closed sets is
closed.
3. The intersection of any number of closed sets is closed.



Proof. Use the definition of “topology” and de Morgan’s laws. O

Definition 1.16. A neighbourhood of a point x € A, where T'= {A, J} is a topological
space, is a set V' C A s.t. there exists U € J withx e U C V.

Definition 1.17. Let T = {A, 7} be a topological space and let © € A, and H C A.
The point «x is called a limit point of H iff every open set containing x, contains some
point of H other than z (U € 7, U 32 = UN (H ~{z}) #0).

Example.
1. In {R, Zgua} the point a is a limit point of both (a,b) and [a,b] (i.e. limit points
of a set may or may not belong to the set).
2. Let H = {0} U (1,2) C R with the euclidean topology. Then 0 is not a limit point
of H (the set of limit points of H is [1,2]). Hence the points of the set may or may
not be limits points of the set.

Definition 1.18. The closure H of H C A is the union of H and its limit points.

Proposition 1.19. x € H iff for any open set U containing x the intersection H N U
18 monempty.

Proposition 1.20. Let T = {A, 7} be a topological space. Then
1. H is closed in T iff H = H.
2. If HC K then HC K.
3. H=TH.
4. H is closed in T.

Proof. 2 follows from the definitions. 4 follows from 1 and 3. Assume H C A is closed.
Since H C H by definition, we need to prove H C H,or AN H D ANH. Letx € AN H.
Since H is closed, A~ H is open, but (A~ H)N H = (). Hence, x is not a limit point of
H. Sox € A~ H. Conversely, assume H = H. Let x € AN H. Then x ¢ H and z is not
a limit point of H, since H = H. So there exists U, € .7 with U, 3> z and U, N H = 0.
Hence, U, € A~ H. Then U,cs. Uz = A\ H. Since all U, are open, A \ H is open,
hence H is closed. o -

Clearly H C H. To prove H D H, let € H. Then, for any open set U with = € U,
HNU #0. Let y € HNU. Then U is an open set containing 3, and y € H, hence
HNU # (. Hence for any open set U containing x, U N H # (), hence z € H. So, H, so
H=H. O

Definition 1.21. Let T'= {A, .7} be a topological space, H C A. H is called (every-
where) dense in T (in A) iff H = A. T (or A) is called a separable topological space iff
it has a countable dense subset.

Example. Q C R is dense in the euclidean topology. So is R\ Q. Also Q" C R" is
dense. Since Q" is countable, R™ with the euclidean topology is separable. But R is not
separable in the discrete topology.



Definition 1.22. The interior H® or Int(H) of a set H C A is the union of all open
subsets of H, i.e.
H° = U{U C H: U is open}.

Then H° C H and H° is open. It is the largest open subset of H.

Example.
1. [a,b]° = (a,b) in {R, Txyel }-
2. [a,b]° = [a,b] in {R,2%}.
3. Let (a,b] C (—o0,b] = H and give H the induced topology fro {R, Ziyuc}. Then
(a,b]° = (a,b)].
4. @O = @ in {R, gEucl}'

Definition 1.23. Let 7' = { A, 7} be a topological space. Then H C A is called nowhere

dense iff Int(H) = ().
Example. {% n e N} C R is nowhere dense in {R, Zyc}-

Proposition 1.24. H C A is nowhere dense in T iff A~ H is (everywhere) dense in
T.

Proof. Use the fact z € H <= YU € J(x e U= UNH #0). O

Corollary 1.25. A closed subset H of A is nowhere dense in T if and only if A~ H is
dense in T.

Definition 1.26. The boundary OH of a set H C A in a topological space T = {A, T}
is defined by 0H = H N (A~ H).

Definition 1.27. A sequence in a topological space T'= {A, 7} is a map S: N — A.
We shall normally write x,, = S(n) and {z,}nen € A.

Definition 1.28. A sequence {x,}n,eny C A is said to converge to x € A (“x, — x as
n — oo”) iff for every open set U containing x, there exists N € N such that n > N
implies x, € U.

Example 1.29. Let T be any indiscrete space, let {x,}n,en be any sequence in T =
{A,{0,A}}, and let & € A. Then z,, — x as n — oo: Let U be open in T, such that U
contains z — so U = A. Hence, x,, € U for all n € N. There are not “enough” open sets
in this space.

Definition 1.30. A topological space T'= {A, 7} is called a Hausdorff-space iff for all
x,y € A, x £y, there exist U,V € 7, UNV =0, withz € U and y € V.

Proposition 1.31. In a Hausdorff space, limits of convergent sequences are unique, i.e.
if xtp, = x and x, — Yy as n — oo, then © = y.



Proof. Assume for contradiction that {x,}neny € A, T = {A, 7}, and z,y € A, x # y,
with =z, — = and x, — y as n — oo. Since T is Hausdorff and = # y there exist
UVe 7, UNV=0,U>x,V>y. Sincex, -z asn — ocoand z € U € 7, there
exists N, € N such that n > N, implies x,, € U. Also, x, > yasn —»ococandy €V € 7,
so there exists N, € N such that n > N, implies z,, € V. Let N = max{N,, N}, then
n > N implies x,, € UNV = (), a contradiction. O

Proposition 1.32.
1. Any subspace of a Haudorff space is Hausdorff.
2. Let T; = {A;, 73}, i = 1,2, be topological spaces and let f: Ay — Ay be continuous.
If Ty is Hausdorff and f is injective, then T} is Hausdorff.

Definition 1.33. A metric space M = {A,d} consists of a nonempty set A, and a map
d: A x A — R satisfying for z,y,z € A

1. d(z,y) > 0 and d(z,y) =0 < =z =y.
2. d(z,y) = d(y, ).
3. d(z,y) < d(z,2) + d(z,y).

The map d is called a metric on A (or a distance function).

Example.
1. R" with d = dgyu is a metric space.
2. Let A # () any set, and define

0 z=y

for all z,y € A. This is a metric, called the discrete metric.
3. Let A=R% x = (z1,22) € R?, y = (y1,y2) € R? and let, for p > 1 (not necessarily
pEN),
1
dp(z,y) = (Jz1 — [’ + 22 — ya2") 7.
Note, that for p = 2, d, = dgua. Then {R? d,} is a metric space for any p > 1.
Additionally let doo(x,y) = max{|z1 — y1|, |z2 — y2|}. This is also a metric.
4. Let A = C, 21,22 € C, and define d(z1,22) = |21 — 22]. Then {C,d} is a metric
space.

Proposition 1.34. Let M = {A,d} be a metric space. We will denote by By(z;d) =
{y € A: d(x,y) < r} the open ball of radius r around x. Let

Tg={U C A:Vzx €U Je > 0. B(z;d) CU}.
Then T = {A, Z;} is a topological space.

Proof. Obviously 0, A € ;. Let Uy, Uy € Fy, and let x € UyNUs. Then x € Uy € Jy, so
there exists €1 > 0 such that B, (z;d) C U;. Similarly, since x € Uy € J, there exists



g9 > 0 such that Be,(z;d) C Us. Let ¢ = min{eq, ez} > 0, then B.(x;d) C Uy N Uz, so
UinU; e 9.

Let I be some index set, and assume U; € 74, for all i € I, and let x € U,;¢; U,
that is, there exists iy € I such that x € U;, € J;. Then there exists € > 0 such that
B.(x;d) C Uiy € U;er Ui- Hence, Ui Ui € J4. So F is a topology. O

Example. For A =R", Tgya = T, -

In other words, any metric space is a topological space. Note however, that the
converse is not true, i.e. there are topological spaces whose topology does not come
from a metric:

Definition 1.35. A topological space T' = {A, 7} which comes from a metric space in
this way (i.e. there exists a metric d such that .7 = .7;) is called a metrizable space.
(T is called the topology arising from d).

Example.
1. The discrete topology on a set A comes from the discrete metric on A.
2. On the other hand, no indiscrete space with more than two points is metrizable.
3. There exist much more interesting (but also more complicated) examples of non-
metrizable spaces. Sometimes it is also more useful to work directly with the
topology.

Proposition 1.36. Every metric space {A,d} is a Hausdorff space.

Proof. Let x,y € A, x # y. Let € = d(x,y) > 0. Then B, (z;d) N B./s(y;d) = 0, and
B, jo(w;d), B, 2(y; d) € F4 containing = and y respectively. O

Proposition 1.37. Let M = {A,d} be a metric space. A subset H C A is dense iff for
allz € A ande >0, Be(z;d) N H # 0.

Definition 1.38. A subset K C A of a metric space {A,d} is called bounded iff there
exist a € A, R > 0s.t. K C Bg(a;d).

Remark. If this holds for some a € A, then it holds for any a € A with R replaced by
R =R+ d(a,a), since d(z,a) < d(z,a) + d(a,a) < R+ d(a,a) = R for all z € K.

Remark. If K is bounded, and =g, R as above, z,y € K, then d(z,y) < d(z,xo) +
d(z,y) < 2R < 0. So the following definition makes sense.

Definition 1.39. If M = {A,d} is a metric space and K C A is bounded, then the
diameter diam(K) of K is defined by

diam(K) = sup{d(z,y): z,y € K}.
Proposition 1.40. The union of any finite number of bounded sets is bounded.
Proof. By induction, it is enough to proof this for 2 sets, which is left as an exercise.

Proposition 1.41. Let N; = {A;,d;}, i = 1,2, be metric spaces, and let f: A1 — A
be a map. Let T; = {A;, T4, }, i = 1,2, be the corresponding topological spaces.



1. The map f is continuous iff
Va € A1 Ve > 036 > 0(di(z,a) <§ = do(f(x), f(a))).
2. The map § is continuous at a iff
Ve > 036 > 0(di(z,a) <6 = dao(f(x), f(a))).

Proof. Assume f is continuous. Let a € Ay, and € > 0. Note that B.(f(a);d2) C
A)2 is an open set in As, so by assumption f~1(B:(f(a);d2)) € Ju,. Since a €
F7Y(B:(f(a);ds)), there exists § > 0 such that Bs(a;di) C f~Y(B(f(a);dz)), i.e.
f(Bs(a;dr)) € B=(f(a); da).

Conversely, assume the “e-d-condition” holds, and let U € F,. Then let a € f~1(U),
ie. f(a) € U € T, so there exists € > 0 s.t. B:(f(a);d2) € U. So, by assumption
there exists § > 0 s.t. f(Bs(a;d1)) € B:(f(a);d2) C U. Hence, Bs(a;dy) C f~1(U).
The proof of 2. is left as an exercise. O

Definition 1.42. Let M = {A,d} be a metric spaces, X # (), and let f: X — A be a
map. Then f is called bounded iff f(X) C A is bounded.

Example 1.43. Let A =R", let p € (1,00) and let

o)

Then {R",d,} are metric spaces. Also, let do(z,y) = max{|z;—y;|: i =1,...,n}. Then
{R",d} is also a metric space. This will be proven in the tutorials. Also prove Hélder’s
inequality: For p € (1,00), xz,y € R"

J< Eer) (o)

where % + % = 1. This implies Minkowski’s inequality: For p € (1,00), z,y € R"™

n 1 n i n i
(Zm +yi!p> < (ZI%‘V’) + <Z|yi|p>
i=1 i—1 i=1

Generalising this to “infinite coordinates”, let .#(N;R) be the set of real sequences, i.e.
maps N — R. We would like to define d,(x,y) for = {x, }nen, ¥ = {yn}nen € A4 (N;R).
However “often” d,,(x,y) = oo. The solution is to restrict to a subset of .#Z (N; R). Define

{{l‘n}neN € M (N;R): Z|xl|p < oo}

Note that £, C .Z(N;R). Also let

loo = {{zn}neny € #Z(N;R): 3K € RVn € N. |z, | < K}



be the set of bounded real sequences. Note that o, = Z(N;R), so ({x, dso) is a metric
space. For 1 <p < oo, z,y € {p, fix N € N, then

N 7 N 7 N 7
In = (Z |z — yz’\p> < (Z |$i\p> + (Z |yi|p> <
i=1

i=1 i=1
1 1
> 3 s D
< (Z ]wi\p> + <Z ]xi\p> < oo
i=1 i=1

since z,y € {,. Furthermore {ty}nen is increasing and bounded above, so {tx} is
convergent and dp(z,y) < oo is well-defined, i.e. d,: £, x ¢, — R. Note, that d,(z,y) > 0,
dy(xz,x) = 0 and d,(x,y) = 0 implies z = y. For the triangle inequality, let z,y, z € £,
let N € N, then

N v /N )
SN = (Z\xi—yz‘!p> = (Z\xi—zi-i-zi—yi\p) <
i=1 i=1

IN

N 7 N 7
(Z |z; — Zi’p> + (Z |2 — yi|p> < dp(x, 2) + dp(2,y)

=1 =1

Since {sy}nen is increasing and bounded above, it follows that dp(z,y) < dp(z,2) +
dy(z,y). Hence, {{,,dp}, 1 < p < oo, are metric spaces. Note that ¢, # ¢, for p # q.

Definition 1.44. Let A # (). A family % C 24 is called a cover for A iff A = J%.
Let T = {A, 7} be a topological space. A cover % C 24 is called open if % C 7. A
subcover ¥ of a cover % is a subfamily ¥ C % such that A =J 7. A topological space
is called compact (“is a compact space”) iff every open cover has a finite subcover.

Definition 1.45. A subset H C A where T'= {A, .7} is a topological space, is compact
iff {H, 7} is compact, where 737 is the induced topology.

Proposition 1.46. A subset of R™ is compact in the euclidean topology iff it is both
closed and bounded.

Proposition 1.47. Any compact set in a metric space is bounded.
Proof. Exercise.

Proposition 1.48. Let T = {A, 7} be a Hausdorff space, and assume C' C A is compact.
Then C' is closed.

Proof. Exercise.
Remark. In particular, in a metric space any compact set is closed and bounded.

Proposition 1.49. Let T = {A, 7} be a compact topological space, and assume C' C A
is closed. Then C is compact.

10



Proof. Assume % C 7 covers C, i.e. C C|J% . Since C is closed, the set Uy = A~ C
is open. So ¥ = % U{Up} is an open cover of A. Since A is compact, there exists a
finite subcover # C #. Then # ~ {Up} C % is finite and covers C. O

Proposition 1.50. Let f: Ay — Ay be a continuous map between topological spaces
T, ={A4;, 7}, i = 1,2. If T\ is compact, then the image R f is compact.

Proof. Tt is enough to look at the case when f is surjective. Let % be an open cover
of Ag: Ay CU% and % C 5. Since f is continuous, f~1(V) € % for all V € %.
Also, Uyeqy f71(V) = Ay, Hence {f~1(V): V € %} is an open cover of A;. Since
Ay is compact, there exist f~'(V4),..., f~1(V}) such that A; = Ule f~Y(V;). Then
Ay = Ule Vi, and so {Vi,...,Vi} is a finite subcover of % for As. O

Corollary 1.51. Let {C, T} be a compact space, {A,d} a metric space, and assume
f: C — A is continuous. Then f is bounded.

