Vorlesung aus dem Sommersemester 2011

Functional Analysis

Prof. Thomas Østergaard Sørensen, Ph. D.

geTEXt von Viktor Kleen & Florian Stecker

Contents

0	Introduction	2
1	Topological and metric spaces	2
2	Banach and Hilbert spaces	16
3		
4	Cornerstones of functional analysis 4.1 3 consequences of Baire's theorem	39 41
5	Topics on operators	47

0 Introduction

Example. Consider the ordinary differential equation $\frac{dx}{dt}(t) = f(t, x(t))$ with boundary conditions $x(t = t_0) = x_0$ with $x: I \to \mathbb{R}^n$ for some interval $I \subseteq \mathbb{R}$ and $f: I \times \mathbb{R}^n \to \mathbb{R}^n$. By integrating both sides, we get an integral equation for x:

$$x(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds.$$

Define a map $K : C(I; \mathbb{R}^n) \to C(I; \mathbb{R}^n)$ by

$$(K(x))(t) = x_0 + \int_{t_0}^t f(s, x(s)) ds.$$

Now the integral equation becomes the fixed point equation K(x) = x. But K is not linear (consider for example $f(t,x) = t\langle x,x\rangle x$).

Example. For an example of a linear problem consider a map $k : [0,1]^2 \to \mathbb{R}$ and for $x : [0,1] \to \mathbb{R}$ let

$$(Kx)(t) = \int_0^1 k(t, s)x(s) \,\mathrm{d}s.$$

This defines a linear map $K: C(I; \mathbb{R}) \to C(I; \mathbb{R})$. The idea now is to study the linear map K and solutions to the equations Kx = y and $Kx = \lambda x$.

1 Topological and metric spaces

We will start by generalising the concept of "continuous functions", i.e. of "continuity". We will first talk about the euclidean topology on \mathbb{R}^n . For $x, y \in \mathbb{R}^n$ let

$$||x - y||_{\text{Eucl}} = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

and let $d_{\text{Eucl}}(x,y) = \|x-y\|_{\text{Eucl}}$. A subset $U \subseteq \mathbb{R}^n$ is called *open* if and only if (iff) for all $x_0 \in U$ there exists $\varepsilon > 0$ such that (s.t.) if $\|y-x_0\|_{\text{Eucl}} < \varepsilon$ then $y \in U$. Writing $B_{\varepsilon}(x_0) = \{y \in \mathbb{R}^n : \|x-y\|_{\text{Eucl}} < \varepsilon\}$ we can say that U is open iff for all $x_0 \in U$ there exists $\varepsilon > 0$ s.t. $B_{\varepsilon}(x_0) \subseteq U$. In particular $B_{\varepsilon}(x)$ is open for all $x \in \mathbb{R}^n$ und all $\varepsilon > 0$. We denote $\mathscr{T}_{\text{Eucl}}$ the family of all open subsets of \mathbb{R}^n :

$$\mathscr{T}_{\text{Eucl}} = \{ U \subseteq \mathbb{R}^n \colon U \text{ is open} \}.$$

Note that $\mathscr{T}_{\text{Eucl}}$ is a *subfamily* of the powerset $2^{\mathbb{R}^n}$ of \mathbb{R}^n . The following should be known:

Proposition 1.1.

- \emptyset and \mathbb{R}^n are open.
- If $U_1, U_2 \in \mathscr{T}_{\text{Eucl}}$, then $U_1 \cap U_2 \in \mathscr{T}_{\text{Eucl}}$.
- If I is some index set and $(U_i)_{i\in I}$ is a family of sets in \mathscr{T}_{Eucl} , then $\bigcup_{i\in I} U_i \in \mathscr{T}_{Eucl}$.

We used all of this to study continuity of functions. Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be any map. f is called *continuous at* $x_0 \in \mathbb{R}^n$ iff for all $\varepsilon > 0$ there exists $\delta > 0$ s.t. if $||x - x_0||_{\mathbb{R}^n} < \delta$ then $||f(x) - f(x_0)||_{\mathbb{R}^m} < \varepsilon$, i.e. $f(B_{\delta}(x_0)) \subseteq B_{\varepsilon}(f(x_0))$. We say f is *continuous* iff it is continuous at all $x_0 \in \mathbb{R}^n$. Recall the following:

Proposition 1.2. A map $f: \mathbb{R}^n \to \mathbb{R}^m$ is continuous iff $f^{-1}(U)$ is open (in \mathbb{R}^n) for all open $U \subseteq \mathbb{R}^m$.

We shall use Proposition 1.1 and 1.2 to generalise the concept of continuity of maps between other sets than \mathbb{R}^n and \mathbb{R}^m .

Definition 1.3. A topological space $T = \{A, \mathcal{T}\}$ consist of a non-empty set A and a family \mathcal{T} of subsets of A (i.e. $\mathcal{T} \subseteq 2^A$) satisfying

- 1. $\emptyset, A \in \mathscr{T}$.
- 2. If $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$.
- 3. If I is some index set and $(U_i)_{i\in I}$ is a family of sets in \mathscr{T} , then $\bigcup_{i\in I} U_i \in \mathscr{T}$.

Then the collection \mathscr{T} of subsets of A is called a *topology* on/for A and the elements of A are called *points*. The elements of \mathscr{T} are called *open sets*.

Remark.

- 1. In general, $\mathscr{T} \subseteq 2^A$, but $\mathscr{T} \neq 2^A$.
- 2. It follows, by induction, that the intersection of *finitely* many open sets is open.
- 3. Let $A \neq \emptyset$ and let $\mathscr{T} = \{\emptyset, A\}$. Then $\{A, \mathscr{T}\}$ is a topological space; it is called an *indiscrete space*.
- 4. Let $A \neq \emptyset$ and let $\mathscr{T} = 2^A$. Then $\{A, \mathscr{T}\}$ is also a topological space; it is called a discrete space. In particular any set (with at least two points) can be given several topologies.

Definition 1.6. Let $\mathscr{T}_1, \mathscr{T}_2$ be two topologies on the same set A, then we say that \mathscr{T}_1 is stronger or finer than \mathscr{T}_2 iff $\mathscr{T}_1 \supseteq \mathscr{T}_2$, and that then \mathscr{T}_2 ist weaker or coarser than \mathscr{T}_1 .

Remark.

- 1. Given two topologies $\mathcal{T}_1, \mathcal{T}_2$ on the same set these do *not* need to be comparable in the sense above.
- 2. The discrete topology (2^A) is stronger than any other topology and the indiscrete topology is $(\{\emptyset, A\})$ is weaker than any other topology.

Using the notion of topologies and inspired by Proposition 1.2, we can generalise continuity.

Definition 1.7. Given two topological spaces $T_i = \{A_i, \mathcal{T}_i\}, i = 1, 2, \text{ a map } f : A_1 \to A_2$ is called *continuous* iff $f^{-1}(U) \in \mathcal{T}_1$ for all $U \in \mathcal{T}_2$. For emphasis, we say that f is $(\mathcal{T}_1, \mathcal{T}_2)$ -continuous.

Definition 1.8. For T_1 , T_2 as above, and $a \in A_1$, f is said to be *continuous at a* iff for any $U_2 \in \mathscr{T}_2$, with $f(a) \in U$, there exists a $U_1 \in \mathscr{T}_1$ s.t. $a \in U_1$ and $f(U_1) \subseteq U_2$.

Remark. f is continuous iff f is continuous at all $a \in A$.

Proposition 1.9.

- 1. Let $T = \{A, \mathcal{T}\}$ be a topological space and let $id: A \to A$ be the identity map. Then id is $(\mathcal{T}, \mathcal{T})$ -continuous.
- 2. Any constant map $f: A_1 \to A_2$ is continuous.

Proof.

- 1. Let $U \subseteq A$ be open. Then $id^{-1}(U) = U \in \mathscr{T}$.
- 2. Let $U \subseteq A_2$ be open. Then if $f^{-1}(U) = \emptyset$ if $a \notin U$ and $f^{-1}(U) = A_1$ if $a \in U$. In either case $f^{-1}(U)$ is open.

The result of Proposition 1.9 is reassuring (but not surprising); same for the next result, which however shows the strength of the definitions.

Proposition 1.10. Let $T_i = \{A_i, \mathcal{T}_i\}$, i = 1, 2, 3, be three topological spaces and assume that $f: A_1 \to A_2$ and $g: A_2 \to A_3$ are continuous maps. Then $g \circ f$ is continuous.

Proof. Let $U \in \mathcal{T}_3$. Then since g is $(\mathcal{T}_2, \mathcal{T}_3)$ -continuous, $g^{-1}(U) \in \mathcal{T}_2$. Also $f^{-1}(V) \in \mathcal{T}_1$ for any $V \in \mathcal{T}_2$ since f is $(\mathcal{T}_1, \mathcal{T}_2)$ -continuous. In particular $f^{-1}(g^{-1}(U)) \in \mathcal{T}_1$ but $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$.

Definition 1.11. Let $T = \{A, \mathcal{T}\}$ be a topological space and let $H \subseteq A$, $H \neq \emptyset$. Then the *induced topology* (or relative topology) on H is defined by

$$\mathscr{T}_{H} = \{V \subseteq H \colon \exists U \in \mathscr{T}. \ V = H \cap U\} = \{U \cap H \colon U \in \mathscr{T}\}.$$

Then $\{H, \mathcal{T}_H\}$ is called a topological subspace of $T = \{A, \mathcal{T}\}.$

Definition 1.12. Let $T_i = \{A_i, \mathcal{T}_i\}$, i = 1, 2, be two topological spaces. A map $f: A_1 \to A_2$ is called a *homeomorphism* of topological spaces iff f is a bijection and both f and f^{-1} are continuous. If such a map exists, T_1 and T_2 are called *homeomorphic*.

Definition 1.13. Let $T = \{A, \mathcal{T}\}$ be a topological space. We call $V \subseteq A$ closed iff $A \setminus V \in \mathcal{T}$. I.e. a set is closed if its complement is open.