Corollary 1.52. Assume {C, 7} is a compact space, and that f: C — R is continuous.
Then f attains its bounds, i.e there exist xn,xpr € C such that f(xn) < f(x) < f(zar)
forallz € C.

Definition 1.53. Let M = {A,d} be a metric space. A sequence {z,} C A is called a
Cauchy sequence (is said “to be Cauchy”) iff

Ve >03IN e N(n,m >N = d(zp,zm) <€).
Lemma 1.54. Any convergent sequence is Cauchy.

Proof. Assume {x,} C A is convergent in a metric space M = {A,d}, z,, — x asn — oo.
Let € > 0. Then there exists N € N such that d(z,,z) < § foralln > N. Soifn,m > N,
then d(zp, Ty) < d(zp,x) + d(z, z,,) < €. O

Remark. Not all Cauchy sequences are convergent, for example {%} . C (0,1] in
n

{(0,1], dgua } is Cauchy but not convergent.

Definition 1.55. Let M = {A,d} be a metric space. M is called complete iff every
Cauchy sequence in M is convergent in M.

Proposition 1.56. {R", dgyua} is a complete metric space. So is {C, |- |}.

Lemma 1.57. Let {A,d} be a metric space. Then K C A is closed iff for any sequence
{zpn} C K, x, » x as n — oo implies x € K.

Proof. Problem 5 of Sheet 2.

Remark. {zp, }ren is a subsequence of {zy}peny — formally S: N — A, n +— s(n) = z,
— is defined by an injective, increasing function p: N - Nso Sop: N = Ak — z,,.

Lemma 1.58. In a metric space {A,d}, if the Cauchy sequence {x,,} C A has a conver-
gent subsequence {xp, }, say, tn, — x as k — oo, then {x,} also converges to x.

11



Proof. Let € > 0, and choose N € N s.t. n,m > N implies d(zy, z,) < §. Also, choose
K € Ns.t. k> K implies d(xy,,z) < 5. For any n > N, choose k > K so large that
ng > N. Then, for n > N, d(xy, ) < d(xy, Ty,,) + d(2n,, ) < €. O

Definition 1.59. A subspace C of a metric space M = {A,d} is called sequentially
compact in itself (in M) if and only if every sequence in C' has a subsequence which
converges in C' (in M).

Theorem 1.60. A subspace C of a metric space is compact iff it is sequentially compact
in itself.

Proof. Later.
Corollary 1.61. Any bounded sequence in {]Rd, dgucl} has a convergent subsequence.

Proof. Let {,}neny € RY be a bounded sequence, and let S = {x,,: n € N} C R%. Then
S is bounded. So, S is closed and bounded, hence compact, hence sequentially compact.
So {z,,} € S has a convergent subsequence. O

Proposition 1.62. Any compact metric space is complete.

Proof. Let {x,} C A be Cauchy in a metric space M = {A,d}. Since M is compact, it
is sequentially compact in itself, hence {z,} has a convergent subsequence. So, by 1.58,
{z,} is convergent. Hence M is complete. O

Proposition 1.63. Let M = {A,d} be a metric space and H C A. Then
1. if M = {H,d} is complete, then H is closed in M.
2. if M is complete, and H C A is closed, then M is complete.

Proof.

1. Let « € H. Then there exists a sequence {zn}nen € H such Nthat Tn — T as
n — oo. Since {x,} is convergent, it is Cauchy. Since {x,} C M is Cauchy, it is
convergent with limit in H. By uniqueness of limits, this limit is z. So, z € H,
hence H = H. -

2. By assumption, H = H. Let {x, }nen € H be a Cauchy sequence in M. But then
{Zn}neny C A is a Cauchy sequence in M. Since M is complete, there is an z € A
such that x, — = as n — oo. Since H is closed and {z,} C H, it follows that
x € H. Hence M is complete. O

Proposition 1.64. Let X be any set, and let M = {A,d} be a metric space. Denote by
PB(X,A) the set of bounded maps X — A, and let

doo(fa g) = sup d(f(:n),g(m))

zeX

Then {AB(X,A),dx} is complete iff {A,d} is complete.
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Proof. Assume M = {A,d} is not complete. Take any non-convergent Cauchy sequence
{zn}tnen. Let, for n € N, f,: X — A/t — z,. Then do(fn, fm) = d(@n,Tm),
S0 {futnen € HAB(X,A) is Cauchy in dr. But {f,}nen is not convergent, since if
doo(fns [) — 0 as n — oo for some f € B(X,A) then, since d(f,(t), f(t)) < doo(fns f)
forall t € X, z, = fn(t) — f(t) as n — oo. But {x,} is not convergent.

On the other hand, assume M = {4, d} is complete. Let {f,}nen C B(X, A) be any
Cauchy sequence. Let € > 0. Since {f,} is Cauchy, there exists N € N such that n,m >
N implies doo(fn, fm) < €. Hence, for any = € X fixed, d(fn(x), fim(2)) < doo(fn, fm) <
e. So {fn(®)}, oy is Cauchy in d. Since M = {A,d} is complete , {fu(z)}, i
convergent. Let f(x) = lim, o0 fn(x). Then f: X — A. We need to prove that
feB(X,A) and that doo(fn, f) — 0 as n — oo. Since, for all a € A fixed, the map A —
R,z +— d(a,z) is continuous, it follows that lim,, e d(fn(x), frm(x)) = d(fn(z), f(2)).
Hence, d(fn(z), f(z)) < e for n > N and all z € X. Then doo(fn, f) < e. Hence
f e B(X,A) and doo(fn, f) — 0 as n — oco. Hence, the Cauchy sequence {fy}nen is
convergent to an element in A(X, A). So {#A(X,A),dx} is complete. O

Example. /., is complete.

Definition 1.65. Let M; = {A;,d;}, i = 1,2, be two metric spaces, and define

C(A1,A2) ={f: A1 — Aa: fis (d1,d2)-continuous}
Cv(A1, A2) = {f € € (A1, Aa): f is bounded}

Then (gb(Aly AQ) g CK(AI’ AQ) and (gb(Ala AQ) Q %(Al, Ag) AlSO, if {Al, dl} is compact,
then 6,(A1, A2) = (A1, A2) (for example €([0, 1], R)).

Theorem 1.66. Let M; = {A;,d;}, i = 1,2, be two metric spaces. Then {€,(A1, A2),dso}
is a complete metric space iff {Aa,da} is complete.

Proof. If {As,ds} is not complete, then neither is {%}(A1, A2),dx} (same proof as in
1.64). On the other hand, assume {Asg, d2} is complete, and let { fy, }nen C 63(A1, A2) be
Cauchy in do. Since then {f;, }nen is Cauchy in (A1, A2) which is complete, there exists
f € B(Ay, Ag) such that do(fn, f) — 0 as n — co. We shall prove that f is continuous
ataforalla € A;. Leta € Ay, e > 0. Let N € N such that n > N implies doo(fn, f) < €.
Then n > N implies da(fn(z), f(2)) < € for all x € A;. Since fy is continuous at A, so
there exists § > 0 such that di(z,a) < § implies da(fn(2), fn(a)) < e. Hence, di(z,a) <
§ implies da (f(2), f(a) < da(f(x), f () +ds(fn (), fv (@) +do(f(a), f(a)) < 3e. O

Definition 1.67. A map f: Ay — As for a metric space M; = {4;,d;}, i = 1,2, is
uniformly continuous (on Ap) iff

Ve > 0Vz € A1 36 > 0(di(z,y) <6 = dao(f(x), f(y)) <e).

Proposition 1.68. A continuous map on a compact space is uniformly continuous.

Proof. Let f: A; — Az be a continuous map between metric spaces M; = {4;,d;},
i = 1,2, and assume M; is compact. Then, for any ¢ > 0, there exists 6(x) > 0
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(a) =

such that di(z,y) < 20(x) implies da(f(z), f(y)) < &. Then % = {Bs(z;d1): = €
A1} is an open cover of A;. Since M; is compact, there exist z1,...,zx such that
A = UY, Bj(z)(zi;d). Let 6 = min{d(x1),...,6(zn)} > 0 and let z,y € A; such
that di(z,y) < 6. Then there is io € {1,...,N} such that x € By, )(%iy:d), so
di(z,25) < 0(4y) < 20(xjy), hence dao(f(x), f(xi,)) < . Also, d(y,z;,) < dl(y, x) +
di(z, miy) < 6(xiy) + 0(wiy) = 20(xi,), hence, da(f(y), f(xi,)) < e. So da(f(z), f(y)) <

(
dy(f(), f(zi)) + da(f (o), f(y)) < 2e. O

Definition 1.69. A metric space M = {A,d} is called totally bounded or pre-compact
iff for all £ > 0 there exist finitely many x1,...,xn € A such that A C Uf\i1 B (x;;d).

Theorem 1.60. Let M = {A,d} be a metric space, C C A. Then the following are
equivalent:

(a) C is compact.

(b) C is sequentially compact.

(¢c) C is complete and totally bounded.

Proof.

(b) Let {z,} C C be any sequence. Let Sy = {zn:n >k}. Then Sy is closed and
Nz, Sk # 0, for assume otherwise and let Uy = (A \ Sk) N C. Then Uy is open
in the relative topology on C, and U2, Up = CNURZ; St = C N (N2 Sk) = C.
So C =UyU---UUyp for some N.Then C NSy N...Sy = 0 which is impossible.
Then {z,} has a convergent subsequence.

(b) = (¢) Let {xn}nen be a Cauchy sequence in C. Then {z,},cn has convergent subse-

quence, say, Tn, — = as k — oo, with € C since C' is sequentially compact. So
by 1.58, {x,} is also convergent, with the same limit. Hence, C' is complete.
Assume that C' is not totally bounded. Then there exists g9 > 0 such that for
no choice of finitely many points {z1,...,zx} do we have C C UN, B.,(z;d).
In particular for all z € A, C' \ Bg,(2;d) # (. Let y; € C be arbitrary. Define
inductively v, € C such that y, € C \ U?;ll Be,(yi;d). Then {y;}ien C C, and,
for any m # k, d(ym,yr) > €o. Hence, no subsequence of {y; }ien will converge —
a contradiction, since C' is sequentially compact.

(c) = (a) Assume that there exists an open cover % = {U, }icr of C' with no finite subcover.

We will construct, inductively, a sequence of open balls B,, with radii 27" and
centres . Since C is totally bounded, there exists {y1,...,yn} € C such that C' C
uM, B 2(yi; d). Then at least one of the By j5(y;; d)’s cannot be covered by finitely
many U;’s (otherwise, so could C'). Let By be one of these balls; By = By j5(71;d).
Assume now B,_1 = Byi-n(x,_1;d) chosen, for some n > 2. Again, there exist
{21,...,2x} such that C C UX | By-n(z;;d); of all the By—n(z;; d) which have non-
empty intersection with B,,_1, at least one cannot be covered by finitely many U;’s.
So let By, be such a ball, so B,, = By-n(2y;d), B, N By—1 # () and B,, cannot be
covered by finitely many U;’s. This gives a sequence {zy, },en which is Cauchy: For
Y€ ByN By 1, d@n_1,7n) < d(zn_1,y) +d(y,z,) < 217" 4+ 27" < 227", So, for
m >n, d(Tn, Tm) < d(Tp, Tny1) + -+ d(@Tmo1,Tm) <2274+ £ 227 <8 2%
Hence, {z, }nen is Cauchy, so convergent, i.e. there exists x € C such that x,, — =
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as n — 0o. Since % is an open cover for C, there exists U;, such that z € U,
and some r > 0 such that B,(z;d) C U,,. Since x,, — = as n — oo, there exists
N € N such that m > N implies d(z,z,,) < 5. Choose m such that 27 < g.
Then B,, = By-m(xm;d) C By(z;d) C U;, — a contradiction to the construction
of the B,’s: none of the B,,’s can be covered by finitely many balls. O

Theorem 1.70 (Arzela-Ascoli). Let {Ay,d1} be a compact metric space and {Az2,ds} a
complete metric space. M C € (A1, Az) is compact iff the following holds:

(a) For all x € Ay, the set M(xz) = {f(x): f € M} C Ay is compact.

(b) M is equicontinuous, i.e.

Ve > 036 >0Vz,y € A1Vf e M(di(z,y) <0 = do(f(x), f(y)) <e)

(c) M is closed.

Proof.

“=7” Assume M is compact. Then it is closed. Note that for f,g € (A1, As) and
z € Ay, do(f(2),9(2)) < dso(f,g). SO ¢y: €(A1,As) = Ag, f = f(x) is (deo, da)-
continuous. Since M C % (A1, Az) is compact, the set M (z) = ¢, (M) is compact.
Let ¢ > 0. Then there exists {B./3(f1;dw0);- -, Bey3(fn;doo)} such that M C
Ui]\il B.3(fi;ds). Now each f;: A; — Aj is uniformly continuous since {Ay,d; } is
compact, so there exists § > 0 such that d;(x,y) < d implies da(f;(z), f;(y)) <¢e/3
forj=1,...,N. Let f € M, and z,y € A; with dy(z,y) < 6. Then there exists
Jo € {L s 7N} such that f € Ba/S(fng doo) So d2(f(x)a f(y)) < dg(f(.l‘), fjo(x))""
da(fio (), fjo(y)) + d2(fi(y), f(y)) < e. Hence, M is equicontinuous.

“«<” Since M C € (A, As) is closed, and {& (A1, A2),d} is complete, { M, d} is com-
plete. Let € > 0, and choose § > 0 such that dy(x,y) < § implies da(f(2), f(y)) <
e/4 for all f € M. Since A is compact, there exist x1,...,zy € Aj such that
A C U§V21 Bs(xj;dy).  Similarly, since all M(z;), @ = 1,..., N, are compact,
there exists y1,...,yp € Ag such that B = Ui]\il M(x;) C Ukpzl B, 4(yk; d2). Let
¢ = {¢: {1,...,N} — {1,...,P}}. Then for any ¢ € ® define My = {f €
M: da(f(z)),yp(5)) < €/dforj=1,...,N}. Then M = Jyeq My. Let ¢ € @,
and f,g € My. For all x € Ay, there exists j € {1,..., N} such that dy(z,z;) < 9.
Then do(f(z), f(zj)) < €/4 and da(g(x),g(x;)) < /4. So, do(f(x),g(z)) <
da(f(2), () + d2(f(5), ys() + d2(yo(i), 9(x5)) + da(g(x;), g(x)) < e. Hence,
doo(f,9) < €. So My is contained in a ball of radius 2e. Hence, since |®| < oo,
M is contained in a union of finitely many balls of radius 2¢. Hence, M is totally
bounded. Hence, by 1.60, M is compact. 0

Theorem 1.71 (Baire’s theorem). Let M = {A,d} be a complete metric space, and let
{Vi}nen be a countable family of dense, open subsets V,, C A. Then (o2, Vi, is dense.

Proof. We need to prove that if W C A is open and W # (), then 72, V,, N W # 0.
Let W C A be open. Since Vi is dense, Vi N W # (). Since Vi and W are open, there
exists 1 € A, 11 > 0 such that B, (x1;d) CViNW and 0 < r; < 1. Assume n > 2
and x,_1, r,—1 have been chosen. Then, since V}, is dense, V;, N B, _, (zp—1;d) # (), and
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since V,, is open, there exists z,, € A, r,, > 0 such that B,, (vn;d) CV,NB,, (xn_1;d)
and 0 < r, < L. This gives sequences {2, }nen C A, and {ry}neny C R.
If 4,5 > n, then z;,x; € By, (zn;d). So

2
d(xi, z5) < d(z, xn) + d(@p, 2j) < 2ry < ~

So {zp }nen is Cauchy. Since M is complete, there exists z € A such that z, — = as
n — oo. Since x; € B, (xy;d) for all i > n, we get that x € B, (x,;d) for all n € N.
Hence, z € V,, for all n € N. Also, z € W, hence x € ;2 V, N W. O

2 Banach and Hilbert spaces

“All maths” is about solutions to equations (existence, uniqueness, properties). Linear
Algebra is about the equation Az = b for a matrix A and vectors b and z. Some problems
— for example diagonalisation of matrices — can be turned into such equations. All of
this is assumed known. In particular, the axioms of a vectorspace are assumed known
(all vectorspaces will be over R or C for which we will write K). Also, all vectorspaces
will be nontrivial, i.e. not {0}.

Definition 2.1. Let X be a K-vectorspace.
1. A map p: X — [0,00) is called a semi-norm iff

(a) p(Az) = |A|p(z) for all z € X and X € K.
(b) p(z +y) < p(x) +p(y) for all z,y € X.
2. A semi-norm p is called a norm iff p(z) = 0 implies x = 0. In this case we will

write ||z]| := p(x).
The pair {X, p} is called a semi-normed space and {X, || - ||} is called normed space.
Remark. (a) implies p(0) = 0.
Remark. A normed space is a metric space: Define d(z,y) := ||z —y||. Then d is a metric.
This is the canonical metric we will use when treating normed spaces.

Proposition 2.2. Let {X, || - ||} be a normed space. Then

1. If x,, > x asn — oo and y, =y as n — oo, then x, +y, — T+ Yy as n — oo.
2. If \p, &> XA asn — o0 and x, — T as n — oo, then \,T, — AT as n — oo.
3. If v, = x as n — oo then ||z, || — ||z] as n — oo.

L.e. the vectorspace-structure and the topological structure are compatible.

Proof.
L ([(zn +yn) = (@ + )| < llwn — 2| + lyn — yll = 0 as n — oo.
2. | Anzn = Az|| < [[Anzn — Anz|| + [[Anz — Az|| = [An| |2 — 2| + [An = AllJz]| — 0.
3. This follows from |[||z| — |ly|l| < ||z — y|, since |||zn]| — |z||| < [|zn — z|| = 0. O

Definition 2.3. A normed space {X, || - ||} which is complete is called a Banach space.
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Example 2.4.

(a) R™ with [|zfls = (X0 |zi?)"? — or, more generally, {R™, | - [}, with ||z||, =
(7 |2sP)HP for 1 < p < 00 and ||@]|es = max;—1i,.n ||

(b) loo(K) ={2: N = K,i— z;: z is bounded} with ||z||cc = sup;cy |2i|. foo(K) is com-
plete, since {{(K),do} = {Z(N,K), ds}. In fact, let {Y, |||y} be a Banach space,
and M # () any set. Then define oo (M,Y) = B(M,Y) and || f|loc = supear ||.f(E)]y-
Then {{oc(M,Y),| - ||} is @ Banach space.

(c) Let M = {A,d} be a metric space, X a Banach space and %;(A, X) the continuous
and bounded maps from A to X. Write || f|co = supear || f(t)||x. Then €,(A, X)
with || - || is a Banach space.

(d) {C%] - |loo} is & Banach space.

(e) {C[0,1],]|-[lo1} is a Banach space, where || f[lcr = supyepo 1y [f(£)] +supsepo iy |/ ()]-
Note that sup,cp 1 |f/(t)| is a semi-norm but not a norm.

(f) €, = {x: N = K: 352, 2P < oo} with ||z]|, = 2, ]:rz-\p)l/p is a normed vec-
torspace. This is a Banach space: Let {z,}nen € £, be a Cauchy sequence, i.e.
Ty, € byt Tyt N = K i — 2,(i). Let € > 0. Since {x,,} is Cauchy, there exists N € N
such that ||z, — x|, < e for n,m > N. Then |z,(i) — 2, (7)| < ||z — 2m||p < € for
n,m > N and all i € N, hence, {z,,(i) }nen C K is a Cauchy sequence, for all i € N.
Since K is complete, there exists, for all i« € N, z(i) € K such that x, (i) — z(4)

as n — oo. This defines a sequence x = {z(i) };ey in K. For n,m > N and for all
M e N,

M 1/p 00 1/p
<Z |z (i) — xm(i)|p> < (Z |25 (1) — wm(i)!p> = ||zn —zmlp <e

i=1 i=1
. . . M . . 1/p
For n fixed, let m — oo in the inequality (Zi:l |2y (7) — xm(z)]p) < g; we get
1
that (Zf\il |z (1) — x(z)]p) & < ¢ for all M € N. Hence,

1/p

len — 2l = (Z (i) - x(z‘)\p> <e
=1

for all n > N. Hence, x — x, € £, for alln > N. So x = (v — xn) + =, € £, and
|y — x|, = 0 as n — oo, hence =, = x as n — oo.

Proposition 2.5. Let {X,| - ||} be a normed space. Then X is a Banach space iff
every absolutely convergent series is convergent: If {xy}neny C X is a sequence such that

Yooy ||zl < oo, then there exists x € X such that limps_ o Hx M an =0, ie.
x = limp 00 Zanl Ty =13 00 Tn.

Proof.
“=" The sequence {Zf\il xn}MeN is Cauchy in {X, | - ||} if >0 [|zn|l < oo
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“<” Assume {x, }nen is Cauchy. For all € > 0 there exists N(¢) € N such that n,m >
N (e) implies |2, —2m|| < . Do this for e = g, = 27%, k € N, i.e. there exists N}, €
N such that n,m > Ny implies ||z, — .|| < 27%. Using this, define inductively
a subsequence {zn, }ren such that ||z, ,, — @, || < 27 Let yn = @py,, — T,
Then 72, llyell < 3572,27% < co. So, Yy is absolutely convergent, hence,
by assumption, there exists y € X such that limps o Hy — Zﬁil ka = 0. So
limas oo | = (Tnpry — @ny )|l = 0. Hence, {2y, }nen has a convergent subsequence,
and is Cauchy. So, by 1.58, also {xy, }nen is convergent. Hence, X is Banach. [

Definition 2.6. Let X be a vectorspace over K.
(a) A subset C' C X is called convex iff x,y € C, A € [0, 1] implies Az + (1 — N)y € C.
(b) The convex hull of a subset A C X is

co(A) = {Z spxp:n € Nag € A, s € [0, 1],Zsk = 1}
k=1

k=1

the set of all linear convex combinations of elements in A.

(c) A subset A C X is called absolutely convex iff z,y € A, s,t € K, |s| + |t| < 1 implies
sx +ty € A. In particular, A is convex.

(d) The absolutely convex hull of a subset A C X is

n n
I'A) = {Zskl‘kl neNux,eA, s, € K,Z lsk| < 1}
i=1 k=1
Now, let X be normed.

(e) X is called strictly normed (or strictly convez) iff for ||z|| = |ly|| = 1,
implies x = y.
(f) X is called uniformly convez iff for sequences {xy, } nen, {Un tnen C X, limy, o0 ||2,]| =

(%(fvﬂ/)H =1

1, limy o0 ||ynl| = 1 and lim,,— o H%(w + y)H = 1 implies ||z, — yn|| — 0 as n — oc.
As usual we denote B1(0) = {y: ||ly|| < 1} the unit ball in X. Also, S1(0) ={y: |ly|]| = 1}.

Remark.

L. B1(0) = {y: [lyl <1} = B1(0) U 51(0).
2. B1(0) is convex (any open ball is convex).

Definition 2.7. Let X be a vectorspace. Then U C X is called a linear subspace iff
z,y € U, A€ Kimplies z + Ay € U. Then z ~y <= z —y € U defines an equivalence
relation and the quotient X /U is a vectorspace. We write [z] =2 +U € X/U.

Lemma 2.8. Let {X,p} be a semi-normed space.

(a) N={x € X:p(x) =0} is a linear subspace of X.

(b) llz]|| = p(x) defines a norm on X/N.

(c) If every Cauchy-sequence in {X,p} converges, then {X/N,|| - ||} is Banach.

Proof.
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(a) 0<p(x+y) <pz)+|Aply) =0if z,y € N. Sox + \y € N.

(b) [lfz] + [Wlll = p(z +y) < p(x) +ply) = [l + [yl Al = (Al = p(Az) =
Mp(@) = [l Note: if y ~ a, then z — y € N, s0 p(z) = p(z — y + ) <
p(z —y) +p(y) = py) and p(y) = p(y — z + ) < p(y — ) + p(z) = p(z). Hence,
||[z]]] is well-defined. Also, ||[z]|| = 0 implies p(z) =0, s0o x € N, i.e. [x] =0.

(c) Clearly, {[zn]}nen is Cauchy or convergent in {X/N, | - ||} iff {x,}nen is Cauchy or
convergent in {X, p}. O

Lemma 2.9. Let X be a normed space, and U C X be a linear subspace. Then U is
also a linear subspace.

Proof. Let z,y € U, A € K. Then there exist {z,}, {y,} C U such that z,, = z, y, — y
as n — 0o. Then, since U is a linear subspace, x, + Ay, € U. On the other hand, by
2.2, Ty, + Ayp — =+ Ay as n — oo. Hence, z + Ay € U. So U is a linear subspace.  [J

Definition 2.10. Two norms || - ||; and || - |2 on the same vectorspace X are called
equivalent iff there exist ¢, C' > 0 such that c||z|}; < ||z||2 < C||z]:.
Remark 2.11.

e Two equivalent norms have exactly the same convergent sequences and give rise to
the same topology.

e Any two norms on R” are equivalent.

o If || - ||; and || - |2 are equivalent norms on X, then {X, | - ||1} is Banach space iff
{X,]| - |l2} is Banach.

o Let X =2[0,1] = €([0,1],R), and || f|loc = supscpo 17 [f(t)] , and

1
71 = [ 1f®)lat.

Then || - ||oo and || - ||1 are norms. Note, that ||f]1 < ||f|le for all f € €[0,1].
Assume there exists Cp > 0 such that || f||e < Col|f|l1. Take

_J1-Cot te0,&]
f(t)_{o te g

Then || f|loc = 1 and || f|1 = ﬁ So 1 < 3 — a contradiction. So these two norms
are not equivalent. Note, that (€[0,1], ] - ||~) is Banach but (€[0,1], | - ||1) is not.

Proposition 2.12. Let X, Y be normed spaces, with norms || - ||x and || - ||y
Lz y)llp = (=% + Hy||§’,)1/p defines a norm on X @Y for 1 < p < oo. We
denote this normed space X @, Y. (Also ||(z,y)]|c = max{||z|x,||ylyv})
2. Any ||, )lps [|1(-5)|lq are equivalent norms on X &Y.
3. If X and 'Y are Banach spaces, then X ®,Y is Banach.

Definition 2.13. Let M = {4, d} be a metric space and U C A a subset. The distance
from x € A to U is defined as

:= inf .
d(z,U) inf d(z,a)

A point a € U such that d(x,a) = d(z,U) is called a best approzimation to x in A.
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(d) = (a) For x # 0,

Remark.

(1) Such a point is not necessarily unique.

(2) If U is compact, then there exists at least one best approximation (for all x) since
the map a + d(x,a) is continuous. We shall see more later on the existence and
uniqueness of best approximations, especially for the case of linear subspaces of
Banach spaces.

Proposition 2.14 (Riesz’ Lemma). Let X be a normed space, U C X a linear subspace
such that U = U and U # X. Let § € (0,1). Then there exists x5 € X with ||zs]| = 1
and ||zs —u|| > 1 =06 forallu e U.

Proof. Let x € X \U. Since U = U, d(x,U) > 0. Since 6§ € (0,1), d(z,U) < dle, g).
Since d(x U) = infuep d(z,a), there exists ug € U such that d(z,us) < d(lx_g). Let
Then ||zs|| = 1, and for all u € U

r§ =

||90 ugs ||
fos =l = [ 22— = | -
|z — us| |z —us|| |z —us
1 dlz, U
S A Y P LIRS 0
|z — us| |z — us||

Definition 2.15. Let X, Y be two K-vectorspaces. A map T: X — Y is called linear iff
T(awi+x9) = oT(21)+T (x2) for all z1, 2 € X and a € K. The kernel N(T) = T~1({0})
of T is a linear subspace of X. The image (or range) R(T) = {Tz: z € X} of T is a
linear subspace of Y. We shall often (for linear T") write Tz instead of T'(z). We call T'
a linear operator.

Theorem 2.16. For normed spaces X,Y and a linear operator T: X — Y, the following
are equivalent:

(a) There exists C > 0 such that | Tz|y < C||z|x-

(b) T is uniformly continuous on X.

(c) There exists a € X such that T is continuous at a.

(@) |T| = sup [|[Tz]ly < oo.

flzll <1

Proof.

= (b) For a,y € X, |T(@) - TWlly = T — y)ly < Cllw - yllx, so, for ¢ > 0,

d(u,v) < & implies d(T(u),T(v)) < e.
(c) Trivial.

=
= (d) For e =1, there exists 6 > 0 such that |[z—a| x < J implies |[Tz—Tally < 1. For all

x € X with ||m|] <1, ||(a+dz)—alx <6. So||T(0z)|y = ||T(a+0x)—T(a)|y < 1.
So ||Tz|ly < § < oo forall z € X with ||| < 1. So |T|| < 3 < oo.

\IIIXH =1, so HT(\IHX)H < sup|y <1 1Tz|ly = [|T]|. Hence,
[Tzlly < IT1, so [[Tzlly < ITl=]lx- O

IIxHx

Remark. In this case, the number ||T|| in (d) is the smallest number such that (a) holds,
Le. |7 = sup, Hlﬁgﬁ“y It is called the operator norm of T.
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Definition 2.17. Let X,Y be normed spaces, and T" a linear operator such that one
(hence, all) of the conditions in 2.16 holds. Then T is called a bounded linear operator.
The set of all such operators is denoted B(X,Y). If X =Y, we write B(X).

Remark 2.18.

1.

B(X,Y) is the set of all continuous and linear maps from X to Y. However, if
T € B(X,Y), then it is not a bounded map as defined in 1.42: The range R(T') is
not a bounded subset of Y. However, the image T'(B1(0, || - ||x)) of the unit ball
in X is a bounded subset of Y.