Example 1.14.

- 1. $[a,b] \subseteq \mathbb{R}$ is closed in the euclidean topology since $\mathbb{R} \setminus [a,b] = (-\infty,a) \cup (b,\infty)$.
- 2. $[a,b) \subseteq \mathbb{R}$ is closed in the discrete topology. (Obviously, $[a,b) \subseteq \mathbb{R}$ is *not* closed in the euclidean topology.)
- 3. $[a, \infty) \subseteq \mathbb{R}$ is closed in the euclidean topology on \mathbb{R} since $\mathbb{R} \setminus [a, \infty) = (-\infty, a)$ is open.

Proposition 1.15. Let $T = \{A, \mathcal{T}\}$ be a topological space. Then

- 1. \emptyset and A are closed.
- 2. The union of two (and, hence by induction any finite number) of closed sets is closed.
- 3. The intersection of any number of closed sets is closed.

Proof. Use the definition of "topology" and de Morgan's laws.

Definition 1.16. A neighbourhood of a point $x \in A$, where $T = \{A, \mathcal{T}\}$ is a topological space, is a set $V \subseteq A$ s.t. there exists $U \in \mathcal{T}$ with $x \in U \subseteq V$.

Definition 1.17. Let $T = \{A, \mathcal{T}\}$ be a topological space and let $x \in A$, and $H \subseteq A$. The point x is called a *limit point* of H iff every open set containing x, contains some point of H other than x ($U \in \mathcal{T}, U \ni x \implies U \cap (H \setminus \{x\}) \neq \emptyset$).

Example.

- 1. In $\{\mathbb{R}, \mathscr{T}_{\text{Eucl}}\}$ the point a is a limit point of both (a, b) and [a, b] (i.e. limit points of a set may or may not belong to the set).
- 2. Let $H = \{0\} \cup (1,2) \subseteq \mathbb{R}$ with the euclidean topology. Then 0 is not a limit point of H (the set of limit points of H is [1,2]). Hence the points of the set may or may not be limits points of the set.

Definition 1.18. The *closure* \overline{H} of $H \subseteq A$ is the union of H and its limit points.

Proposition 1.19. $x \in \overline{H}$ iff for any open set U containing x the intersection $H \cap U$ is nonempty.

Proposition 1.20. Let $T = \{A, \mathcal{T}\}$ be a topological space. Then

- 1. H is closed in T iff $H = \overline{H}$.
- 2. If $H \subseteq K$ then $\overline{H} \subseteq \overline{K}$.
- 3. $\overline{\overline{H}} = \overline{H}$.
- 4. \overline{H} is closed in T.

Proof. 2 follows from the definitions. 4 follows from 1 and 3. Assume $H \subseteq A$ is closed. Since $H \subseteq \overline{H}$ by definition, we need to prove $\overline{H} \subseteq H$, or $A \setminus \overline{H} \supseteq A \setminus H$. Let $x \in A \setminus H$. Since H is closed, $A \setminus H$ is open, but $(A \setminus H) \cap H = \emptyset$. Hence, x is not a limit point of H. So $x \in A \setminus \overline{H}$. Conversely, assume $H = \overline{H}$. Let $x \in A \setminus H$. Then $x \notin H$ and x is not a limit point of H, since $H = \overline{H}$. So there exists $U_x \in \mathscr{T}$ with $U_x \ni x$ and $U_x \cap H = \emptyset$. Hence, $U_x \subseteq A \setminus H$. Then $\bigcup_{x \in A \setminus H} U_x = A \setminus H$. Since all U_x are open, $A \setminus H$ is open, hence H is closed.

Clearly $\overline{H} \subseteq \overline{\overline{H}}$. To prove $\overline{H} \supseteq \overline{\overline{H}}$, let $x \in \overline{\overline{H}}$. Then, for any open set U with $x \in U$, $\overline{H} \cap U \neq \emptyset$. Let $y \in \overline{H} \cap U$. Then U is an open set containing y, and $y \in \overline{H}$, hence $H \cap U \neq \emptyset$. Hence for any open set U containing $x, U \cap H \neq \emptyset$, hence $x \in \overline{H}$. So, $\overline{\overline{H}}$, so $\overline{H} = \overline{\overline{H}}$.

Definition 1.21. Let $T = \{A, \mathcal{T}\}$ be a topological space, $H \subseteq A$. H is called (everywhere) dense in T (in A) iff $\overline{H} = A$. T (or A) is called a separable topological space iff it has a countable dense subset.

Example. $\mathbb{Q} \subseteq \mathbb{R}$ is dense in the euclidean topology. So is $\mathbb{R} \setminus \mathbb{Q}$. Also $\mathbb{Q}^n \subseteq \mathbb{R}^n$ is dense. Since \mathbb{Q}^n is countable, \mathbb{R}^n with the euclidean topology is separable. But \mathbb{R} is not separable in the discrete topology.

Definition 1.22. The *interior* H° or Int(H) of a set $H \subseteq A$ is the union of all open subsets of H, i.e.

$$H^{\circ} = \bigcup \{ U \subseteq H \colon U \text{ is open} \}.$$

Then $H^{\circ} \subseteq H$ and H° is open. It is the largest open subset of H.

Example.

- 1. $[a,b]^{\circ} = (a,b)$ in $\{\mathbb{R}, \mathscr{T}_{\text{Eucl}}\}$.
- 2. $[a,b]^{\circ} = [a,b]$ in $\{\mathbb{R}, 2^{\mathbb{R}}\}$.
- 3. Let $(a,b] \subseteq (-\infty,b] = H$ and give H the induced topology fro $\{\mathbb{R}, \mathscr{T}_{\text{Eucl}}\}$. Then $(a,b]^{\circ} = (a,b]$.
- 4. $\mathbb{Q}^{\circ} = \emptyset$ in $\{\mathbb{R}, \mathscr{T}_{\text{Eucl}}\}$.

Definition 1.23. Let $T = \{A, \mathcal{T}\}$ be a topological space. Then $H \subseteq A$ is called *nowhere dense* iff $Int(\overline{H}) = \emptyset$.

Example. $\left\{\frac{1}{n}: n \in \mathbb{N}\right\} \subseteq \mathbb{R}$ is nowhere dense in $\{\mathbb{R}, \mathscr{T}_{\text{Eucl}}\}$.

Proposition 1.24. $H \subseteq A$ is nowhere dense in T iff $A \setminus \overline{H}$ is (everywhere) dense in T.

Proof. Use the fact $x \in \overline{H} \iff \forall U \in \mathcal{T}(x \in U \Longrightarrow U \cap H \neq \emptyset)$.

Corollary 1.25. A closed subset H of A is nowhere dense in T if and only if $A \setminus H$ is dense in T.

Definition 1.26. The boundary ∂H of a set $H \subseteq A$ in a topological space $T = \{A, \mathcal{T}\}$ is defined by $\partial H = \overline{H} \cap (\overline{A \setminus H})$.

Definition 1.27. A sequence in a topological space $T = \{A, \mathcal{T}\}$ is a map $S \colon \mathbb{N} \to A$. We shall normally write $x_n = S(n)$ and $\{x_n\}_{n \in \mathbb{N}} \subseteq A$.

Definition 1.28. A sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq A$ is said to converge to $x\in A$ (" $x_n\to x$ as $n\to\infty$ ") iff for every open set U containing x, there exists $N\in\mathbb{N}$ such that $n\geq N$ implies $x_n\in U$.

Example 1.29. Let T be any indiscrete space, let $\{x_n\}_{n\in\mathbb{N}}$ be any sequence in $T=\{A,\{\emptyset,A\}\}$, and let $x\in A$. Then $x_n\to x$ as $n\to\infty$: Let U be open in T, such that U contains x— so U=A. Hence, $x_n\in U$ for all $n\in\mathbb{N}$. There are not "enough" open sets in this space.

Definition 1.30. A topological space $T = \{A, \mathcal{T}\}$ is called a *Hausdorff-space* iff for all $x, y \in A, x \neq y$, there exist $U, V \in \mathcal{T}, U \cap V = \emptyset$, with $x \in U$ and $y \in V$.

Proposition 1.31. In a Hausdorff space, limits of convergent sequences are unique, i.e. if $x_n \to x$ and $x_n \to y$ as $n \to \infty$, then x = y.

Proof. Assume for contradiction that $\{x_n\}_{n\in\mathbb{N}}\subseteq A,\ T=\{A,\mathcal{T}\},\ \text{and}\ x,y\in A,\ x\neq y,\ \text{with}\ x_n\to x\ \text{and}\ x_n\to y\ \text{as}\ n\to\infty.$ Since T is Hausdorff and $x\neq y$ there exist $U,V\in\mathcal{T},\ U\cap V=\emptyset,\ U\ni x,\ V\ni y.$ Since $x_n\to x\ \text{as}\ n\to\infty$ and $x\in U\in\mathcal{T},\ \text{there}$ exists $N_x\in\mathbb{N}$ such that $n\geq N_x$ implies $x_n\in U.$ Also, $x_n\to y\ \text{as}\ n\to\infty$ and $y\in V\in\mathcal{T},\ \text{so}$ there exists $N_y\in\mathbb{N}$ such that $n\geq N_y$ implies $x_n\in V.$ Let $N=\max\{N_x,N_y\},\ \text{then}\ n\geq N$ implies $x_n\in U\cap V=\emptyset,\ \text{a contradiction}.$

Proposition 1.32.

- 1. Any subspace of a Haudorff space is Hausdorff.
- 2. Let $T_i = \{A_i, \mathcal{T}_i\}$, i = 1, 2, be topological spaces and let $f: A_1 \to A_2$ be continuous. If T_2 is Hausdorff and f is injective, then T_1 is Hausdorff.