. Not all linear maps are bounded, i.e. there exist discontinuous linear maps; these

are called unbounded operators. Let X = €[0,2n], Y = €[0,27], | - Ix = | -
ly = - lloc, and let T = d%: X — Y. Then T is well-defined and linear. But

T is not bounded: Let f,(t) = €. Then |fulle = 1 but Tf, = (in)f,, so
IT fnlloo = n. Hence, there does not exist C' > 0 such that [|Tf]lcc < C||f]co-
(But try [[fllgr = [flloc + 1/ lloc on X.)

. IfT: X — Y is bounded and one chooses an equivalent norm on X or Y, or on both,

then 7' remains bounded. Note, however, that the number ||T'[| = sup| | <1 [Ty
might very well change.

If T: X — Y is linear and dim X < oo, then T is bounded, in particular, any
linear map R™ — R™ is bounded: Choose a basis {e1,...,e,} of X and define, for
x = Y wie, ||zl = Yieq |zi]- Then || - ||; is a norm on X. Since T is linear,
Tx = Y xiT(e;). So [|[Tz|1 < >i|zil||Teilly. Let C = maxj—1,. || Teilly.
Then ||Tz|y < Yy |=z|C = C|lz||1. So T is (|| - |l1,]| - |ly)-bounded. Since
dim X < oo, || - ||1 is equivalent to || - || x. Hence, T"is (|| - ||x, || - [[y)-bounded.
Let X,Y be normed spaces. Then B(X,Y) is a vectorspace: (o1 + S)(z) :=
aT(x) + S(z) for « € K and T, S € B(X,Y). This defines a linear map a7 +
S: X =Y. Also, if x € X, ||z||x <1, then

(T + S)zlly < |a||Tzlly + [[Szlly < |f|T +[IS];

hence ||aT + S| < |a|IT|| + ||S]| < oco. Hence, oT + S € B(X,Y). Also, |T| =
Sup|zx<1 [|7z[ly defines a norm on B(X,Y): Clearly, T = 0 <= [[T] = 0.
From above, [T+ || < [Tl + ||S]| and [AT| = supjy <1 [[AT)zlly = AT
Hence, (B(X,Y),|| - ||) is a normed vectorspace. Note, that if dim X = m < oo
and dimY = n < oo, then B(X,Y) can be identified with K"*™ = K",

. Let X,Y, Z be normed vectorspaces, and let ' € B(X,Y) and S € B(Y, Z). Then

ST € B(X, Z) and ||ST| < | S||T, since for x € X, |lz]x < 1:
1Sz < ISl < STl x < ISIIT].

If X is normed an Y = L, then B(X,K) =: X' is called the dual space of X. Tt is a
normed linear space. Note, that L(X,K) is the algebraic dual of X. An element of
B(X,K) is called a bounded linear functional. For example, T': €[0,1] — K,z —
z(0) is in €[0,1), ||| = 1; T: : €'0,1] — K,z ~ z(0) + 2/(1) is in €1[0,1],
\T|| =1; T: €[0,1] - K,z — fol z(t)dt is in €[0,1], |T|| = 1 and, for any
g e 0,1, T: €[0,1] = K,z — [ 2(t)g(t) dt is in €[0,1) with ||T|| = [, |g(t)| dt.
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Proposition 2.19. Let X,Y be normed spaces, and let (B(X,Y),|| - ||) be the normed
space of bounded linear operators.

(a) If Y is Banach, then so ist B(X,Y).

(b) X' is a Banach space.

Remark. The result is independent of whether or not X is Banach.

Proof. (b) follows immediately from (a), since K is complete. Let {T),}nen € B(X,Y)
be Cauchy. Since, for all x € X, [Tz — Tnzlly = (T — Tn)zlly < |1 — Tl x,
{Thx}nen C Y is Cauchy for all z € X. Since Y is Banach, {T,,z} is convergent in Y.
Let Tx = lim;, oo Thx. So T: X — Y is linear, since for x1,22 € X, x € K,

. 22 .. .
T(axy +x2) = Jim Tn(axy +x2) = a lim To(x1) + Jim Th(x2) = aT'(z1) + T(x2).

Let € > 0 and choose N € N such that n,m > N implies ||}, — T)»|| < €. Let z € X,
|z|lx < 1. Take an m > N such that ||T,,x — Tx|ly < e. Then, for all n > N,

[Tz = Tozlly <|[Tz = Tnzlly + [|Tne — Tozlly < e+ [T = Tallllz] x-
Hence, ||Tz — Tipx|y < 2¢ for all z € X with ||z]|x < 1. So,

T —T,|l= sup ||[Tx—Thzly <2¢6<occ Vn>N
llollx <1

So, T —T, € B(X,Y), hence T = (T'—-T,)+ T, € B(X,Y) and T, = T as n — o0 in
B(X,Y). O

Remark. 0 € B(X,Y). If X =Y, then we denote the identity map by I. Clearly, ||I|| =1
and I € B(X). Since S,T € B(X,Y) implies ST € B(X), B(X) is a K-algebra.

Definition 2.20. Let X,Y be normed spaces.

(a) A linear map T': X — Y is called an isomorphism iff T' is bijective and both T" and
T~! are bounded, i.e. an isomorphism is a linear homeomorphism.

(b) A surjective linear map 7': X — Y is called an isometry from X onY iff |Tz||y =
|x||x for all x € X, in particular, T is an isomorphism.

(¢) A linear map 7': X — Y is called an isometry from X in Y iff T: X — R(T) is an
isometry of X on R(T).

(d) X and Y are called isomorphic (written X ~ Y) iff there exists an isomorphism
X — Y. They are called isometric (or isometrically isomorphic) iff there exists an
isometry from X on Y (written X =Y).

(e) If a linear map T: X — Y is injective, it is called an embedding of X in Y (and if
T € B(X,Y), then T is called a continuous/bounded embedding).

(f) If a linear map P: X — Y satisfies P2 = P, it is called a projection.

(g) If T € B(X,Y) is bijective then T~! € B(Y, X) (i.e. the inverse is automatically
bounded). The proof of this is nontrivial, and we shall do this later. We call T'
invertible.
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Remark.

1. Both “~” and “=” are equivalence relations.

2. Normed spaces of the same finite dimension are always isomorphic. However
{R2|| - |l2} and {R2,|| - ||1} are not isometrically isomorphic.

3. The question which (“known”) Banach spaces are isomorphic or isometrically iso-
morphic to which other spaces is/was an important one.

4. U T: X -Y,and dim X = dimY = oo, then it is (in general) not enough that T
is injective or surjective to conclude that T is a bijection.

Proposition 2.21. Let X be a normed space, Y a Banach space, V. C X a linear
subspace, and T: V' — 'Y a continuous linear map (i.e. T € B(V,Y)). Then there exists
a unique extension T:V —Y (ie. T|y =T), withT € B(V,Y) and ||T|| = ||T||.

Proof. Assume z € V; then there exists {v,} C V such that ||z —v,| — 0 as n — oco. So,
if T exists, then Tx = lim;,,—y00 70, = lim,,_s00 Tv,. This proves uniqueness. Let € V
and take {v,} C V such that v, — = as n — oo. Then ||Tv, — Tvp| = [|T(vn — vm)|| <
T ||vr, — vm||- Since {v,} is convergent, it is Cauchy, so this proves that {Tv,} C Y is
Cauchy, hence, since Y is Banach, it is convergent. If also {u,} C V with u, — = as
n — oo, then

[Ty~ Tl = 7 — w0} | < [T = v} < [Tt — ] + e = ) 2225 0,
hence, lim, oo T, — T, = 0. Hence, lim,, oo T, = lim,, oo T, by 2.2. So, Tx =
lim,, 00 T, is well-defined (z € V, v, — x as n — o). Clearly, T is an extension of
T. Also, T: V — Y is linear (take z,y € V, A € K, take {v,}, {w,} CV s.t. v, — x as
n — 00, wy, — y as n — oo and use the definition of T, linearity of T, and 2.2). Since T
is bounded (on V'), we have ||Tv,|| < ||T||||vn||. Taking n — oo, by 2.2 ||Tx|| < ||T||z]|,
hence ||T|| < ||T||. So T € B(V,Y), and since ||T| < ||T|, we get | T|| = ||T|- O

Remark.
1. In particular, if V. C X (V # X), V = X, T € B(V,Y), Y Banach, then there
exists a unique T' € B(X,Y) extending T with | T|| = ||T.
2. If T: V — Y is an isometry, then also T is an isometry. However, if T is injective,
one cannot be sure that also 7T is injective.
3. Note, that the special case Y = K, gives extensions of certain linear bounded
functionals.

We shall now study a special class of normed spaces, namely those where the norm
comes from a scalar product.

Definition 2.22. Let H be a K-vectorspace. A map (-,-): H x H — K is called scalar
product (or inner product) iff for all z,y;,y2,y € H and A € K

(a) (x,\y1 +y2) = Mz, y1) + (2, 92).

(b) (z,y) = {y,2).
(¢) (z,z) >0 and (x,z) =0 iff z = 0.
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Note that (Az1 + x2,9) = M1, y) + (w2,9). K =R, (-,-) is called bilinear, if K = C,
(-,-) is called a sesquilinear form. Property (c) is called positive definiteness. Property
(b) is called symmetry. Hence, (x,z) = (x,z) € R. The space (H,(-,-)) is called a
pre-Hilbert space.

Proposition 2.23. Let (H, (-,-)) be a pre-Hilbert space, and let |z|| = \/(z,z) forz € H.
Then
1. || - is @ norm on H.
2. [z, y)| < ||z|lllyl]] with equality if x = Ay for A € K (Cauchy-Schwarz inequality).
3 o+ yl? + |lo —yl|? = 2(|z||* + [[y]|?) (parallelogramme rule).

Proof.
1. || - || is positive definite by definition. Also, for z € H, a € K, |laz|? = (az,az) =
oz, ) = |a|?||z||?. The triangle inequality follows from 2:

lz +yl* = (z +y, 2 +y) = ll* + |yl* + 2Re (z,y) <
<l + lyl® + 202yl = Al + lyl)?.

2. Let A € K be arbitrary, x,y € H, then

0 < (z+ Ay, z+Ay) = ||z + My, 2) + Mz, y) + APyl

Taking A\ = — (=, y)/||y||?, Cauchy-Schwarz follows.
3. Follows from the first 2 lines in the computation in 1. O

Definition. Hence, a pre-Hilbert space (H, (-,-)) gives rise to a normed space (H, || -|),
lz|| = \/{x,z). If this space is complete, (H, (-,-)) is called a Hilbert space.

Remark. For K =R .
(z,y) = Z(IIJ«“ +yll> = llz —yl?)
and for K =C
1 ) . ) )
(z,y) = Z(le +yll? =l — yll? +illz + iyl — il — iy]|?).

This is called polarization identity. So, the scalar product defines the norm, on the other
hand, the scalar product is uniquely determined by the norm.

Proposition 2.24. A normed space X is a pre-Hilbert space iff
lz +ylI* + llz —ylI* = 2(|=[I* + ly|*) Y2,y € X (%)
Proof. 1If X is a pre-Hilbert space, then (x) holds. So assume (x) holds, and set (K = R)
1 2 2
(@)= 7 (lz +ylI” = llz = y[%).

Then (!) one proves that this does define a scalar product on X. (For K = C, use the
polarization identity). O
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In the proof of the above proposition one needs the following lemma.

Lemma 2.25. The scalar product on a pre-Hilbert space is a continuous map H x H —
K.

Proof. Form the Cauchy-Schwarz inequality, it follows that

|<5617y1> - <:c2,y2)| = |<$1 - $2,y1> + <$27y1 - y2>\ < ||561 - €E2||”?/1H + Hm2||||y1 - y2||
This proves continuity. O

Example 2.26.
1. C" with (x,y) = D1 Tivyi.
2. 0y with (z,y) = >°72, Ty;, since for z,y € l2(N), N € N,

1/2

N 2 N
S(Xﬂ%ﬁ (ZMM) < lzll2[lyll2
i=1 i=1

N
Z TiYi
i=1

and (z,2) = |22

3. Let H = %([0,1],C) and define

)= [ Fdiate)at

This is a scalar product, so (H, (-,)) is a pre-Hilbert space. However, this is not a
Hilbert space. We shall “repair” this later, when studying Lebesgue-integration.
4. Let H =%"%(]0,1],C), and let

(f:9)gr = zk: (£9,g9)
=0

with (-, ) the scalar product in 3. This gives a pre-Hilbert space.

Definition 2.27. Let H be a pre-Hilbert space.

(a) If (x,y) = 0 then we say that x and y are orthogonal and write = L y. In this case
it follows that [|z||> + ||y||> = ||z + vl

(b) Let Y, Z C H be two subsets of H. Then we call Y and Z orthogonal iff (z,y) =0
forall z € Z and y € Y. If Y, Z are linear subspaces, then YN Z = {0} if Y and Z
are orthogonal.

(c) For a subset Y C H we define the orthogonal complement of Y by

Yt={zecH:VyeY z Ly}

Then Y NY+ = {0} if Y is a linear subspace.

Remark.
1. At is always a linear closed subspace of H.
2. (A)" = AL
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3. AC (A"

Proposition 2.28. Let (H,(-,-)) be a Hilbert space, and let K C H be a closed and
convez subset and let xo € H. Then there exists a unique x € K such that ||xg — x| =
d(xo, K), i.e. there exists a unique best approzimation to xy in K.

Proof. This is trivial if zp € K. So assume zg ¢ K. Also, assume xy = 0 (otherwise,
subtract zo everywhere). Since d := d(zo, K) = infyck ||y||, there exists a sequence
{yn} C K such that ||y,|| = d as n — co. We aim to prove that {y,} is Cauchy. Use
the parallelogramme rule to get

2
Note that ¥25¥%2 € K since K is convex. So, HW%H > d%. Also, 1 (|lynl® + l|yml|?) —

d? as n,m — oo. Hence, ||y, — yml||> — 0 as n,m — oo, hence {y,} is Cauchy. So, let
x = lim, 0oy € H. Then x € K. Also (by 2.2), ||z|| = limp—eo [|ynll = d. So z is a
best approximation of x.

2

Z/n+ymH2+‘
2

2
Yn — Y 1
m 22 = 5 (lal® + o ?)

Assume z,% € K, ||z|| = ||Z|| = infyex ||y|| = d, x # Z. Then, by the parallelogramme
rule ) ) )
T+ xr+ T r— I 1 B
: : || =35 (lel” +112?) = &
Hence, %‘i < d and %‘i € K — a contradiction. O

Remark. This gives a map P: H — H with ||z — P(z)| = infycx |z — y|| = d(z, K).
Clearly, P(z) € K for x € H, so P(H) C K. So P(P(z)) = P(z) for all z € H, i.e.
P? = P, s0 P is a projection (not necessarily linear). This typically is used when K is
a closed linear subspace of H.

Proposition 2.29. Let H be a Hilbert space, K C H be convex and closed and xog € H.

Then the following are equivalent for x € K:
(i) l|wo — x|l = d(zo, K).
(i) Re({zo —x,y —x) <0 forally € K.

Proof.
(ii) = (i) This follows from

lzo = ylI* = (@0 — @) + (z = y)II* = llzo — =[|* + 2Re (zo — z, 2 — y) + [|lz — y|

> o — ||

for all y € K. So ||zg — z|| = d(zo, K).
(i) = (ii) Let y € K, and for A € [0,1] let y» = (1 — Nz + Ay € K. So

lzo — =] < llzo — yall* = (w0 — = + Mz — y), 20 — 2+ Az —y)) =
= [lwo — 2|* + 2Re (20 — 2, Az — y)) + N[|lz — y|®

Hence, Re (xg — z,y — z) < %H:}:—yH2 for A € (0,1],so Re (zp —z,y —x) <0. O
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Theorem 2.30 (Orthogonal projections). Let U # {0} be a closed linear subspace of a
Hilbert space H. Then there exists a linear projection Py: H — H with Py(H) = U,
|Py|| = 1, and N(Py) = U*. Also, I — Py is a projection on UL with ||[I — Py|| = 1
(except if U = H), and H = U @9 UL. Py is called the orthogonal projection on U.

Proof. Note that U is closed and convex, so Py: H — H is defined (see above), with
Py(x) the best approximation to z in U. We have seen above that P32 = Py and
Py(H) = U. By 2.29 Re(zog — Py(xo),y — Py(zo)) < 0 for all y € U. Since U is a
linear subspace, y — Py(zg) € U for all y € U. Hence, (put y = § + Py(x0),y € U)
Re (zg — Py(x0),y) <0 for all § € U. Now do the same for —y € U and ig € U (K = C).
Then

<CL‘0 — PU(xo),§> =0 VgeU (*)

Hence, Py (o) is the unique element in U such that
xog — Py(xo) € U+ (s5)

Since U+ is a linear subspace of H it follows that, if z1, 29 € H, A € K, 21— Py(x) € U+,
x9 — Py(z2) € UL, s0 (z1 + Axa) — (Py(21) + APy (z2)) € UL. But Py(zy + Azg) is the
unique w such that (z1 4+ Aze) —w € U*. Hence, Py(x1 + Ax2) = Py(w1) + APy (x2), i.e.
Py is linear. By construction, R(Py) = U and from (*x) it follows that Py(xo) = 0 iff
xg € UL. So N(Py) = U*. Then also I — Py is a projection:

(I-Py)*(x) = (I-Py)(z—Py(x)) = 2—Py(z)—Py(x)+P3(x) = x—Py(z) = (I-Py)(=).

Also R(I — Py) = U+ and N(I — Py) = U. From Pythagoras it follows that ||z|? =
Iz = Py(@)) + Pu(@)l* = |z = Pu(@)|* + [ Pu(2)]?, hence ||Py(z)[| < || for all =,

so ||Py| < 1. On the other hand (for any projection) || Py| = ||PZ| =< || Pv||?, hence
|IPyll = 0 or |Py|| > 1. So ||Py|| = 1 and similarly ||[I — Py|| = 1. By Pythagoras’
theorem it is clear that H = U @9 U~L. O

Corollary 2.31. Let U be a linear subspace of a Hilbert space H. Then U = (UJ-)J-.

Proof. U+ = (U)J' is a closed subspace, and by 2.30 Pyiyr =1 =Py =1 (- Py) =
= L

Pg. So U =R(Py) =R(PyiyL) = (). O

Theorem 2.32 ((Fréchet-)Riesz representation theorem). For any Hilbert space H the

map ®: H — H' = B(H,K),y — (y,-) is bijective, isometric, and conjugate linear, i.e.

D(A\y1 +12) = A®(y1) + ®(y2). In other words, for every x' € H' there exists a unique
y € H such that 2/(z) = (y,x) for all z € H.

Proof. Take any y € H. Then ®(y) € B(H,K), because H > = — (y,x) is linear
and bounded, since, for all x € H, |®(y)z| = [{(y,x)| < |Jyllllz||. So [|®(W)|a < [yl
Furthermore, ® is isometric, since for any y € H ~ {0}

Y
Joll = {3 2 ) < sup [t} = [2(0)
1Yll/ ™ jai<1
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hence [|®(y)|[ar = [ly]-

To see that ® is surjective, take 2/ € H', 2’ # 0. Then U := N(z2') = (2/)71({0})
is a closed subspace of H. Hence, H = U @3 UL, where UL # {0} since 2/ # 0.Take
any y € UL, ||yl = 1, and set a = 2'(y) € K. Then, for all z € H, 2/(z)y — 2'(y)x €
N(z') L y. Hence, 0 = (y,2'(x)y — 2'(y)x) = 2'(x){y,y) — ' (y){y,z) for all z € H.
Hence, 2/(z) = (ay,z) for all z € H, i.e. 2’ = ®(ay). Additionally, ®(0) = 0. O

Definition 2.33. Let X be a K-vector space. £ C X is called algebraic basis, or
Hamel basis, iff 2 is linearly independent and span(#) = X. | 4| is called the algebraic
dimension of X.

Theorem 2.34. Every vector space has an algebraic basis.

Lemma 2.35 (Zorn). If (M,<) is a nonempty, partially ordered set in which every
nonempty totally ordered subset € C M has an upper bound in M, then M contains a
mazimal element.

For purposes of functional analysis algebraic bases are de facto useless, because:

Proposition 2.36. Let X be a Banach space and  C X an algebraic basis. If | B| = oo,
then A is uncountable.

Definition 2.37. Let X be a Banach space and I be any index set.

(a) A map z: I — X is called family, written {z(i)};c;. We denote by F(I) the set of
all finite subsets of I.

(b) A family {z;}ier C X is called absolutely summable, iff

el = X llzillx = sup { 3 laillx: T € F(D)} < oo.

el ief

We write
O, X)={x: I — X: ||z|i < oo}.

(c) For x € ¢1(1,X) define the support of x by supp(z) = {i € I: (i) # 0}.

(d) For x € ¢1(I,X), © = {wi}ier, we can find a bijection p: N — J D supp(z) (if
necessary, take a countable J DO I and define z(j) =0 for j € J ~\ I). Then

> zi= kZ T (k)
=1

el

Here, 37721 2oy = limg 00 Zi(:l Ty(k) converges absolutely, hence this is indepen-
dent of the choice of .
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(e) A family {x;};c;r C K, is called square summable iff

2l := 3" faif? = sup { > |aif*: T € F(D)} < o0

el iel

Again supp(z) is countable if z € l5(I) = {z: I — K: ||z]|> < oco}. Define a scalar
product by

leyl = Z Lo(k)Yp(k)
il

for x = {x;}ier,y = {yitier € ¢2(I) and some bijection ¢: N — J D supp(xz) N
supp(y). Completeness of ¢2(I) follows from the completeness of ¢5(N), hence ¢5(1)
is a Hilbert space.

Remark. If x € ¢1(I, X), then supp(z) is countable. In fact, for all n € N, S,, = {i €
I: ||zl x > 2} is finite. So, supp(z) = U,en Sn is countable.

Definition 2.38. A set {e;: i € I} C H in a pre-Hilbert space H is called orthonormal
system iff for all i, j € I, (e;, e;) = d;5. An orthonormal system E is called mazimal iff
E+ = {0}. For x € H, the numbers #(i) = {(e;,z), i € I, are called Fourier coefficients
of x.

Example.
1. In ¢5(I) the canonical unit vectors ex: I — X,i +— 0, k € I, form a maximal
orthonormal system.
2. [0,2n] — C,t — (21)~'/2¢’** k € 7Z, form an orthonormal system in the pre-
Hilbert space [0, 2] with the scalar product

o) = | Do) dt.

Lemma 2.39. Let {e;: i € I} be an orthonormal system in a pre-Hilbert space H. For
every finite subset J C I we have, for any family {z;},c; C K, Pythagoras’ identity

| S aied] = el

e ieJ

and, for any x € H,

0< [z =Y @(i)es a2 - ST 13| (+)

ieJ i€J

Proof. Clearly,

H Zwiez Z Zixj(ei, ;) Z\%F

i€ ij€J =

Using this and (z +y, = + y) = ||=||> + ||ly||*> + 2Re (z,y) for any z,y € H, we get

e =~ S e = el + 2P - 2Re S a0, i) = 2l - Y le(). O

ied ied e ied
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Corollary 2.40 (Bessel’s inequality). Let {e;: i € I} be an orthonormal system in a
pre-Hilbert space H. Then, for any x € H, only countably many Fourier coefficients (i)
are nonzero and
)2 2
> 2@ < [l
i€l

In particular, {Z(i)}icr € l2(I).

Proof. By the lemma, for any J € F(I),

Y12 < =],

e

Hence,

Yz = up. le ) < [l ]

iel JEF(I) jc g

Remark 2.41.

(a) Given some x = {z;}ier € ¢2(I) and some orthonormal system {e;: i € I} in a
Hilbert space H, one can construct ) ;. x;e;. In fact, pick some bijection ¢: N —
J D supp(x) as in definition 2.37 and observe, using Pythagoras, that

H é: %(k)%(k)HQ = é: |z 2 T2 0.

So {22:1 T (k) Co(k) }nGN is Cauchy in the Hilbert space H, hence is convergent. We

define
Zazzel = hm Zaz

el

This is independent of the choice of ¢, because y = > ;. x;e; satisfies
Ve >03L € F()VJ € F(I). J 2 I. = | Y miei—y| <e.
iceJ
(b) Let {e;: i € I} be an orthonormal system in a Hilbert space H. By Bessel’s inequal-
it
v F:H — lo(I),x— {2(i) = (e, 2) bier

is linear and bounded, since

@) =>_126)° < |

el

hence ||.7]| < 1. .%: H — {l3(I) is always surjective: given x = {z;}icr € l2(1),

define
Y= Z zie;.
el
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Then Z(y) = z, since for any j € I, (with notation as in (a))

n

(ejyy) = Jim > <€j7 $so(k)>eso(k) = 5.

FZ is injective iff {e;: ¢ € I} is maximal.

Theorem 2.42. Let {e;: i € I} be an orthonormal system in a Hilbert space H. Then
the following are equivalent

(a) Forallz € H, x =) ;o Z(i)e;.

(b) Forallx € H, ||z||* = Y;c; |2(i)|* (Parseval’s identity)
(¢) F: H — ls(1) is isometric.

(d) span{e;: i € I} is dense in H.

(e) F: H — ly(I) is injective.

(f) {ei: i € I} is mazimal.

Proof.
(a)<(b) Follows from (x).

(b)<(c) Follows from the definition of “isometry”.

(a)=(d) Clear.

(A)=(f) {e;: i€ I}- =spanfe;: i€ I} = {0}
(f)=(e) Z(x) =0 is equivalent to (e;,x) = 0 for alli € I.,i.e x € {e;: i € [}*+ = {0}.
(e)=(a) Note .7 (z) = {#(i) }ier and
F (Y aies) = {2 bier
iel
Hence, by injectivity of F, x = 3,c; Z(i)e;. O
Remark 2.43. A maximal orthonormal system is also called complete or orthonormal

basis. If dim H = oo, then an orthonormal basis in general is not an algebraic basis, i.e.
the expansion x = ;.7 Z(i)e; in general has infinitely many summands.

Theorem 2.44.

(a) Every Hilbert space H has an orthonormal basis {e;: i € I}. In particular, H is
isometrically isomorphic to fo(I).

(b) H has a countable orthonormal basis iff H is separable. In this case H = {5(N), if
H is infinite dimensional.
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Proof.

(a) Write O for the set of all orthonormal systems in H. Then 90t is partially ordered
by C. Let € C 9 be a totally ordered subset. Then B = J € is an orthonormal
system and an upper bound of € in M. Indeed B € 9M, since take e, ex € B, 1 # ea.
Then e; € B; € €, ¢ = 1,2. Since € is totally ordered by C, we have By C By or
By C By, say By C Bs. Then e, es € By, hence e; L es. So by Zorn’s lemma, there
is a maximal element M € 9. M is an orthonormal basis, since if span M # H,
there would exist some e € H, |le|]| = 1 such that e L. M and M U{e} 2 M — a
contradiction.

(b) If H has a countably infinite orthonormal basis {e;: i € N} then .#: H — (3(N) is an
isometric isomorphism. Since ¢2(N) is separable, H must be separable. Conversely,
every orthonormal system {e;: i € I'} is discrete, since for all i,j € I, i # j, |le; —
ej||? = 2. Hence, if the orthonormal system {e;: i € I} is uncountable, H cannot be
separable. ]

Remark. All orthonormal bases of a Hilbert space H have the same cardinality. This
cardinality is then called the Hilbert space dimension of H.

3 Lebesgue integration

In Lebesgue integration the concept of measure is essential. But to make this concept
useful one has to consider o-algebras different from the power set. In fact Vitali proved
in 1905 that there can be no measure p: 28 — [0,00] such that u([0,1]%) = 1 and
wo B = p for every rigid motion 5. Even worse, Banach and Tarski proved in 1924
that for any two bounded sets A, B C R? such that A° # () # B° there exist disjoint
C1,...,Cnp C R? and rigid motions f1,. .., B,: R? — R? such that 31(C1),..., Bn(Ch)
are disjoint and

n n

A={]JC,, B=BlCy).

=1 =1
This shows that there have to exist sets for which the notion of volume does not make
sense. Instead one has to consider o-algebras:

Definition 3.1. Let X be a set. A system of sets A C 2% is called o-algebra iff

(i) 0 e
(ii) Forany Ae A, A°=X N Aec
(iii) For any countable family {A;}ien C A, U;en 4i € 2L

Example.

(a) 2% is a o-Algebra.

(b) For any index set I and o-algebras 2;, i € I, ;c; 2 is again a o-algebra.
(c) Take any & C 2%. Then

(&)= ﬂ{%l C2%: & C 2 and A is a o-algebra}

is a g-algebra. o(&) is called the o-algebra generated by &.
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(d) Let {X, 7} be a topological space. Then #(X) := o(.7) is called Borel o-algebra.
We have B(R?) C 28,

Definition 3.2. Let 2 be a o-algebra. Then a map p: A — [0, 00] is called measure iff
(@) =0 and it is o-additive, i.e. for any countable disjoint family {A,}nen C 2,

a(U 4) = 3 u(An)
neN n=1

Example.
(a) Let X be a set and define ¢: 2% — [0, o0] by

n if |[Al=neN

oo if A is infinite

C(A)—{

( is called counting measure on X.
(b) For any a € X, the measure d4 defined on 2% by

w01, oo
is called Dirac measure at a.
Definition 3.3. A system b C 2¥ is called semi-ring iff
(i) 0 eb.
(ii) Forall A,Beh, ANB €.
(iii) For all A, B € b there exist disjoint C1,...,C), € b such that AN B =C1U---UC,.