Definition 1.33. A metric space $M = \{A, d\}$ consists of a nonempty set A, and a map $d: A \times A \to \mathbb{R}$ satisfying for $x, y, z \in A$

- 1. $d(x,y) \ge 0$ and $d(x,y) = 0 \iff x = y$.
- 2. d(x,y) = d(y,x).
- 3. $d(x,y) \le d(x,z) + d(z,y)$.

The map d is called a *metric* on A (or a *distance function*).

Example.

- 1. \mathbb{R}^n with $d = d_{\text{Eucl}}$ is a metric space.
- 2. Let $A \neq \emptyset$ any set, and define

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

for all $x, y \in A$. This is a metric, called the discrete metric.

3. Let $A = \mathbb{R}^2$, $x = (x_1, x_2) \in \mathbb{R}^2$, $y = (y_1, y_2) \in \mathbb{R}^2$ and let, for $p \ge 1$ (not necessarily $p \in \mathbb{N}$),

$$d_p(x,y) = (|x_1 - y_1|^p + |x_2 - y_2|^p)^{\frac{1}{p}}.$$

Note, that for p=2, $d_p=d_{\text{Eucl}}$. Then $\{\mathbb{R}^2, d_p\}$ is a metric space for any $p\geq 1$. Additionally let $d_{\infty}(x,y)=\max\{|x_1-y_1|,|x_2-y_2|\}$. This is also a metric.

4. Let $A = \mathbb{C}$, $z_1, z_2 \in \mathbb{C}$, and define $d(z_1, z_2) = |z_1 - z_2|$. Then $\{\mathbb{C}, d\}$ is a metric space.

Proposition 1.34. Let $M = \{A, d\}$ be a metric space. We will denote by $B_r(x; d) = \{y \in A: d(x, y) < r\}$ the open ball of radius r around x. Let

$$\mathscr{T}_d = \{ U \subseteq A \colon \forall x \in U \ \exists \varepsilon > 0. \ B_{\varepsilon}(x; d) \subseteq U \}.$$

Then $T = \{A, \mathcal{T}_d\}$ is a topological space.

Proof. Obviously \emptyset , $A \in \mathcal{T}_d$. Let $U_1, U_2 \in \mathcal{T}_d$, and let $x \in U_1 \cap U_2$. Then $x \in U_1 \in \mathcal{T}_d$, so there exists $\varepsilon_1 > 0$ such that $B_{\varepsilon_1}(x; d) \subseteq U_1$. Similarly, since $x \in U_2 \in \mathcal{T}_d$, there exists

 $\varepsilon_2 > 0$ such that $B_{\varepsilon_2}(x;d) \subseteq U_2$. Let $\varepsilon = \min\{\varepsilon_1, \varepsilon_2\} > 0$, then $B_{\varepsilon}(x;d) \subseteq U_1 \cap U_2$, so $U_1 \cap U_2 \in \mathscr{T}_d$.

Let I be some index set, and assume $U_i \in \mathscr{T}_d$, for all $i \in I$, and let $x \in \bigcup_{i \in I} U_i$, that is, there exists $i_0 \in I$ such that $x \in U_{i_0} \in \mathscr{T}_d$. Then there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x;d) \subseteq U_{i_0} \subseteq \bigcup_{i \in I} U_i$. Hence, $\bigcup_{i \in I} U_i \in \mathscr{T}_d$. So \mathscr{T}_d is a topology.

Example. For $A = \mathbb{R}^n$, $\mathscr{T}_{\text{Eucl}} = \mathscr{T}_{d_{\text{Eucl}}}$.

In other words, any metric space is a topological space. Note however, that the converse is not true, i.e. there are topological spaces whose topology does not come from a metric:

Definition 1.35. A topological space $T = \{A, \mathcal{T}\}$ which comes from a metric space in this way (i.e. there exists a metric d such that $\mathcal{T} = \mathcal{T}_d$) is called a *metrizable space*. $(\mathcal{T}_d$ is called the topology arising from d).

Example.

- 1. The discrete topology on a set A comes from the discrete metric on A.
- 2. On the other hand, no indiscrete space with more than two points is metrizable.
- 3. There exist much more interesting (but also more complicated) examples of non-metrizable spaces. Sometimes it is also more useful to work directly with the topology.

Proposition 1.36. Every metric space $\{A, d\}$ is a Hausdorff space.

Proof. Let $x, y \in A$, $x \neq y$. Let $\varepsilon = d(x, y) > 0$. Then $B_{\varepsilon/2}(x; d) \cap B_{\varepsilon/2}(y; d) = \emptyset$, and $B_{\varepsilon/2}(x; d), B_{\varepsilon/2}(y; d) \in \mathcal{J}_d$ containing x and y respectively.

Proposition 1.37. Let $M = \{A, d\}$ be a metric space. A subset $H \subseteq A$ is dense iff for all $x \in A$ and $\varepsilon > 0$, $B_{\varepsilon}(x; d) \cap H \neq \emptyset$.

Definition 1.38. A subset $K \subseteq A$ of a metric space $\{A, d\}$ is called bounded iff there exist $a \in A$, R > 0 s.t. $K \subseteq B_R(a; d)$.

Remark. If this holds for some $a \in A$, then it holds for any $\tilde{a} \in A$ with R replaced by $\tilde{R} = R + d(a, \tilde{a})$, since $d(x, \tilde{a}) \leq d(x, a) + d(a, \tilde{a}) < R + d(a, \tilde{a}) = \tilde{R}$ for all $x \in K$.

Remark. If K is bounded, and x_0 , R as above, $x, y \in K$, then $d(x, y) \leq d(x, x_0) + d(x, y) < 2R < \infty$. So the following definition makes sense.

Definition 1.39. If $M = \{A, d\}$ is a metric space and $K \subseteq A$ is bounded, then the diameter $\operatorname{diam}(K)$ of K is defined by

$$diam(K) = \sup\{d(x, y) \colon x, y \in K\}.$$

Proposition 1.40. The union of any finite number of bounded sets is bounded.

Proof. By induction, it is enough to proof this for 2 sets, which is left as an exercise.

Proposition 1.41. Let $N_i = \{A_i, d_i\}$, i = 1, 2, be metric spaces, and let $f: A_1 \to A_2$ be a map. Let $T_i = \{A_i, \mathcal{T}_{d_i}\}$, i = 1, 2, be the corresponding topological spaces.

1. The map f is continuous iff

$$\forall a \in A_1 \ \forall \varepsilon > 0 \ \exists \delta > 0 (d_1(x, a) < \delta \implies d_2(f(x), f(a))).$$

2. The map f is continuous at a iff

$$\forall \varepsilon > 0 \ \exists \delta > 0 (d_1(x, a) < \delta \implies d_2(f(x), f(a))).$$

Proof. Assume f is continuous. Let $a \in A_1$, and $\varepsilon > 0$. Note that $B_{\varepsilon}(f(a); d_2) \subseteq A)2$ is an open set in A_2 , so by assumption $f^{-1}(B_{\varepsilon}(f(a); d_2)) \in \mathscr{T}_{d_1}$. Since $a \in f^{-1}(B_{\varepsilon}(f(a); d_2))$, there exists $\delta > 0$ such that $B_{\delta}(a; d_1) \subseteq f^{-1}(B_{\varepsilon}(f(a); d_2))$, i.e. $f(B_{\delta}(a; d_1)) \subseteq B_{\varepsilon}(f(a); d_2)$.

Conversely, assume the " ε - δ -condition" holds, and let $U \in \mathcal{T}_{d_2}$. Then let $a \in f^{-1}(U)$, i.e. $f(a) \in U \in \mathcal{T}_{d_2}$, so there exists $\varepsilon > 0$ s.t. $B_{\varepsilon}(f(a); d_2) \subseteq U$. So, by assumption there exists $\delta > 0$ s.t. $f(B_{\delta}(a; d_1)) \subseteq B_{\varepsilon}(f(a); d_2) \subseteq U$. Hence, $B_{\delta}(a; d_1) \subseteq f^{-1}(U)$. The proof of 2. is left as an exercise.

Definition 1.42. Let $M = \{A, d\}$ be a metric spaces, $X \neq \emptyset$, and let $f: X \to A$ be a map. Then f is called *bounded* iff $f(X) \subseteq A$ is bounded.

Example 1.43. Let $A = \mathbb{R}^n$, let $p \in (1, \infty)$ and let

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}.$$

Then $\{\mathbb{R}^n, d_p\}$ are metric spaces. Also, let $d_{\infty}(x, y) = \max\{|x_i - y_i| : i = 1, ..., n\}$. Then $\{\mathbb{R}^n, d_{\infty}\}$ is also a metric space. This will be proven in the tutorials. Also prove *Hölder's inequality*: For $p \in (1, \infty)$, $x, y \in \mathbb{R}^n$

$$\left| \sum_{i=1}^{n} x_i y_i \right| \le \left(\sum_{i=1}^{n} |x_i|^p \right)^{\frac{1}{p}} \left(\sum_{i=1}^{n} |x_i|^q \right)^{\frac{1}{q}}$$

where $\frac{1}{p} + \frac{1}{q} = 1$. This implies Minkowski's inequality: For $p \in (1, \infty), x, y \in \mathbb{R}^n$

$$\left(\sum_{i=1}^{n} |x_i + y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^{n} |y_i|^p\right)^{\frac{1}{p}}$$

Generalising this to "infinite coordinates", let $\mathcal{M}(\mathbb{N};\mathbb{R})$ be the set of real sequences, i.e. maps $\mathbb{N} \to \mathbb{R}$. We would like to define $d_p(x,y)$ for $x = \{x_n\}_{n \in \mathbb{N}}, y = \{y_n\}_{n \in \mathbb{N}} \in \mathcal{M}(\mathbb{N};\mathbb{R})$. However "often" $d_p(x,y) = \infty$. The solution is to restrict to a subset of $\mathcal{M}(\mathbb{N};\mathbb{R})$. Define

$$\ell_p = \left\{ \{x_n\}_{n \in \mathbb{N}} \in \mathscr{M}(\mathbb{N}; \mathbb{R}) \colon \sum_{i=1}^n |x_i|^p < \infty \right\}$$