Example. For a = (a1,...,a4),b = (b1,...,bs) € R we write a < b iff a; < b; for all
1<j<mn,and (a,b] = (a1, b1] x - -+ X (ag, bg]. Then

J={(a,b]: a,b € R% a < b}

and
J§ ={(a,b]: a,b € Q%,a < b}
are semi-rings and O‘(J&) = o(J%) = B(RY).
Definition 3.4. Let h be a semi-ring. A map p: h — [0, 00| is called content if p(0) = 0
and g is finitely additive, i.e. for all disjoint A;,..., A, € b such that U;_, 4; € b,

w(Uiey As) = > w(A;). A content is called premeasure if it is o-additive, i.e. for all
disjoint Ay, Ag,--- € h such that (2, 4; € b, u(U2; 4i) = Y2 mw(A).
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Example.
(a) Define \?: J¢ — [0, 00) by

n

X ((a,0]) = [ (bi — ai)

i=1
for all a,b € R?, a < b. A% is called Lebesque-content. It can be shown that \¢ is a
premeasure.
(b) Let F: R — R be a monotonically increasing function. Then pp((a,b]) = F(b) —
F(a), a < b, defines the Lebesgue-Stieltjes content associated with F. pup is a
premeasure iff F' is upper semicontinuous.

Definition 3.5. An exterior measure is a map n: 2% — [0, oo] such that

(1) n(0) = 0.
(ii) A C B implies n(A) < n(B).

(iii) For any countable family {A, },en C 2%,

(U 4n) < in(An)-
neN n=1

Then A C X is called n-measurable if for all Q C X, n(Q) = n(Q N A) +n(Q N A°).

Theorem 3.6 (Carathéodory). Let p: b — [0,00] be a content on the semi-ring h C 2%
and define for all A C X :

n(A) := inf { i 1(An): Ay €h,AC G A ()
n=1 n=1

Then n: 2% — [0,00] is an exterior measure and every A € b is n-measurable. Addition-
ally, A, = {A C X: A n-measurable} is a o-algebra and nly, is a measure. If p is a
premeasure then nly = fi.

Example. The exterior Lebesgue measure is

o0 oo
A(A) = mf{ Soad(4,): A, et Ac | An}
n=1 n=1

2Aya is the o-algebra of Lebesgue-measurable sets. We have BRY) C A ya- A= )\iﬂ%d
is called Lebesgue-measure on R? and \9| #(rd) 1s called Lebesgue-Borel-measure.

Definition 3.7. A content u: h — [0, 00] is called o-finite if there exist countably many
Aq, Ay, ... € bhsuch that u(A,) <oo,neN, and U,ey An = X.

Theorem 3.8. A o-finite premeasure pu: b — [0,00] can be uniquely extended to a
measure on o(h)/on Ay, with n as in (*).

Example. The Lebesgue and Lebesgue-Stieltjes premeasures A: J¢ — [0,00] and
pr: JE = [0,00] are o-finite. E.g.

RY = U (—n,n)?.

neN
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3.1 Measurable Functions

Definition 3.9. Let 2 be a o-algebra on X. f: X — R = RU {—o00,00} is called
2l-measurable if for all a € R, f~1((a, 00]) € 2.

Remark 3.10.

(a) If f, g, f1, fa, ... are measurable functions, f+g, fg, maxi<i<p{f1,..., fn}, SUPLen fn,
infpen fn, limsup,,_, o, frn and liminf,_, . f, are all measurable.

(b) f: X — [0, 00] is measurable iff there exists a sequence of measurable step functions
{un}, ie. up: X — [0,00], |un(X)| < oo such that u,  f pointwise, i.e u; <
ug < -+ < f and uy(t) — f(t) as n — oo. Indeed for a measurable function
f: X —[0,00], define

n2"—1

Un = Y SuX{i/r<f<Hn)/2ny T X fen)
7=0

Example. Any f € ¢ (R",R) is measurable, if we take #(R") as a o-algebra on R".

To define the Lebesgue integral we first define the integral of measurable step functions
u=3"aixa,, 4 =u ({a;}) €A, a; > 0, with respect to the measure u by

/Xud,u = iai,u(Ai) € [0, o0].

i=1

Now, taking a measurable function f: X — [0, oo], pick measurable step functions {u,}
with uy * f pointwise and define

dp = li /nd.
Jo Fan=Jim, [ v

This is independent of the choice of {u,} which we will not prove here. It may happen
that [y fdu = oco. We call f p-integrable if [y fdu < oco. Finally, let f: X — R be
measurable. Split f = f; — f— with fy > 0. If at least one of the integrals [y f+ du are

finite, we define
/ fdu=/ f+du—/ f-dp.
X X X

f is called p-integrable if [y fdp € R. Analogously, for f: X — CU {oco} define

Jordu= [ Repyidu+i [ mp)idu— [ Rep-du—i [ (mp)dp

assuming all integrals are finite and defined. Note, that f: X — CU {oo} is integrable
iff | f| is integrable.

Remark. If f:[0,1] — R is Riemann-integrable then f is Lebesgue-integrable (with

respect to A!) and
1
/ f(t) dt:/ fdil.
0 [0,1]
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Convention. A statement P(z) is said to hold p-almost everywhere if p({z: -P(x)}) =
0, e.g. “f = g p-almost everywhere” if u({z: f(x) # g(z)}) = 0.

Remark.
(a) For all measurable f: X — [0,00], [y fdp =0 implies f = 0 p-almost everywhere.

(b) For all integrable f,g: X — CU {0}, f = g p-almost everywhere implies

/deu=/ngu.

3.2 p-integrable functions, p > 1
Definition 3.11. For a measure space (X,%, 1) we define

.fp(X,u):{f:X%CU{oo}:fismeasurableand / ]f]pd,u,<oo}
X

and, for f € ZP(X, u), we set

1= ([ israw)”

Remark. || - ||, is only a semi-norm on ZP(X, p), since | f||, = 0 only implies f = 0
p-almost everywhere. Because of this we consider equivalence classes with respect to the
equivalence relation

f~g <= f =g p-almost everywhere.
Then f = 0 p-almost everywhere is equivalent to [f] = 0.
Definition 3.12. For a measure space (X, %2, 1) we define
LP(X,p) = 20 (X, p) [~ ={[f]: [ e 22X, n)}
and [|[f]llp = || fllp- Then | - ||, is non-degenerate on LP(X, ).

Convention. One always writes f instead of [f] for elements in LP(X, u). It should be
clear from context when f is a function and when f is an equivalence class.

Our goal is to prove the following theorem:
Theorem 3.13 (Riesz-Fischer). {LP(X, ), | - |lp} s a Banach space.

For this we will prove that LP(X, ut) is a vectorspace (1), || - ||, is a norm on LP(X, i)
(2) and that any Cauchy sequence in LP(X, u) converges to an element in LP(X, u).

Proof of (1). Assume f,g € LP(X, u). Note that for any o € C, a: X — CU{o0},z — «
is measurable. Hence af + ¢g is measurable. Also,

Jolas+glrau< [ (asi+lg) du< [ (max{lar],lgl)’ du <
X X X
<2 [max{laPlsP, g dhu < 27 (rarp [ourau+ [ \g\pdu) <o

Hence, af + g € LP(X, ), i.e. LP(X,pn) is a vectorspace. O
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Proposition 3.14 (Holder’s inequality). Let 1 < p < oo, and %—l—% =1. Iffe LP(X,pu),
g € LY(X, ), then fg € LY (X, u) and

[ 1£gldn =153l < £l

Proof. Recall that if a,b > 0, then

p b
ab=inf P 471
e>0 p q
Soforalle >0and t € X
t)[P -~ t)1¢
e = [FOllgw)] < LD 4 ~alal®)
p q
Hence, for all € > 0,
p q
[ 1#9ldu < ol gl
X P q
" 17115 g1l
—q 19
— < i p!lJ lip q!l9llg _ .
Il = [ 1foldn < infer 2 470208 = bl .

Corollary 3.15 (Minkowski’s inequality). For p > 1, and f,g € LP(X, u), we have

1F + gllp < 171l + llgll

Proof. We have for % + % =landp>1

J s gl du= [ \r+gls +gr s [R5 4ol dk [ lglls +g dii <
X X X X

< Ul |1 + a7+ lall 1 + a7 = (U7l + lallo) £ + gl
since ||| f + g|p_1|}q =|f+ g||§_1. Dividing by ||f + g||§_1 yields Minkowski’s inequality
for p > 1. The cases ||f + g[l, = 0 and p =1 are trivial. O

For the proof of (3) recall proposition 2.5:

Lemma 3.16. Let X be a normed space. The following are equivalent:
(i) X is a Banach space.

(i) Any absolutely convergent series is convergent.

Additionally we will need the following two important convergence results for Lebesgue
integration (they “solve” the question: if f,(t) — f(t) as n — oo “for all ¢”, is it true
that [ f, — [ fasn — o0?)

Theorem 3.17 (Beppo-Levi’s theorem /Lebesgue’s theorem on monotone convergence).
Let (X,2(, 1) be a measure space, and let fi, fo,...: X — [0,00] be measurable, with
fi<fo<.... Let f(t) =limy oo fn(t) € [0,00]. Then f is measurable and

T}ggO/andu:/deu-
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Theorem 3.18 (Lebesgue’s theorem on dominated convergence). Let fi, fa,...: X —
C be integrable and assume f(t) = limy,_o0 fn(t) for p-almost every t, and that f is
measurable. Furthermore, assume there exists an integrable g: X — [0,00] such that
|fnl < g for alln € N. Then

lim/nd :/ du.
THOOXf v Xfu

Now we can prove the completeness of LP(X, u).

Proof of (3). Take fi, fa,--- € LP(X, ) such that a = > 02 || fallp < 0o. Let g(t) =
Zilfi(®)], t € X. Then §: X — [0, 00]. Note that

n
g(t) = ilég; |fi()] = lim g, (t)
Where §,,(t) = > iy | fi(t)|. Hence, §, and § are measurable. Also, g, € LP(X, uu), and

n o
lgnlly < D1 fillp < D2 MIfillp =a < o0
i=1 i=1
for all n € N. By construction, g, ,/* g as n — co. Hence, g2 " g*. Hence,
P dy = T P du = 1 AP < P
/Xg du—,}ggo/Xgndu—,}ggngan <a? <oo.

Hence, g € LP(X, p). Since §: X — [0, 00|, this implies § ist finite p-almost everywhere,
i.e., by possibly changing § on a set of measure 0, we get a finite-valued function g: X —
[0,00) with g(t) = Y52, | fi(t)| p-almost everywhere. By Lemma 3.16 (for the Banach
space K), it follows that f(t) := > 72, fi(t) is welldefined/finite for all ¢ € X ~ N,
w(N) = 0. Setting f(¢) = 0 for all ¢ € N makes f measurable, f: X — K. It remains to
show that f € LP(X, ) and that f = 3>, f; in LP(X, ), i.c. HZ?S fi— pr 0 as

n — o0, i.e.

P
du — 0, n— oo.

/X]gfi

By construction, |f| < >°7°, |fi| = ¢ and

/ ]f\pd,ug/ gPdp < aP < 0.
X X

So, f € LP(X, ). Finally, let
P

hn:‘ifi

Then h,, — 0 p-almost everywhere asn — oo and 0 < h, < (122, |fil)P < 9P € LY(X, ).
Now, by Lebesgue’s theorem of dominated convergence,

/hndu—>/0du:0, n — oQ0. O
X b'e
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Remark. In the case X = N, 2 = 2V and p the counting measure on N, we have
LP(X, ) = £,(N). So, in fact, the proof of completeness of ¢, is contained in the above.

For p = oo, the definition of L (X, p) is slightly different (here, (B(X,C), ds) is not
the good concept).

Definition 3.19. Define
L°(X,u) ={f: X = C: f is measurable and IN € A, u(N) = 0. f|x.n is bounded}.

and L>®(X,p) = £L°(X, )/~ where again f ~ g iff f = g p-almost everywhere. We
set
I llee = nf  sup [f(O)| = inf |[flx ~lco-

Neu Neu
W(N)—o LEXN W(N)=0

I[f]lloo is called the essential supremum of f. It is “easy” to see that L°(X,pu) is a

vectorspace and || - ||co is @ norm on L>°(X, ), and that (L% (X, u),| - ||s) is a Banach
space.

Remark. Holder’s inequality holds for p,q € [1,00], = +

L =0).

% % = 1 (with the convention

4 Cornerstones of functional analysis

We return to the general abstract theory, to prove some of the most important results in
functional analysis. Recall, for X a normed K-vectorspace, X' = B(X,K) is called the
dual of X. There are two important questions about this space. Firstly, is X' = {0}?
Secondly, what “is” X’ for concrete examples of Banach spaces X?

Definition 4.1. Let E be an R-vector space. A map p: E — R is called a sublinear
functional iff for z,y € £

(i) p(z +y) < p(z) +p(y)
(ii) p(tz) = tp(x) for all t > 0.
Example. Any semi-norm and any norm is a sublinear functional

Theorem 4.2 (Hahn-Banach). Let E be an R-vector space, Vo C E a linear subspace.
Let p: E — R be a sublinear functional, and fo: Vo — R a linear form, such that
fo(z) < p(x) for all x € Vy. Then there exists a linear form f: E — R such that

flve = fo and f(z) < p(z) for all xz € E.

Proof. Idea: 1) Extend fj to “one dimension more” (preserving the bound) and 2) “keep
going until done”.

For step 1), let 1 € E ~ Vp (this is nonempty, otherwise we are done) and define
Vi = Vo@spanz, = {x + Az1: z € Vp,A € R} C E (linear subspace). For z,y € Vo:
Jo(x) + foly) = folz +y) < plz+y) =pl@ -z +a1+y) < ple— 1) +ple1 +y).
Hence, fo(z) —p(x —21) < p(z1+y) — fo(y). Let o = sup ey, (fo(z) — p(x —21)). Then
fo(x) —p(x —x1) < a for all x € E, hence
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(1) fo(x) —a <p(x—x) for all z € Vj

(2) foly) + o < p(z1 +y) for all y € Vj.

Now, let f1: V3 — Rbe given by fi(x+Ax1) = fo(x)+Aa for z+Ax; € Vi (z € Vp, A € R).
Then f; is linear and fi|y, = fo. We still need to prove that fi(x + Az1) < p(z + A\z1)
for all x € V), A € R. Use (2) for A >0,y € V)

(1) rwsp(2en)

fily+2ar) = folw) + e = A (fo (2) +a) < ap (L) = ply -+ Aa)

If A <0, then —\ > 0. Let z € V). By (1),
T T
—a< —
/o (—A) O‘p<—A xl)
Hence

fila +a) = fola) + Do = <A (fo () = o) < 2w (5~ 1) =po o+ A)

So

Hence, fi1: Vi — R is linear, fi|y, = fo and fi(x) < p(z) for all z € V;.