Note that $\ell_p \subsetneq \mathcal{M}(\mathbb{N}; \mathbb{R})$. Also let

$$\ell_{\infty} = \{ \{x_n\}_{n \in \mathbb{N}} \in \mathscr{M}(\mathbb{N}; \mathbb{R}) \colon \exists K \in \mathbb{R} \ \forall n \in \mathbb{N}. \ |x_n| \le K \}$$

be the set of bounded real sequences. Note that $\ell_{\infty} = \mathscr{B}(\mathbb{N}; \mathbb{R})$, so $(\ell_{\infty}, d_{\infty})$ is a metric space. For $1 , <math>x, y \in \ell_p$, fix $N \in \mathbb{N}$, then

$$t_N := \left(\sum_{i=1}^N |x_i - y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^N |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^N |y_i|^p\right)^{\frac{1}{p}} \le \left(\sum_{i=1}^\infty |x_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^\infty |x_i|^p\right)^{\frac{1}{p}} < \infty$$

since $x, y \in \ell_p$. Furthermore $\{t_N\}_{N \in \mathbb{N}}$ is increasing and bounded above, so $\{t_N\}$ is convergent and $d_p(x,y) < \infty$ is well-defined, i.e. $d_p \colon \ell_p \times \ell_p \to \mathbb{R}$. Note, that $d_p(x,y) \geq 0$, $d_p(x,x) = 0$ and $d_p(x,y) = 0$ implies x = y. For the triangle inequality, let $x, y, z \in \ell_p$, let $N \in \mathbb{N}$, then

$$s_N := \left(\sum_{i=1}^N |x_i - y_i|^p\right)^{\frac{1}{p}} = \left(\sum_{i=1}^N |x_i - z_i + z_i - y_i|^p\right)^{\frac{1}{p}} \le$$

$$\le \left(\sum_{i=1}^N |x_i - z_i|^p\right)^{\frac{1}{p}} + \left(\sum_{i=1}^N |z_i - y_i|^p\right)^{\frac{1}{p}} \le d_p(x, z) + d_p(z, y)$$

Since $\{s_N\}_{N\in\mathbb{N}}$ is increasing and bounded above, it follows that $d_p(x,y) \leq d_p(x,z) + d_p(z,y)$. Hence, $\{\ell_p,d_p\}$, $1 , are metric spaces. Note that <math>\ell_p \neq \ell_q$ for $p \neq q$.

Definition 1.44. Let $A \neq \emptyset$. A family $\mathscr{U} \subseteq 2^A$ is called a *cover* for A iff $A = \bigcup \mathscr{U}$. Let $T = \{A, \mathscr{T}\}$ be a topological space. A cover $\mathscr{U} \subseteq 2^A$ is called *open* iff $\mathscr{U} \subseteq \mathscr{T}$. A subcover \mathscr{V} of a cover \mathscr{U} is a subfamily $\mathscr{V} \subseteq \mathscr{U}$ such that $A = \bigcup \mathscr{V}$. A topological space is called *compact* ("is a compact space") iff every open cover has a finite subcover.

Definition 1.45. A subset $H \subseteq A$ where $T = \{A, \mathcal{T}\}$ is a topological space, is compact iff $\{H, \mathcal{T}_H\}$ is compact, where \mathcal{T}_H is the induced topology.

Proposition 1.46. A subset of \mathbb{R}^n is compact in the euclidean topology iff it is both closed and bounded.

Proposition 1.47. Any compact set in a metric space is bounded.

Proof. Exercise.

Proposition 1.48. Let $T = \{A, \mathcal{T}\}$ be a Hausdorff space, and assume $C \subseteq A$ is compact. Then C is closed.

Proof. Exercise.

Remark. In particular, in a metric space any compact set is closed and bounded.

Proposition 1.49. Let $T = \{A, \mathcal{T}\}$ be a compact topological space, and assume $C \subseteq A$ is closed. Then C is compact.

Proof. Assume $\mathscr{U} \subseteq \mathscr{T}$ covers C, i.e. $C \subseteq \bigcup \mathscr{U}$. Since C is closed, the set $U_0 = A \setminus C$ is open. So $\mathscr{V} = \mathscr{U} \cup \{U_0\}$ is an open cover of A. Since A is compact, there exists a finite subcover $\mathscr{W} \subseteq \mathscr{V}$. Then $\mathscr{W} \setminus \{U_0\} \subseteq \mathscr{U}$ is finite and covers C.

Proposition 1.50. Let $f: A_1 \to A_2$ be a continuous map between topological spaces $T_i = \{A_i, \mathcal{T}_i\}, i = 1, 2$. If T_1 is compact, then the image R f is compact.

Proof. It is enough to look at the case when f is surjective. Let \mathscr{U} be an open cover of A_2 : $A_2 \subseteq \bigcup \mathscr{U}$ and $\mathscr{U} \subseteq \mathscr{T}_2$. Since f is continuous, $f^{-1}(V) \in \mathscr{T}_1$ for all $V \in \mathscr{U}$. Also, $\bigcup_{V \in \mathscr{U}} f^{-1}(V) = A_1$. Hence $\{f^{-1}(V) \colon V \in \mathscr{U}\}$ is an open cover of A_1 . Since A_1 is compact, there exist $f^{-1}(V_1), \ldots, f^{-1}(V_k)$ such that $A_1 = \bigcup_{i=1}^k f^{-1}(V_i)$. Then $A_2 = \bigcup_{i=1}^k V_i$, and so $\{V_1, \ldots, V_k\}$ is a finite subcover of \mathscr{U} for A_2 .

Corollary 1.51. Let $\{C, \mathcal{T}\}$ be a compact space, $\{A, d\}$ a metric space, and assume $f: C \to A$ is continuous. Then f is bounded.

Corollary 1.52. Assume $\{C, \mathscr{T}\}$ is a compact space, and that $f: C \to \mathbb{R}$ is continuous. Then f attains its bounds, i.e there exist $x_N, x_M \in C$ such that $f(x_N) \leq f(x) \leq f(x_M)$ for all $x \in C$.

Definition 1.53. Let $M = \{A, d\}$ be a metric space. A sequence $\{x_n\} \subseteq A$ is called a Cauchy sequence (is said "to be Cauchy") iff

$$\forall \varepsilon > 0 \,\exists N \in \mathbb{N} \, (n, m \ge N \implies d(x_n, x_m) < \varepsilon) \,.$$

Lemma 1.54. Any convergent sequence is Cauchy.

Proof. Assume $\{x_n\} \subseteq A$ is convergent in a metric space $M = \{A, d\}, x_n \to x$ as $n \to \infty$. Let $\varepsilon > 0$. Then there exists $N \in \mathbb{N}$ such that $d(x_n, x) < \frac{\varepsilon}{2}$ for all $n \ge N$. So if $n, m \ge N$, then $d(x_n, x_m) \le d(x_n, x) + d(x, x_m) < \varepsilon$.

Remark. Not all Cauchy sequences are convergent, for example $\left\{\frac{1}{n}\right\}_{n\in\mathbb{N}}\subseteq(0,1]$ in $\{(0,1],d_{\mathrm{Eucl}}\}$ is Cauchy but not convergent.

Definition 1.55. Let $M = \{A, d\}$ be a metric space. M is called *complete* iff every Cauchy sequence in M is convergent in M.

Proposition 1.56. $\{\mathbb{R}^n, d_{\text{Eucl}}\}\$ is a complete metric space. So is $\{\mathbb{C}, |\cdot|\}$.

Lemma 1.57. Let $\{A, d\}$ be a metric space. Then $K \subseteq A$ is closed iff for any sequence $\{x_n\} \subseteq K$, $x_n \to x$ as $n \to \infty$ implies $x \in K$.

Proof. Problem 5 of Sheet 2.

Remark. $\{x_{n_k}\}_{k\in\mathbb{N}}$ is a subsequence of $\{x_n\}_{n\in\mathbb{N}}$ — formally $S\colon\mathbb{N}\to A, n\mapsto s(n)\equiv x_n$ — is defined by an injective, increasing function $\varphi\colon\mathbb{N}\to\mathbb{N}$ so $S\circ\varphi\colon\mathbb{N}\to A, k\mapsto x_{n_k}$.

Lemma 1.58. In a metric space $\{A, d\}$, if the Cauchy sequence $\{x_n\} \subseteq A$ has a convergent subsequence $\{x_{n_k}\}$, say, $x_{n_k} \to x$ as $k \to \infty$, then $\{x_n\}$ also converges to x.

Proof. Let $\varepsilon > 0$, and choose $N \in \mathbb{N}$ s.t. $n, m \ge N$ implies $d(x_n, x_m) < \frac{\varepsilon}{2}$. Also, choose $K \in \mathbb{N}$ s.t. $k \ge K$ implies $d(x_{n_k}, x) < \frac{\varepsilon}{2}$. For any $n \ge N$, choose $k \ge K$ so large that $n_k \ge N$. Then, for $n \ge N$, $d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < \varepsilon$.

Definition 1.59. A subspace C of a metric space $M = \{A, d\}$ is called *sequentially compact* in itself (in M) if and only if every sequence in C has a subsequence which converges in C (in M).

Theorem 1.60. A subspace C of a metric space is compact iff it is sequentially compact in itself.

Proof. Later.

Corollary 1.61. Any bounded sequence in $\{\mathbb{R}^d, d_{\text{Eucl}}\}$ has a convergent subsequence.

Proof. Let $\{x_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}^d$ be a bounded sequence, and let $S=\{x_n\colon n\in\mathbb{N}\}\subseteq\mathbb{R}^d$. Then \overline{S} is bounded. So, \overline{S} is closed and bounded, hence compact, hence sequentially compact. So $\{x_n\}\subseteq\overline{S}$ has a convergent subsequence.

Proposition 1.62. Any compact metric space is complete.

Proof. Let $\{x_n\} \subseteq A$ be Cauchy in a metric space $M = \{A, d\}$. Since M is compact, it is sequentially compact in itself, hence $\{x_n\}$ has a convergent subsequence. So, by 1.58, $\{x_n\}$ is convergent. Hence M is complete.

Proposition 1.63. Let $M = \{A, d\}$ be a metric space and $H \subseteq A$. Then

- 1. if $M = \{H, d\}$ is complete, then H is closed in M.
- 2. if M is complete, and $H \subseteq A$ is closed, then M is complete.

Proof.

- 1. Let $x \in \overline{H}$. Then there exists a sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq H$ such that $x_n \to x$ as $n \to \infty$. Since $\{x_n\}$ is convergent, it is Cauchy. Since $\{x_n\} \subseteq \widetilde{M}$ is Cauchy, it is convergent with limit in H. By uniqueness of limits, this limit is x. So, $x \in H$, hence $H = \overline{H}$.
- 2. By assumption, $H = \overline{H}$. Let $\{x_n\}_{n \in \mathbb{N}} \subseteq H$ be a Cauchy sequence in M. But then $\{x_n\}_{n \in \mathbb{N}} \subseteq A$ is a Cauchy sequence in M. Since M is complete, there is an $x \in A$ such that $x_n \to x$ as $n \to \infty$. Since H is closed and $\{x_n\} \subseteq H$, it follows that $x \in H$. Hence \widetilde{M} is complete.

Proposition 1.64. Let X be any set, and let $M = \{A, d\}$ be a metric space. Denote by $\mathscr{B}(X, A)$ the set of bounded maps $X \to A$, and let

$$d_{\infty}(f,g) = \sup_{x \in X} d(f(x), g(x)).$$

Then $\{\mathscr{B}(X,A),d_{\infty}\}\$ is complete iff $\{A,d\}$ is complete.

Proof. Assume $M = \{A, d\}$ is not complete. Take any non-convergent Cauchy sequence $\{x_n\}_{n \in \mathbb{N}}$. Let, for $n \in \mathbb{N}$, $f_n \colon X \to A, t \mapsto x_n$. Then $d_{\infty}(f_n, f_m) = d(x_n, x_m)$, so $\{f_n\}_{n \in \mathbb{N}} \subseteq \mathcal{B}(X, A)$ is Cauchy in d_{∞} . But $\{f_n\}_{n \in \mathbb{N}}$ is not convergent, since if $d_{\infty}(f_n, f) \to 0$ as $n \to \infty$ for some $f \in \mathcal{B}(X, A)$ then, since $d(f_n(t), f(t)) \leq d_{\infty}(f_n, f)$ for all $t \in X$, $x_n = f_n(t) \to f(t)$ as $n \to \infty$. But $\{x_n\}$ is not convergent.

On the other hand, assume $M = \{A, d\}$ is complete. Let $\{f_n\}_{n \in \mathbb{N}} \subseteq \mathcal{B}(X, A)$ be any Cauchy sequence. Let $\varepsilon > 0$. Since $\{f_n\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $n, m \ge N$ implies $d_{\infty}(f_n, f_m) < \varepsilon$. Hence, for any $x \in X$ fixed, $d(f_n(x), f_m(x)) \le d_{\infty}(f_n, f_m) < \varepsilon$. So $\{f_n(x)\}_{n \in \mathbb{N}}$ is Cauchy in d. Since $M = \{A, d\}$ is complete, $\{f_n(x)\}_{n \in \mathbb{N}}$ is convergent. Let $f(x) = \lim_{n \to \infty} f_n(x)$. Then $f \colon X \to A$. We need to prove that $f \in \mathcal{B}(X, A)$ and that $d_{\infty}(f_n, f) \to 0$ as $n \to \infty$. Since, for all $a \in A$ fixed, the map $A \to \mathbb{R}$, $x \mapsto d(a, x)$ is continuous, it follows that $\lim_{m \to \infty} d(f_n(x), f_m(x)) = d(f_n(x), f(x))$. Hence, $d(f_n(x), f(x)) \le \varepsilon$ for $n \ge N$ and all $x \in X$. Then $d_{\infty}(f_n, f) \le \varepsilon$. Hence $f \in \mathcal{B}(X, A)$ and $d_{\infty}(f_n, f) \to 0$ as $n \to \infty$. Hence, the Cauchy sequence $\{f_n\}_{n \in \mathbb{N}}$ is convergent to an element in $\mathcal{B}(X, A)$. So $\{\mathcal{B}(X, A), d_{\infty}\}$ is complete.

Example. ℓ_{∞} is complete.

Definition 1.65. Let $M_i = \{A_i, d_i\}, i = 1, 2$, be two metric spaces, and define

$$\mathscr{C}(A_1, A_2) = \{ f \colon A_1 \to A_2 \colon f \text{ is } (d_1, d_2)\text{-continuous} \}$$

$$\mathscr{C}_b(A_1, A_2) = \{ f \in \mathscr{C}(A_1, A_2) \colon f \text{ is bounded} \}$$

Then $\mathscr{C}_b(A_1, A_2) \subseteq \mathscr{C}(A_1, A_2)$ and $\mathscr{C}_b(A_1, A_2) \subseteq \mathscr{B}(A_1, A_2)$. Also, if $\{A_1, d_1\}$ is compact, then $\mathscr{C}_b(A_1, A_2) = \mathscr{C}(A_1, A_2)$ (for example $\mathscr{C}([0, 1], \mathbb{R})$).

Theorem 1.66. Let $M_i = \{A_i, d_i\}$, i = 1, 2, be two metric spaces. Then $\{\mathscr{C}_b(A_1, A_2), d_\infty\}$ is a complete metric space iff $\{A_2, d_2\}$ is complete.

Proof. If $\{A_2, d_2\}$ is not complete, then neither is $\{\mathscr{C}_b(A_1, A_2), d_\infty\}$ (same proof as in 1.64). On the other hand, assume $\{A_2, d_2\}$ is complete, and let $\{f_n\}_{n\in\mathbb{N}}\subseteq\mathscr{C}_b(A_1, A_2)$ be Cauchy in d_∞ . Since then $\{f_n\}_{n\in\mathbb{N}}$ is Cauchy in $\mathscr{B}(A_1, A_2)$ which is complete, there exists $f\in\mathscr{B}(A_1, A_2)$ such that $d_\infty(f_n, f)\to 0$ as $n\to\infty$. We shall prove that f is continuous at a for all $a\in A_1$. Let $a\in A_1$, $\varepsilon>0$. Let $N\in\mathbb{N}$ such that $n\geq N$ implies $d_\infty(f_n, f)<\varepsilon$. Then $n\geq N$ implies $d_2(f_n(x), f(x))<\varepsilon$ for all $x\in A_1$. Since f_N is continuous at A, so there exists $\delta>0$ such that $d_1(x,a)<\delta$ implies $d_2(f_N(x), f_N(a))<\varepsilon$. Hence, $d_1(x,a)<\delta$ implies $d_2(f(x), f(a))\leq d_2(f(x), f_N(x))+d_2(f_N(x), f_N(a))+d_2(f_N(a), f(a))<3\varepsilon$. \square

Definition 1.67. A map $f: A_1 \to A_2$ for a metric space $M_i = \{A_i, d_i\}, i = 1, 2$, is uniformly continuous (on A_1) iff

$$\forall \varepsilon > 0 \, \forall x \in A_1 \, \exists \delta > 0 (d_1(x, y) < \delta \implies d_2(f(x), f(y)) < \varepsilon).$$

Proposition 1.68. A continuous map on a compact space is uniformly continuous.

Proof. Let $f: A_1 \to A_2$ be a continuous map between metric spaces $M_i = \{A_i, d_i\}$, i = 1, 2, and assume M_1 is compact. Then, for any $\varepsilon > 0$, there exists $\delta(x) > 0$

such that $d_1(x,y) < 2\delta(x)$ implies $d_2(f(x),f(y)) < \varepsilon$. Then $\mathscr{U} = \{B_{\delta(x)}(x;d_1) : x \in A_1\}$ is an open cover of A_1 . Since M_1 is compact, there exist x_1, \ldots, x_N such that $A_1 = \bigcup_{i=1}^N B_{\delta(x_i)}(x_i;d)$. Let $\delta = \min\{\delta(x_1), \ldots, \delta(x_N)\} > 0$ and let $x, y \in A_1$ such that $d_1(x,y) < \delta$. Then there is $i_0 \in \{1,\ldots,N\}$ such that $x \in B_{\delta(x_{i_0})}(x_{i_0};d)$, so $d_1(x,x_{i_0}) < \delta(x_{i_0}) < 2\delta(x_{i_0})$, hence $d_2(f(x),f(x_{i_0})) < \varepsilon$. Also, $d(y,x_{i_0}) \leq d_1(y,x) + d_1(x,x_{i_0}) < \delta(x_{i_0}) + \delta(x_{i_0}) = 2\delta(x_{i_0})$, hence, $d_2(f(y),f(x_{i_0})) < \varepsilon$. So $d_2(f(x),f(y)) \leq d_2(f(x),f(x_{i_0})) + d_2(f(x_{i_0}),f(y)) < 2\varepsilon$.

Definition 1.69. A metric space $M = \{A, d\}$ is called *totally bounded* or *pre-compact* iff for all $\varepsilon > 0$ there exist finitely many $x_1, \ldots, x_N \in A$ such that $A \subseteq \bigcup_{i=1}^N B_{\varepsilon}(x_i; d)$.

Theorem 1.60. Let $M = \{A, d\}$ be a metric space, $C \subseteq A$. Then the following are equivalent:

- (a) C is compact.
- (b) C is sequentially compact.
- (c) C is complete and totally bounded.

Proof.