For step 2), let S be the family of all pairs (V’, f’) with V; C V' C E, V' linear
subspace, and f': V' — R with f'|y, = fo and f'(z) < p(z) for all x € V'. We define
a partial ordering < on S by (V/,f") < (V" f") it V! C V" and f"| = f'. Let
T C S be totally ordered (i.e. for any (V', f'), (V", ") € T, either (V', f') < (V", f") or
(V" ")y < (V' f). Let V* = Uy V. V* is a linear subspace of E. Let f*(z) = f'(z)
for x € V' € T. This is well-defined since T is totally ordered. Now (V', ') < (V*, f*)
for all (V', f') € T. Hence, (V*, f*) is an upper bound for 7. In other words: Every
totally ordered subfamily 7 of S has an upper bound. By Zorn’s Lemma, S has a
maximal element, i.e. there exists (V, f) € S such that if (V', f') € S satisfies (V, f) <
(V' "), then (V. f) = (V', f'). Note (by step 1), V = E, and so f: E — R is linear and
fvy = foand f(z) < p(z) for all x € E. O

Remark. Note that —f(x) = f(—xz) < p(—x), so —p(—z) < f(z) < p(z) for all x € E.

Theorem 4.3 (Hahn-Banach for semi-norms). Let E be a K-vector space (K = R or
K =C) and Vy C E a linear subspace. Let p: E — R be a semi-norm, and fo: Vo — K
be a K-linear form, with |fo(x)| < p(x) for all x € Vi. Then there exists a K-linear form
f+ E — K such that fly, = fo and |f(z)| < p(z) for all xz € E.

Proof. If K = R, then |f(z)| < p(z) is equivalent to —p(—z) < f(x) < p(x), since p
is a seminorm, so the result follows from 4.2. If K = C: Consider the real linear form
up = Re fo: Vo = R (Re fo < |fo| < p). By 4.2, there exists a real linear form u: F — R
with u(z) < p(x) for all z € E and u|y, = up = Re fy. Let f: E — C be defined by

f(z) := u(z) — iu(iz) € C using that u is real linear, one gets that f is C-linear and,
using z = Rez — ¢ Re(iz), one has that f|y, = fo. For z € E, choose a € C, |a] = 1,
such that |f(z)| = af(z) = f(az) = u(azx) < plaz) = |a|p(z) = p(x). O
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Theorem 4.4 (Hahn-Banach). Let X be a normed K-linear vector space, let Vo C X,
and fo: Vo = K, fo € V§ (fo is a bounded linear form). Then fy has an extension
f: X —>Kz f|V() = f07 f € X' and ||f|| = ||f0||

Proof. Use Theorem 4.3 with p(z) = || fol| - ||z]|- O

Corollary 4.5. Let X be a Banach space and x € X, x # 0. Then there exists an
f € X' such that f(x) # 0.

Proof. Define fo(ax) = a||z| for ax € span{zx} = Vj. Then there exists f: X — K,
f € X', such that f|y, = fo. In particular, f(x) = fo(z) = ||z|| # 0. O

Remark. If x # y, x,y € X, then z—y # 0, so there exists f € X' such that f(x—y) # 0,
hence f(x) # f(y). Hence, X’ seperates points in X: If f(z) = f(y) for all f € X', then
T =y.

4.1 3 consequences of Baire’s theorem

Recall Baire’s theorem: If M = {A,d} is a complete metric space and {V,}nen is a
countable family of open, dense subsets of A, then M, cy Vi, is also dense. On problem
sheet 5 it was proven a corollary of Baire’s theorem that a complete metric space is never
the union of a countable number of nowhere dense, closed subsets.

Theorem 4.6 (Banach-Steinhaus/Principle of uniform boundedness). Let X be a Ba-
nach space, Y a normed space, I some index set, and for each i € I a bounded linear
operator T;: X — Y. If sup;er [|Tix|| < oo for all x € X, then sup;c; || T3] < oc.

Proof. For n € N, let E, = {z € X: sup;c; || Tiz| < n}. Then X = U,cy En. Now,
En = Nier 1T:()172([0,n]), hence all E, are closed, since [0,7] is closed and ||T;(-)|| is
continuous because Tj is continuous. So, by Baire, there exists ng € N such that E,,, has
an interior point y € E,,, i.e. there is an ¢ > 0 such that ||z — y|| < ¢ implies x € E,,.
Note, that E,, is symmetric, i.e. z € E,, implies —z € E,,. Hence, ||z — (—y)|| < &
implies z € E,,. Also, Ey, is convex, so |[u| < e implies u = 2 ((u+y) + (u —y)) € En,.
Hence, ||u|| < e implies u € E,,, that is ||u|| < e implies ||Tju|| < ng for all i € I. So, if
x € X, ||z]| <1, then |lex| < ¢, so || Ti(ex)|| < ng for all i € I. Hence, ||z| < 1 implies
| Tiz|| < ng/e forall i € I, so ||T;|| < mng/e < oo foralliel. O

Remark. There exist more general versions of this theorem, but the one given here is
the most used.

Definition 4.7. A map between two metric spaces is called open iff the image of any
open set is open.

Remark.

(a) Note the difference to “continuity”.

(b) One cannot in general replace with “closed to closed”.

(c) Clearly, a bijective map is open iff its inverse is continuous.
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Lemma 4.8. Let X,Y be normed spaces and T: X — Y linear. Then the following are
equivalent:

(i) T is open.
(it) For all v > 0 there exists € > 0 such that B:(0) C T'(B,(0)).
(tit) There exists € > 0 such that B.(0) C T(B1(0)).

Proof. To see (i) = (it) note that T'(B,(0)) is open in Y and 0 € T(B,(0)). To prove
(79) = (i), let U C X be open, and x € U. Then Tz € T(U). Since U is open, there
exists r > 0 such that B,(x) C U. Note that B,(x) = x + B,(0) = = + rB;1(0). Hence,
x+ B,(0) CU, so Tz +T(By(0)) CT(U). Form (ii) we have £ > 0 such that B.(0) C
T(B,(0)), hence, Tx + B.(0) C Tz + T(B,(0)) CT(U). Now, Tx + B-(0) = B.(Tx), so
Tz + B:(0) is open, contains Tz and is contained in T'(U). (i) < (i4i) is clear. O

Remark. If T: X — Y is linear and open, then T is surjective.

Theorem 4.9 (Open mapping theorem). Let X and Y be Banach spaces, and assume
T € B(X,Y) is surjective. Then T is open.

Proof. We shall prove that (i74) in Lemma 4.8 holds. This is done in 2 steps: First
we prove that there exists g > 0 such that B, C T(B;(0)). Since T is a surjection,
Y = U,enT(B,(0)). Since Y is Banach, Baire’s theorem implies that there exists N € N
such that (T'(Bn(0)))° # 0, i.e. there exists yo € T(Bn(0)) and € > 0 such that B (yo) C
T(Bx(0)), in other words ||z — yo|| < e implies z € T(By(0)) (x). Now, T(Bx(0)) is
symmetric, hence —yq also satisfies (x). Let y € Y with ||y|| < e. Then ||(yo+y)—wol < ¢,
hence yo +y € T(Bn(0)). Similarly, ||y|| < ¢ implies —yo +y € T(Bn(0)). Therefore,
since T(By(0)) is convex, we have y = 3((yo + y + (=30 + y)) € T(Bn(0)), if [ly| <e.
Hence, B:(0) € T'(Bn(0)). So, B./n(0) € T'(B1(0)). Then ¢ is as claimed.

Now for the second step, let £g > 0 be as above. We now prove that B., C T'(B1(0)).
This will complete the proof. Let y € Y with ||y|| < eo. Take ¢ > 0 such that |ly|| <
€ < go and write 7 = =2y. Then ||7]| < eo, so ¥ € T(B1(0)). Choose a € (0,1) such that
0 < =15 < 1 and take yo € T(B1(0)) such that || — yo|| < ago. Since yo € T(B1(0)),
there is a xy € B1(0) such that yo = Tzg. Now let zp = y?% Then ||zg]| < €p. So
20 € B, (0) € T(B1(0)). So there exists y; € T(B1(0)) such that ||zo — y1]| < asgp, that
is |7 — (yo + ay1)|| < a®ep. Repeat on 21 = w, to get yo = Ty € T(B1(0)) with
|21 — y2|| < aeg. Inductively, we get a sequence {zy, }nen C Bi1(0) such that

7S o = - (X 0ts)
i=0 =0

Since « € (0,1), and ||2;]] < 1 for all i € N, the series Y52, a’z; is absolutely convergent.
Since X is Banach, the series Y ;o a'z; is convergent in X. Write 7 = > 72, a'z; € X.
Since T' is bounded,

‘ < a"tleg.

T(Zn: aixi) n7e Tx
i=0
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in Y and by construction
n
T ( Z aixi) LimaaN 1.
i=0

Finally, let x = %T Then Tz = y. Also

€ £ X e X . e 1
z|| = —||z :—H alzil| < — o' < — < 1. O
lell = Sl = | Satn] < S30at< S

Corollary 4.10. Let X and Y be Banach spaces, and assume T € B(X,Y) which is
bijective. Then T is a homeomorphism.

Corollary 4.11. Let || || and || - || be two norms on the same vectorspace X, such that
{X, ]I} and {X,]| - |I'} are both Banach. Assume there exists a constant M > 0 such
that ||z|| < M||z||" for allxz € X. Then || - || and || - || are equivalent.

Corollary 4.12. Let X, Y be Banach spaces, and assume T € B(X,Y) is injective.
Then T=1: R(T) — X is bounded iff R(T) C Y is closed.

Definition 4.13. Let X, Y be normed spaces, D C X a linear subspace, and T: D — Y
a linear map (we write D = dom(7"), T: X D D — Y). We call T' closed (a closed linear
operator) iff for any sequence {zy}neny € D such that z, — z as n — oo and Tz, — y
asn — oo we have x € D and Tz = y.

Remark. Note the relation to continuity: If dom(7") = X, look at:
(a) x, — x as n — oo.

(b) {T'x,} is convergent.

(c) Tx =y.

Then T is continuous iff (a) = (b) A (¢). T is closed iff (a) A (b) = ().

Remark. A closed operator does not in general map closed sets to closed sets.

Definition 4.14. For linear T: X O D — Y we define the graph of T' by
gr(T) ={(z,Tx): x € D} C X x Y.

Lemma 4.15. Let X,Y, D, T be as in 4.14. Then
(a) gr(T) is a linear subspace of X xY.
(b) T is a closed operator iff gr(T) is closed in X &1 Y (here ||(z,y)|1 = ||z|x + lvllv)-

Proof. This is left as an exercise.

Lemma 4.16. Let X,Y be Banach spaces, D C X a linear subspace, T: X D D —Y

a closed operator. Then

(a) (D,| - |") with ||z||' = |z||x + ||Tx|ly is a Banach space. || -||" is called the graph
norm.
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(6) T: (D, |- I) = (¥, | - lly) is bounded.

Proof. Let {zp}nen € D be Cauchy with respect to || - ||'. Then {z,} is Cauchy with
respect to || - || x, and {7z, }nen is Cauchy (in Y) with respect to || - ||y. Hence, since
X and Y are Banach, there exist x € X, y € Y such that x, — = as n — oo and
Tx, — y as n — oo. Since T is closed, z € D and y = Tx. Then ||z, — x| =
|lzn — x|l x + [|T2n — ylly — 0 as n — oo. So, z,, — = as n — oo with respect to || - ||.
(b) is trivial. O

Theorem 4.17. Let X, Y be Banach spaces, D C X a linear subspace, T: X D D —Y
closed and surjective. Then T is open. If T is also bijective, then T~ is continuous.

Proof. By Lemma 4.16 and Theorem 4.9, T: (D, | - ||') — (Y,| - |ly) is open. Since

|lzl|x < ||z|" for all x € D, we have that any || - || x-open set is also || - ||"-open. So
T is also open as a map (D, | - ||x) = (Y,]| - |ly). If T is also bijective, then T~! is
(Y|l - IIy)-(X, ] - ||x)-continuous. O

Theorem 4.18 (Closed graph theorem). Let X, Y be Banach spaces, and assume
T: X —Y is linear and a closed operator. Then T is continuous.

Proof. By Lemma 4.16(b), T: X — Y is continuous, when X is equipped with the graph

norm, |[z|" = ||z||x + ||Tz|y. By corollary 4.11, || - ||x and | - || are equivalent norms,
since ||z||x < ||z||" and (X, | - ||) is Banach by assumption and (X, | - ||') is Banach by
4.16(a). Therefore, T is also continuous with respect to || - || x. O

Remark. The theorem says a closed operator on all of a Banach space is automatically
continuous. This, and the following consequence of Banach-Steinhaus illustrates why it
is almost impossible to explicitly define a non-continuous linear operator on a Banach
space.

Proposition 4.19. Let X be a Banach space, Y a normed space, and let T,, € B(X,Y),
n € N. Assume that Tx := limy, o Thx exists for all x € X. Then T is linear and
continuous.

Proof. Tt is clear that T is linear. Since {T,z},en C Y is convergent for all z € X,
{Thz}nen € Y is bounded, hence sup,cy ||Thz|y < oo for all z € X. Hence, by
Banach-Steinhaus, sup,,cy ||Tn]| = M < oco. It follows that ||Tz| = limy—e0 ||Thz| <
limy, o0 || Tn||llz]] < M||z||, hence T' € B(X,Y). O

Recall, that for a normed space X, X’ = B(X,K) is called the dual of X. Let x € X,
then [lz]| = sup{|f(2)|: f € X', |[f|| <1} = max{|f(2)|: f € X', | f]| <1}.
Remark. Let z € X and define «(z): X' — K, f — f(z). Then ¢ is linear: (¢(x))(Af +
g9) = (Af +9)(x) = Af(z) + g(x) = Au(2)(f) + (2)(g) and
sup{|(¢(2))(f)|: f € X' |IfIl < 1} = sup{[f(2)|: f € X', | f]| < 1} = |]z]| < oc.

Hence, «(z) € B(X',K), i.e. «(x) € X", and ||c(x)| x» = ||z||x. Hence, :: X — X" is an
isometrical embedding. ¢ is called the canonical embedding.
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Definition 4.20. A subset M C X (X normed) is called weakly bounded if for all f € X',
supenr | f(2)] < co. By the above, M is weakly bounded iff «(M) C X” is pointwise
bounded.

Proposition 4.21. A weakly bounded set in a normed space is also bounded in the norm
topology, i.e. there exists R > 0 such that M C Bg(0).

Proof. Use the principle of uniform boundedness. O
Definition 4.22. A normed space X is called reflexive if 1: X — X" is surjective.

Remark. Any Hilbert space is reflexive.

Remark. Any reflexive space is complete.

Remark. If X is reflexive, and if X 2 Y, then Y is reflexive.
Remark. If X and Y are reflexive, X @1 Y is reflexive.

Example. /, is reflexive for 1 < p < oo, since (¢,) = £, %+% = 1, and hence
(6p)" = (L) = £,. However, ({1) = ls and ({s)" # ¢1. Hence, ¢; and /s are not
reflexive. Furthermore, (LP) = L9 if 1 < p < 0o, which we will see later.