- $(a)\Rightarrow (b)$ Let $\{x_n\}\subseteq C$ be any sequence. Let $S_k=\overline{\{x_n\colon n\geq k\}}$. Then S_k is closed and $\bigcap_{k=1}^\infty S_k\neq\emptyset$, for assume otherwise and let $U_k=(A\smallsetminus S_k)\cap C$. Then U_k is open in the relative topology on C, and $\bigcup_{k=1}^\infty U_k=C\cap\bigcup_{k=1}^\infty S_k^c=C\cap(\bigcap_{k=1}^\infty S_k)^c=C$. So $C=U_1\cup\cdots\cup U_N$ for some N. Then $C\cap S_1\cap\ldots S_N=\emptyset$ which is impossible. Then $\{x_n\}$ has a convergent subsequence.
- $(b)\Rightarrow (c)$ Let $\{x_n\}_{n\in\mathbb{N}}$ be a Cauchy sequence in C. Then $\{x_n\}_{n\in\mathbb{N}}$ has convergent subsequence, say, $x_{n_k}\to x$ as $k\to\infty$, with $x\in C$ since C is sequentially compact. So by 1.58, $\{x_n\}$ is also convergent, with the same limit. Hence, C is complete. Assume that C is not totally bounded. Then there exists $\varepsilon_0>0$ such that for no choice of finitely many points $\{x_1,\ldots,x_N\}$ do we have $C\subseteq\bigcup_{i=1}^N B_{\varepsilon_0}(x_i;d)$. In particular for all $x\in A$, $C\setminus B_{\varepsilon_0}(x;d)\neq\emptyset$. Let $y_1\in C$ be arbitrary. Define inductively $y_n\in C$ such that $y_n\in C\setminus\bigcup_{i=1}^{n-1} B_{\varepsilon_0}(y_i;d)$. Then $\{y_i\}_{i\in\mathbb{N}}\subseteq C$, and, for any $m\neq k$, $d(y_m,y_k)>\varepsilon_0$. Hence, no subsequence of $\{y_i\}_{i\in\mathbb{N}}$ will converge—a contradiction, since C is sequentially compact.
- We will construct, inductively, a sequence of open balls B_n , with radii 2^{-n} and centres x_n . Since C is totally bounded, there exists $\{y_1, \ldots, y_M\} \in C$ such that $C \subseteq \bigcup_{i=1}^M B_{1/2}(y_i;d)$. Then at least one of the $B_{1/2}(y_i;d)$'s cannot be covered by finitely many U_i 's (otherwise, so could C). Let B_1 be one of these balls; $B_1 = B_{1/2}(x_1;d)$. Assume now $B_{n-1} = B_{2^{1-n}}(x_{n-1};d)$ chosen, for some $n \geq 2$. Again, there exist $\{z_1,\ldots,z_K\}$ such that $C \subseteq \bigcup_{i=1}^K B_{2^{-n}}(z_i;d)$; of all the $B_{2^{-n}}(z_i;d)$ which have nonempty intersection with B_{n-1} , at least one cannot be covered by finitely many U_i 's. So let B_n be such a ball, so $B_n = B_{2^{-n}}(x_n;d)$, $B_n \cap B_{n-1} \neq \emptyset$ and B_n cannot be covered by finitely many U_i 's. This gives a sequence $\{x_n\}_{n\in\mathbb{N}}$ which is Cauchy: For $y \in B_n \cap B_{n-1}$, $d(x_{n-1},x_n) \leq d(x_{n-1},y) + d(y,x_n) < 2^{1-n} + 2^{-n} < 2^{2-n}$. So, for m > n, $d(x_n,x_m) \leq d(x_n,x_{n+1}) + \cdots + d(x_{m-1},x_m) < 2^{2-n} + \cdots + 2^{2-m} < 8 \cdot \frac{1}{2^n}$. Hence, $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy, so convergent, i.e. there exists $x \in C$ such that $x_n \to x$

as $n \to \infty$. Since \mathscr{U} is an open cover for C, there exists U_{i_0} such that $x \in U_{i_0}$, and some r > 0 such that $B_r(x;d) \subseteq U_{i_0}$. Since $x_n \to x$ as $n \to \infty$, there exists $N \in \mathbb{N}$ such that $m \geq N$ implies $d(x,x_m) < \frac{r}{2}$. Choose m such that $2^{-m} < \frac{r}{2}$. Then $B_m = B_{2^{-m}}(x_m;d) \subseteq B_r(x;d) \subseteq U_{i_0}$ — a contradiction to the construction of the B_n 's: none of the B_n 's can be covered by finitely many balls.

Theorem 1.70 (Arzelà-Ascoli). Let $\{A_1, d_1\}$ be a compact metric space and $\{A_2, d_2\}$ a complete metric space. $M \subseteq \mathcal{C}(A_1, A_2)$ is compact iff the following holds:

- (a) For all $x \in A_1$, the set $M(x) = \{f(x) : f \in M\} \subseteq A_2$ is compact.
- (b) M is equicontinuous, i.e.

$$\forall \varepsilon > 0 \,\exists \delta > 0 \,\forall x, y \in A_1 \,\forall f \in M(d_1(x, y) < \delta \implies d_2(f(x), f(y)) < \varepsilon)$$

(c) M is closed.

Proof.

"\(\Rightarrow\)" Assume M is compact. Then it is closed. Note that for $f,g\in(A_1,A_2)$ and $x\in A_1,\ d_2(f(x),g(x))\leq d_\infty(f,g)$. So $\phi_x\colon \mathscr{C}(A_1,A_2)\to A_2, f\mapsto f(x)$ is (d_∞,d_2) -continuous. Since $M\subseteq \mathscr{C}(A_1,A_2)$ is compact, the set $M(x)=\phi_x(M)$ is compact. Let $\varepsilon>0$. Then there exists $\{B_{\varepsilon/3}(f_1;d_\infty),\ldots,B_{\varepsilon/3}(f_N;d_\infty)\}$ such that $M\subseteq\bigcup_{i=1}^N B_{\varepsilon/3}(f_i;d_\infty)$. Now each $f_i\colon A_1\to A_2$ is uniformly continuous since $\{A_1,d_1\}$ is compact, so there exists $\delta>0$ such that $d_1(x,y)<\delta$ implies $d_2(f_j(x),f_j(y))<\varepsilon/3$ for $j=1,\ldots,N$. Let $f\in M$, and $x,y\in A_1$ with $d_1(x,y)<\delta$. Then there exists $j_0\in\{1,\ldots,N\}$ such that $f\in B_{\varepsilon/3}(f_{j_0};d_\infty)$. So $d_2(f(x),f(y))\leq d_2(f(x),f_{j_0}(x))+d_2(f_{j_0}(x),f_{j_0}(y))+d_2(f_{j_0}(y),f(y))<\varepsilon$. Hence, M is equicontinuous.

"\(\infty\)" Since $M \subseteq \mathscr{C}(A_1, A_2)$ is closed, and $\{\mathscr{C}(A_1, A_2), d_\infty\}$ is complete, $\{M, d_\infty\}$ is complete. Let $\varepsilon > 0$, and choose $\delta > 0$ such that $d_1(x, y) < \delta$ implies $d_2(f(x), f(y)) < \varepsilon/4$ for all $f \in M$. Since A_1 is compact, there exist $x_1, \ldots, x_N \in A_1$ such that $A_1 \subseteq \bigcup_{j=1}^N B_\delta(x_j; d_1)$. Similarly, since all $M(x_i)$, $i = 1, \ldots, N$, are compact, there exists $y_1, \ldots, y_P \in A_2$ such that $B = \bigcup_{i=1}^N M(x_i) \subseteq \bigcup_{k=1}^P B_{\varepsilon/4}(y_k; d_2)$. Let $\Phi = \{\phi \colon \{1, \ldots, N\} \to \{1, \ldots, P\}\}$. Then for any $\phi \in \Phi$ define $M_\phi = \{f \in M \colon d_2(f(x_j), y_{\phi(j)}) < \varepsilon/4$ for $j = 1, \ldots, N\}$. Then $M = \bigcup_{\phi \in \Phi} M_\phi$. Let $\phi \in \Phi$, and $f, g \in M_\phi$. For all $x \in A_1$, there exists $j \in \{1, \ldots, N\}$ such that $d_1(x, x_j) < \delta$. Then $d_2(f(x), f(x_j)) < \varepsilon/4$ and $d_2(g(x), g(x_j)) < \varepsilon/4$. So, $d_2(f(x), g(x)) \le d_2(f(x), f(x_j)) + d_2(f(x_j), y_{\phi(j)}) + d_2(y_{\phi(j)}, g(x_j)) + d_2(g(x_j), g(x)) < \varepsilon$. Hence, $d_\infty(f, g) \le \varepsilon$. So M_ϕ is contained in a ball of radius 2ε . Hence, M is totally bounded. Hence, by 1.60, M is compact. \square

Theorem 1.71 (Baire's theorem). Let $M = \{A, d\}$ be a complete metric space, and let $\{V_n\}_{n \in \mathbb{N}}$ be a countable family of dense, open subsets $V_n \subseteq A$. Then $\bigcap_{n=1}^{\infty} V_n$ is dense.

Proof. We need to prove that if $W \subseteq A$ is open and $W \neq \emptyset$, then $\bigcap_{n=1}^{\infty} V_n \cap W \neq \emptyset$. Let $W \subseteq A$ be open. Since V_1 is dense, $V_1 \cap W \neq \emptyset$. Since V_1 and W are open, there exists $x_1 \in A$, $x_1 > 0$ such that $\overline{B_{r_1}(x_1;d)} \subseteq V_1 \cap W$ and $0 < r_1 < 1$. Assume $n \geq 2$ and x_{n-1} , x_{n-1} have been chosen. Then, since V_n is dense, $V_n \cap B_{r_{n-1}}(x_{n-1};d) \neq \emptyset$, and since V_n is open, there exists $x_n \in A$, $r_n > 0$ such that $\overline{B_{r_n}(x_n;d)} \subseteq V_n \cap B_{r_{n-1}}(x_{n-1};d)$ and $0 < r_n < \frac{1}{n}$. This gives sequences $\{x_n\}_{n \in \mathbb{N}} \subseteq A$, and $\{r_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R}$.

If i, j > n, then $x_i, x_j \in B_{r_n}(x_n; d)$. So

$$d(x_i, x_j) \le d(x_i, x_n) + d(x_n, x_j) < 2r_n < \frac{2}{n}$$

So $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy. Since M is complete, there exists $x\in A$ such that $x_n\to x$ as $n\to\infty$. Since $x_i\in \overline{B_{r_n}(x_n;d)}$ for all $i\geq n$, we get that $x\in \overline{B_{r_n}(x_n;d)}$ for all $n\in\mathbb{N}$. Hence, $x\in V_n$ for all $n\in\mathbb{N}$. Also, $x\in W$, hence $x\in\bigcap_{n=1}^\infty V_n\cap W$.

2 Banach and Hilbert spaces

"All maths" is about solutions to equations (existence, uniqueness, properties). Linear Algebra is about the equation Ax = b for a matrix A and vectors b and x. Some problems — for example diagonalisation of matrices — can be turned into such equations. All of this is assumed known. In particular, the axioms of a vectorspace are assumed known (all vectorspaces will be over \mathbb{R} or \mathbb{C} for which we will write \mathbb{K}). Also, all vectorspaces will be nontrivial, i.e. not $\{0\}$.

Definition 2.1. Let X be a \mathbb{K} -vector space.

- 1. A map $p: X \to [0, \infty)$ is called a *semi-norm* iff
 - (a) $p(\lambda x) = |\lambda| p(x)$ for all $x \in X$ and $\lambda \in \mathbb{K}$.
 - (b) $p(x+y) \le p(x) + p(y)$ for all $x, y \in X$.
- 2. A semi-norm p is called a *norm* iff p(x) = 0 implies x = 0. In this case we will write ||x|| := p(x).

The pair $\{X, p\}$ is called a *semi-normed space* and $\{X, \|\cdot\|\}$ is called *normed space*.

Remark. (a) implies p(0) = 0.

Remark. A normed space is a metric space: Define d(x,y) := ||x-y||. Then d is a metric. This is the canonical metric we will use when treating normed spaces.

Proposition 2.2. Let $\{X, \|\cdot\|\}$ be a normed space. Then

- 1. If $x_n \to x$ as $n \to \infty$ and $y_n \to y$ as $n \to \infty$, then $x_n + y_n \to x + y$ as $n \to \infty$.
- 2. If $\lambda_n \to \lambda$ as $n \to \infty$ and $x_n \to x$ as $n \to \infty$, then $\lambda_n x_n \to \lambda x$ as $n \to \infty$.
- 3. If $x_n \to x$ as $n \to \infty$ then $||x_n|| \to ||x||$ as $n \to \infty$.

I.e. the vectorspace-structure and the topological structure are compatible.

Proof.

- 1. $||(x_n + y_n) (x + y)|| \le ||x_n x|| + ||y_n y|| \to 0 \text{ as } n \to \infty.$
- 2. $\|\lambda_n x_n \lambda x\| \le \|\lambda_n x_n \lambda_n x\| + \|\lambda_n x \lambda x\| = |\lambda_n| \|x_n x\| + |\lambda_n \lambda| \|x\| \to 0.$
- 3. This follows from $||x|| ||y||| \le ||x y||$, since $|||x_n|| ||x||| \le ||x_n x|| \to 0$.

Definition 2.3. A normed space $\{X, \|\cdot\|\}$ which is complete is called a *Banach space*.

Example 2.4.

- (a) \mathbb{R}^n with $||x||_2 = \left(\sum_{i=1}^n |x_i|^2\right)^{1/2}$ or, more generally, $\{\mathbb{R}^n, ||\cdot||_p\}$, with $||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$ for $1 \le p < \infty$ and $||x||_\infty = \max_{i=1,\dots,n} |x_i|$.
- (b) $\ell_{\infty}(\mathbb{K}) = \{x \colon \mathbb{N} \to \mathbb{K}, i \mapsto x_i \colon x \text{ is bounded}\}$ with $\|x\|_{\infty} = \sup_{i \in \mathbb{N}} |x_i|$. $\ell_{\infty}(\mathbb{K})$ is complete, since $\{\ell_{\infty}(\mathbb{K}), d_{\infty}\} = \{\mathscr{B}(\mathbb{N}, \mathbb{K}), d_{\infty}\}$. In fact, let $\{Y, \|\cdot\|_Y\}$ be a Banach space, and $M \neq \emptyset$ any set. Then define $\ell_{\infty}(M, Y) = \mathscr{B}(M, Y)$ and $\|f\|_{\infty} = \sup_{t \in M} \|f(t)\|_{Y}$. Then $\{\ell_{\infty}(M, Y), \|\cdot\|_{\infty}\}$ is a Banach space.
- (c) Let $M = \{A, d\}$ be a metric space, X a Banach space and $\mathscr{C}_b(A, X)$ the continuous and bounded maps from A to X. Write $||f||_{\infty} = \sup_{t \in M} ||f(t)||_X$. Then $\mathscr{C}_b(A, X)$ with $||\cdot||_{\infty}$ is a Banach space.
- (d) $\{C^{\alpha}, \|\cdot\|_{\infty}\}$ is a Banach space.
- (e) $\{C^1[0,1], \|\cdot\|_{C^1}\}$ is a Banach space, where $\|f\|_{C^1} = \sup_{t \in [0,1]} |f(t)| + \sup_{t \in [0,1]} |f'(t)|$. Note that $\sup_{t \in [0,1]} |f'(t)|$ is a semi-norm but not a norm.
- (f) $\ell_p = \{x \colon \mathbb{N} \to \mathbb{K} \colon \sum_{i=1}^{\infty} |x_i|^p < \infty\}$ with $\|x\|_p = (\sum_{i=1}^{\infty} |x_i|^p)^{1/p}$ is a normed vectorspace. This is a Banach space: Let $\{x_n\}_{n \in \mathbb{N}} \subseteq \ell_p$ be a Cauchy sequence, i.e. $x_n \in \ell_p \colon x_n \colon \mathbb{N} \to \mathbb{K}, i \mapsto x_n(i)$. Let $\varepsilon > 0$. Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $\|x_n x_m\|_p < \varepsilon$ for $n, m \ge N$. Then $|x_n(i) x_m(i)| \le \|x_n x_m\|_p < \varepsilon$ for $n, m \ge N$ and all $i \in \mathbb{N}$, hence, $\{x_n(i)\}_{n \in \mathbb{N}} \subseteq \mathbb{K}$ is a Cauchy sequence, for all $i \in \mathbb{N}$. Since \mathbb{K} is complete, there exists, for all $i \in \mathbb{N}$, $x(i) \in \mathbb{K}$ such that $x_n(i) \to x(i)$ as $n \to \infty$. This defines a sequence $x = \{x(i)\}_{i \in \mathbb{N}}$ in \mathbb{K} . For $n, m \ge N$ and for all $M \in \mathbb{N}$,

$$\left(\sum_{i=1}^{M} |x_n(i) - x_m(i)|^p\right)^{1/p} \le \left(\sum_{i=1}^{\infty} |x_n(i) - x_m(i)|^p\right)^{1/p} = ||x_n - x_m||_p < \varepsilon$$

For n fixed, let $m \to \infty$ in the inequality $\left(\sum_{i=1}^{M} |x_n(i) - x_m(i)|^p\right)^{1/p} < \varepsilon$; we get that $\left(\sum_{i=1}^{M} |x_n(i) - x(i)|^p\right)^{1/p} \le \varepsilon$ for all $M \in \mathbb{N}$. Hence,

$$||x_n - x||_p = \left(\sum_{i=1}^{\infty} |x_n(i) - x(i)|^p\right)^{1/p} \le \varepsilon$$

for all $n \geq N$. Hence, $x - x_n \in \ell_p$ for all $n \geq N$. So $x = (x - x_n) + x_n \in \ell_p$ and $||x_n - x||_p \to 0$ as $n \to \infty$, hence $x_n \to x$ as $n \to \infty$.

Proposition 2.5. Let $\{X, \|\cdot\|\}$ be a normed space. Then X is a Banach space iff every absolutely convergent series is convergent: If $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ is a sequence such that $\sum_{n=1}^{\infty}\|x_n\|<\infty$, then there exists $x\in X$ such that $\lim_{M\to\infty}\|x-\sum_{n=1}^Mx_n\|=0$, i.e. $x=\lim_{M\to\infty}\sum_{n=1}^Mx_n=:\sum_{n=1}^\infty x_n$.

Proof.

"\Rightarrow" The sequence $\left\{\sum_{i=1}^{M} x_n\right\}_{M\in\mathbb{N}}$ is Cauchy in $\{X, \|\cdot\|\}$ if $\sum_{n=1}^{\infty} \|x_n\| < \infty$.

"\(\infty\)" Assume $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy. For all $\varepsilon>0$ there exists $N(\varepsilon)\in\mathbb{N}$ such that $n,m\geq N(\varepsilon)$ implies $\|x_n-x_m\|<\varepsilon$. Do this for $\varepsilon=\varepsilon_k=2^{-k}, k\in\mathbb{N}$, i.e. there exists $N_k\in\mathbb{N}$ such that $n,m\geq N_k$ implies $\|x_n-x_m\|<2^{-k}$. Using this, define inductively a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ such that $\|x_{n_{k+1}}-x_{n_k}\|<2^{-k}$. Let $y_n=x_{n_{k+1}}-x_{n_k}$. Then $\sum_{k=1}^{\infty}\|y_k\|<\sum_{k=1}^{\infty}2^{-k}<\infty$. So, $\sum y_k$ is absolutely convergent, hence, by assumption, there exists $y\in X$ such that $\lim_{M\to\infty}\|y-\sum_{k=1}^My_k\|=0$. So $\lim_{M\to\infty}\|y-(x_{n_{M+1}}-x_{n_1})\|=0$. Hence, $\{x_n\}_{n\in\mathbb{N}}$ has a convergent subsequence, and is Cauchy. So, by 1.58, also $\{x_n\}_{n\in\mathbb{N}}$ is convergent. Hence, X is Banach. \square

Definition 2.6. Let X be a vector space over \mathbb{K} .