Definition 4.23.

(a) A sequence {x,}nen C X is said to converge weakly (x) — x as k — oo in X) if
f(zk) = f(x) as k — oo for all f € X'.

(b) A sequence {fn}nen € X' converges weak* to f € X' (written f,, = f) if fp(z) —
f(z) as k — oo for all z € X.

(c) Similarly, one defines the notion of Cauchy sequences (weak, weak™).

(d) A subset M C X is called weakly sequentially compact if every sequence in M has a
weakly convergent subsequence (with limit in M). Similarly for weak™ sequentially
compact.

(e) To avoid confusion with usual convergence, we call convergence with respect to the
norm strong convergence.

Remark. xp — x implies xp — x since |f(xg) — f(z)| < ||f|l|zk — ]|

Remark. Since X is only canonically embedded in X", weak convergence in X' is a priori
stronger than weak* convergence.

Remark. One can, both for weak and weak™® convergence, define this convergence by
topologies (“complicated”).

Remark. By the canonical embedding ¢: X — X” we have z;, — z as k — oo in X iff
(zg) = o(x) as k — oo in X",

Remark 4.24.

1. The weak limit of a sequence is unique (use Hahn-Banach). Also the weak* limit
is unique.
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2. Strong convergence implies weak convergence (and it also implies weak™® conver-
gence). The opposite is not true: take X = ¢,, X' = ¢, with % + % =1 and
en € {g = X'. Then for all x € €y, e,(z) = > ey Oini = xn, — 0 as n — oo. Le.
{entnen € X’ and e,(z) — 0 as n — oo for all 2 € X. Hence e, — 0 as n — 00.
But |len|lxr =1, so e, /4 0 as n — oo.

xp — x, k — 00, in X implies ||z|| < liminfx oo |2kl

fe = f, k — oo, in X’ implies || f| < liminfy_,o0 || f2]-

The norm || - [[: X = Ror || - ||: X’ — R is weak/weak™ lower semi-continuous.
Weak and weak™ convergent sequences are bounded (in norm).

AR

Theorem 4.25. Let X be separable. Then the closed unit ball B1(0) C X' is weak*
sequentially compact, i.e. any bounded sequence in X' has a weak* convergent subse-
quence.

Proof. Let {x,: n € N} C X be dense and let {fr}reny € X', with ||fx]| < 1, k € N.
Then {fi(zn)}key € K (n € N fixed) is a bounded sequence in K. By a diagonal
argument (a la Cantor, but different) there exists a subsequence { fx,, }men such that,
for all n € N, {f,. () }men is convergent in K, i.e. limy, o0 f,, (z5) exists for all n € N.
Then, for all y € Y = span{z,: n € N} C X the limit lim,, o0 fx,, (y) exists. Define
fly) = limp—o0 fi,, (y) for y € Y. Then f is linear and |f(y)| = limy—oo | [k, (¥)| <
limp, oo || f&, Y]] < |ly|| for all y € Y. Then f has a unique extension to a bounded

linear functional on X (again called f). So f € X', with ||f|| <1 and, forz € X,y €Y,

[(f = fra) @) < (f = frw) @ =) +[(f = fr) W] < 20z = yll + [(f = fr,)W)].

The first term can be made arbitrarily small since Y = X. The second term goes to 0
as m — oo by definition of f. Hence f, = fasm — oo. O

Definition 4.26. For (n,p,e) with n € N, ¢ = (¢1,...,¢,) € (X')" and € > 0 define
Unpe=1{r € X: |pp(z)] <efork=1,...,n}

and
Ty = {A CX:2€A = x+ Unpe € A for some Un,go,a}'

Then Z is a topology on X and it is the weakest topology 7 on X such that all
f € X' are continuous with respect to 7 as maps f: X — K. {X, Sy} is neither a
normed nor a metric space, but (as in Lemma 2.2) the linear structure on X is Jy
continuous. Finally, convergence in .Zjy is the same as weak convergence ({X, 7y} is a
“locally convex topological vector space”). A similar construction works for the topology
Fw+ on X' giving weak® convergence in X'.

Remark 4.27.
1. If X is reflexive then weak™ and weak convergence in X’ is the same.
2. If X is reflexive and V C X is a closed subspace, then V is reflexive.
3. X is reflexive iff X'/ is reflexive.
4. If X’ is separable, X is separable.

46



Theorem 4.28 (Banach-Alaoglu). If X is a reflexive Banach space, then every norm-
bounded sequence has a weakly convergent subsequence, i.e. B1(0) is weakly sequentially
compact.

Proof. Let {zx}reny € B1(0) € X and Y = span{zy: k € N} C X. Then Y is reflexive
and separable. Then Y” = ((Y') (where ¢ is the canonical embedding) is separable, so
Y’ is separable. Therefore, we can use 4.25 on Y’ on the sequence {¢(zx)}reny C Y7, ie.
there exists y € Y such that for a subsequence {¢(z,,)}men, t(zk,,)(f) = y(f) for all
feY' Letx=1:"Y(y) € Y. Then this means that t(xy, )(f) = f(zr,) — y(f) = f(x)
as m — oo for all f € Y'. Note that for ¢ € X', we have |y € Y. So it follows that
o(xg,,) = p(x) as m — oo for all ¢ € X', i.e. xp, — x asm — oo in X. O

Remark. In particular any Hilbert space is reflexive, so the closed unit ball in a Hilbert
space is weakly sequentially compact.

5 Topics on operators

Definition 5.1. The compact (linear) operators from X to Y are defined by
K(X,Y)={T € B(X,Y): T(B1(0)) is compact}.

Remark.
(i) If Y is Banach, then “T'(B;1(0)) compact” can be replaced by “T'(B;(0)) precom-

pact”.

(ii) That is, T'€ K(X,Y) iff T maps bounded sequences (in X) into sequences (in Y)
which have a convergent subsequence.

(iii) For k € C(I?), I =[0,1],

(K9)@) = [ M)Wy, v Lfec)

defines a compact operator K: C(I) — C(I).

Proposition 5.2. Let T € B(X,Y) and define, fory € Y/, T'(y')(x) = y/(Tx). This
defines a linear map T': Y' — X' called the adjoint of T. We have T' € B(Y', X') with
IT'|| = IT| and ': B(X,Y) — B(Y',X"),T — T’ is an isometric embedding.

Proof. We have (T'y)(Az1+xz2) = v/ (T (A\x1+2x2)) = N (T21)+y (Tx2) = MT'y ) (x1)+
(T'y")(x2). Hence, T'y': X — K is linear. Also [(T'y)(x)| = ¢/ (Txz)| < ||V/||[|Tz] <
YTz, so Ty’ € X'. Hence, T" is well-defined. T is linear, since (T"(A\y}+v5))(x)
(Ayi + 95)(T2) + My (T2) + yo(Tx) = ATy (z) + T'ys(x) = (A\T'y; + T'ys)(2), ie.
T'(Ayy + ya) = AT"yh + Ty

From the above, one sees ||[T"y'|| < ||T||||¥/]], i-e. T" is bounded and ||T"|| < ||T]|. On
the other hand, for ||/ < 1,4 €Y', ||z|| <1, z € X, then

Il = Iyl = (1) ()] = |y (T)].

If Tz # 0, then by Hahn-Banach, there is a ¢’ such that ||§’|| = 1 and §'(Tx) = ||Tz|.
Hence, ||| > ||Tz||. Hence, |T"|| = supjjy <1 T2l = [T, so T[] = |- O
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Definition 5.3 (Hilbert space adjoint). Let H be a Hilbert space, and let ®: H —
H',y — (y,—) be the map in Theorem 2.32 (Fréchet-Riesz), and let T € B(H). Then
T* = & 1T'® is called the Hilbert space adjoint of T. It satisfies

(T*z,y) = (z,Ty), Vz,ye€ H.

T is called selfadjoint if T* = T'. Note, that T is assumed to be bounded. For unbounded
operators, the definition of adjoint and therefore of selfadjointness is more complicated
(for example in quantum mechanics).

Lemma 5.4 (algebraic properties). We have

(1) (eh+To) =oT] + Ty for Th, To € B(X,Y) and a € K.

(D)* (oTh + To)* =aTy + Ty forT1,T> € B(H) and o € K.

(2) I'=1forIeB(X),I:X — X,z .

(3) ForTie B(X,Y), Ty € B(Y,Z), (ITy) = T|T%.

(4) With 1x: X — X" and 1y: Y — Y" the canonical embeddings and T € B(X,Y),
we have T"1x = 1y T.

(4)* ForT e B(H), T**=T.

Proposition 5.5. Let X,Y be Banach spaces and T € B(X,Y). Then T~! € B(Y, X)
exists if and only if (T")~' € B(X',Y") exists and, in this case, (T~%) = (T")~*. (or, if
X =Y = H a Hilbert space, (T*)~! = (T~1)*).

Definition 5.6. Let T' € B(X) with a Banach space X over C. We define the resolvent
set of T' by
p(T)={AeC: N(I'=A[)=0and R(T — \) = X}

and the spectrum of T' by
o(T)=C~ p(T).

The spectrum can be split in three parts. The point spectrum is
op(T) ={A e C: N(T'— M) # 0}.
The continuous spectrum is
0o(T) ={\€C: N(T —AI) =0and R(T — \I) # X, but R(T — \I) = X}.
The rest/residual spectrum is
o (T)={\€C: A& C: N(T =) =0and R(T — ) # X}.

Remark.

(1) Note that A € p(7T) if and only if T'— AI: X — X is bijective. This is equivalent to
the existence of R)(T) := (T — M)~ € B(X), called the resolvent of T (at \).

(2) A € 0p(T) if and only if there exists z # 0 such that T2 = Az. In this case, A is
called an eigenvalue and x is called an eigenvector (x € X). However, in the cases
where X is some space of functions — €(I), LP(Q), €*(I), €*~(I), ... — such an
X is normally called an eigenfunction. N(7'— AI) is called the eigenspace belonging
to the eigenvalue A. It is a T-invariant subspace, i.e. TN(T — AI) C N(T — AI).

48



Remark. If f is an analytic function, i.e. f can be represented by a convergent power
series, f(z) = Yoo anaz™, we can define f(T) = > 7> ya,T™ (which is defined since
B(X) is Banach).

Proposition 5.7. Let X be a Banach space, T € B(X) with |T|| < 1. Then (I-T)"! €
B(X) and (I —=T)™ ' =32 ,T" (the Neumann series) in B(X).

Proof. Let S, = Zﬁ:o T™. Then, for k < ¥,

(e.)
k
Ise=sil=] X 1< X s o< YT 0
k<n</ k<n</{ k<n</{ n=k+1

Hence, {S;} is Cauchy in B(X), so convergent. Let S = limy_, Sk in B(X) and for

k — oo:
k

(I -T)Skx = Z(T” — T g =g — TF g LN
n=0
since || T*1z| < ||T||*+|lz||. On the other hand (I — T)Skx — (I — T)Sz as k — oo.
Hence, S = (I —T)" L. O

Proposition 5.8. Let T € B(X). Then p(T) C C is an open set, i.e. o(T) = C~ p(T)
is closed, and the resolvent function p(T) 3 X\ — Rx(T') € B(X) is a complex analytic
map from p(T) to B(X) with |Rx(T)|~' < d()\,o(T)), i.e. for all \g € p(T), there
exists v > 0 such that

o0

RA(T) =Y an(A = X)"T"

n=0

for all A € B.(\o).

Proof. Use that (I — A)™1 =Y JA™if ||A| < 1and T — (A — p)I = (T — M)(I —
pRA(T)) =: (T = AI)S(p). Then S(p) is invertible if |u|||RA(T)|| < 1. Hence, Ry_,(T) =
S() T RA(T) = 2o uFRA(T)H. O

Proposition 5.9. Let X,Y be Banach spaces. Then the set of invertible operators in
B(X,Y) is an open set. If X #0 and Y # 0, then for S,T € B(X), T invertible and
IS —T| < ||T~Y|7t implies S is invertible.

Proof. Let R=T —S. Then S =T(I — T 'R) = (I — RT~')T where |[T7'R|| < 1 and
|RT~!| < 1. Now use 5.7. O

Definition 5.10. An operator A € B(X,Y) is called a Fredholm operator (“is Fred-
holm”) iff

(i) dimN(A) < oo.
(ii) R(A) CY is closed.
(iii) codimR(A) :=dim (Y/R(A)) < o0.
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The index of A is ind(A) = dim N(A4) — codim R(A).

Theorem 5.11. Let T € K(X). Then A= I—T is a Fredholm operator with ind(A) = 0.
For compact operators, one has the following spectral theorem for compact operators:

Theorem 5.12 (Riesz-Schauder). For every operator T € K(X) one has

(i) o(T)~ {0} consists of countably (finite or infinitely) many eigenvalues, with O the
only possible accumulation point. If o(T') consists of infinitely many elements, then

it follows that o(T) = o,(T) U {0}.
(i1) For X € o(T) ~ {0} one has 1 < ny = max{n € N: N((T — AX)"!) £ N((T -

A)™)} < 0. ny is the order (or index) of A and dim N(T — XI) is the multiplicity
of \.

(iii) (Riesz decomposition) For X € o(T) \ {0} one has X =N ((T'—= X)"™) @R ((T —
A)™). Both subspaces are closed, T invariant and N (T — X\I)"™) is finite dimen-
sional.

() o(Tlr(r-xrymr)) = o(T) N {A}.

(v) Let, for A € o(T) ~ {0}, Ey be the projection on N ((T'— XI)™) according to (iii).
Then ExE, = 0y \E,, for A\,u € o(T) ~ {0}.

Corollary 5.13. Let T € K(X) and Ao € o(T) ~ {0}. Then the resolvent function
A= Rx(T') has an isolated pole of order ny, at Ao, i.e. the map A +— (A — Ag)" 0 R)\(T)
can be analytically continued at the point Mg, and the value at \g is not the zero operator.

The fact that o(T') \ {0} C 0,(T) can be formulated as follows:

Proposition 5.14 (Fredholm alternative). For compact T, either the equation Ayxz =
Tx — Az = y has a unique solution for all y € X or the equation Tx — Ax = 0 has
non-trivial solutions.

Theorem 5.15 (“strong” Fredholm alternative). Let X be Banach, T € K(X), XA # 0.
Then the equation Tx — Az = y, y € X, has a solution © € X iff 2'(y) = 0 for all
solutions x € X to the homogenous adjoint equation T'x' — X2’ = 0. The number of
constraints on y (given by x'(y) = 0) is equal to the number of linearly independent
solutions to the hoogenous equation Tz — Az =0 (i.e. to the dimension of N(T — \I)).

Theorem 5.16 (Schauder). Let X,Y be Banach spaces and T € B(X,Y). Then T €
K(X,Y) iff T' € K(Y', X").

Remark. If X = H a Hilbert space, T € K(X), T = T, then there exists an orthonormal
system {e,} in H such that Te, = Agey for all k and Tax = > A\ (e, x)ey.
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