- (a) A subset $C \subseteq X$ is called *convex* iff $x, y \in C$, $\lambda \in [0, 1]$ implies $\lambda x + (1 \lambda)y \in C$.
- (b) The convex hull of a subset $A \subseteq X$ is

$$co(A) = \left\{ \sum_{k=1}^{n} s_k x_k \colon n \in \mathbb{N}, x_k \in A, s_k \in [0, 1], \sum_{k=1}^{n} s_k = 1 \right\}$$

the set of all linear convex combinations of elements in A.

- (c) A subset $A \subseteq X$ is called absolutely convex iff $x, y \in A$, $s, t \in \mathbb{K}$, $|s| + |t| \le 1$ implies $sx + ty \in A$. In particular, A is convex.
- (d) The absolutely convex hull of a subset $A \subseteq X$ is

$$\Gamma(A) = \left\{ \sum_{i=1}^{n} s_k x_k \colon n \in \mathbb{N}, x_k \in A, s_k \in \mathbb{K}, \sum_{k=1}^{n} |s_k| \le 1 \right\}$$

Now, let X be normed.

- (e) X is called *strictly normed* (or *strictly convex*) iff for ||x|| = ||y|| = 1, $\left| \frac{1}{2}(x+y) \right| = 1$ implies x = y.
- (f) X is called uniformly convex iff for sequences $\{x_n\}_{n\in\mathbb{N}}, \{y_n\}_{n\in\mathbb{N}}\subseteq X, \lim_{n\to\infty}\|x_n\|=1, \lim_{n\to\infty}\|y_n\|=1 \text{ and } \lim_{n\to\infty}\left\|\frac{1}{2}(x+y)\right\|=1 \text{ implies } \|x_n-y_n\|\to 0 \text{ as } n\to\infty.$

As usual we denote $B_1(0) = \{y : ||y|| < 1\}$ the unit ball in X. Also, $S_1(0) = \{y : ||y|| = 1\}$.

Remark.

- 1. $B_1(0) = \{y \colon ||y|| \le 1\} = B_1(0) \cup S_1(0)$.
- 2. $B_1(0)$ is convex (any open ball is convex).

Definition 2.7. Let X be a vectorspace. Then $U \subseteq X$ is called a *linear subspace* iff $x, y \in U$, $\lambda \in \mathbb{K}$ implies $x + \lambda y \in U$. Then $x \sim y \iff x - y \in U$ defines an equivalence relation and the quotient X/U is a vectorspace. We write $[x] = x + U \in X/U$.

Lemma 2.8. Let $\{X, p\}$ be a semi-normed space.

- (a) $N = \{x \in X : p(x) = 0\}$ is a linear subspace of X.
- (b) ||[x]|| = p(x) defines a norm on X/N.
- (c) If every Cauchy-sequence in $\{X, p\}$ converges, then $\{X/N, \|\cdot\|\}$ is Banach.

Proof.

- (a) $0 \le p(x + \lambda y) \le p(x) + |\lambda|p(y) = 0$ if $x, y \in N$. So $x + \lambda y \in N$.
- (b) $||[x] + [y]|| = p(x + y) \le p(x) + p(y) = ||[x]|| + ||[y]||, ||\lambda[x]|| = ||[\lambda x]|| = p(\lambda x) = p(x + y)$ $|\lambda|p(x) = |\lambda|||[x]||$. Note: if $y \sim x$, then $x - y \in N$, so $p(x) = p(x - y + y) \le x$ p(x-y) + p(y) = p(y) and $p(y) = p(y-x+x) \le p(y-x) + p(x) = p(x)$. Hence, ||[x]|| is well-defined. Also, ||[x]|| = 0 implies p(x) = 0, so $x \in N$, i.e. [x] = 0.
- (c) Clearly, $\{[x_n]\}_{n\in\mathbb{N}}$ is Cauchy or convergent in $\{X/N, \|\cdot\|\}$ iff $\{x_n\}_{n\in\mathbb{N}}$ is Cauchy or convergent in $\{X, p\}$.

Lemma 2.9. Let X be a normed space, and $U \subseteq X$ be a linear subspace. Then \overline{U} is also a linear subspace.

Proof. Let $x, y \in \overline{U}$, $\lambda \in \mathbb{K}$. Then there exist $\{x_n\}, \{y_n\} \subseteq U$ such that $x_n \to x, y_n \to y$ as $n \to \infty$. Then, since U is a linear subspace, $x_n + \lambda y_n \in U$. On the other hand, by $2.2, x_n + \lambda y_n \to x + \lambda y$ as $n \to \infty$. Hence, $x + \lambda y \in \overline{U}$. So \overline{U} is a linear subspace.

Definition 2.10. Two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on the same vectorspace X are called equivalent iff there exist c, C > 0 such that $c||x||_1 \le ||x||_2 \le C||x||_1$.

Remark 2.11.

- Two equivalent norms have exactly the same convergent sequences and give rise to the same topology.
- Any two norms on \mathbb{R}^n are equivalent.
- If $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms on X, then $\{X, \|\cdot\|_1\}$ is Banach space iff $\{X, \|\cdot\|_2\}$ is Banach.
- Let $X = \mathscr{C}[0,1] = \mathscr{C}([0,1],\mathbb{R})$, and $||f||_{\infty} = \sup_{t \in [0,1]} |f(t)|$, and

$$||f||_1 = \int_0^1 |f(t)| \, \mathrm{d}t.$$

Then $\|\cdot\|_{\infty}$ and $\|\cdot\|_{1}$ are norms. Note, that $\|f\|_{1} \leq \|f\|_{\infty}$ for all $f \in \mathscr{C}[0,1]$. Assume there exists $C_0 > 0$ such that $||f||_{\infty} \leq C_0 ||f||_1$. Take

$$f(t) = \begin{cases} 1 - C_0 t & t \in [0, \frac{1}{C_0}] \\ 0 & t \in [\frac{1}{C_0}, 1] \end{cases}$$

Then $||f||_{\infty} = 1$ and $||f||_{1} = \frac{1}{2C_{0}}$. So $1 \leq \frac{1}{2}$ — a contradiction. So these two norms are not equivalent. Note, that $(\mathscr{C}[0,1], ||\cdot||_{\infty})$ is Banach but $(\mathscr{C}[0,1], ||\cdot||_{1})$ is not.

- **Proposition 2.12.** Let X, Y be normed spaces, with norms $\|\cdot\|_X$ and $\|\cdot\|_Y$. 1. $\|(x,y)\|_p := (\|x\|_X^p + \|y\|_Y^p)^{1/p}$ defines a norm on $X \oplus Y$ for $1 \le p < \infty$. We denote this normed space $X \oplus_p Y$. (Also $\|(x,y)\|_{\infty} = \max\{\|x\|_X, \|y\|_Y\}$)
 - 2. Any $\|(\cdot,\cdot)\|_p$, $\|(\cdot,\cdot)\|_q$ are equivalent norms on $X \oplus Y$.
 - 3. If X and Y are Banach spaces, then $X \oplus_p Y$ is Banach.

Definition 2.13. Let $M = \{A, d\}$ be a metric space and $U \subseteq A$ a subset. The distance from $x \in A$ to U is defined as

$$d(x,U) := \inf_{a \in U} d(x,a).$$

A point $a \in U$ such that d(x, a) = d(x, U) is called a best approximation to x in A.

Remark.

- (1) Such a point is not necessarily unique.
- (2) If U is compact, then there exists at least one best approximation (for all x) since the map $a \mapsto d(x, a)$ is continuous. We shall see more later on the existence and uniqueness of best approximations, especially for the case of linear subspaces of Banach spaces.

Proposition 2.14 (Riesz' Lemma). Let X be a normed space, $U \subseteq X$ a linear subspace such that $\overline{U} = U$ and $U \neq X$. Let $\delta \in (0,1)$. Then there exists $x_{\delta} \in X$ with $||x_{\delta}|| = 1$ and $||x_{\delta} - u|| \ge 1 - \delta$ for all $u \in U$.

Proof. Let $x \in X \setminus U$. Since $U = \overline{U}$, d(x,U) > 0. Since $\delta \in (0,1)$, $d(x,U) < \frac{d(x,U)}{1-\delta}$. Since $d(x,U) = \inf_{a \in U} d(x,a)$, there exists $u_{\delta} \in U$ such that $d(x,u_{\delta}) < \frac{d(x,U)}{1-\delta}$. Let $x_{\delta} = \frac{x-u_{\delta}}{\|x-u_{\delta}\|}$. Then $\|x_{\delta}\| = 1$, and for all $u \in U$

$$||x_{\delta} - u|| = \left\| \frac{x - u_{\delta}}{||x - u_{\delta}||} - u \right\| = \left\| \frac{x}{||x - u_{\delta}||} - \frac{u_{\delta}}{||x - u_{\delta}||} - u \right\|$$

$$= \frac{1}{||x - u_{\delta}||} ||x - (u_{\delta} + ||x - u_{\delta}||u)|| \ge \frac{d(x, U)}{||x - u_{\delta}||} \ge 1 - \delta$$

Definition 2.15. Let X, Y be two \mathbb{K} -vectorspaces. A map $T: X \to Y$ is called *linear* iff $T(\alpha x_1 + x_2) = \alpha T(x_1) + T(x_2)$ for all $x_1, x_2 \in X$ and $\alpha \in \mathbb{K}$. The *kernel* $N(T) = T^{-1}(\{0\})$ of T is a linear subspace of X. The *image* (or *range*) $R(T) = \{Tx: x \in X\}$ of T is a linear subspace of Y. We shall often (for linear T) write Tx instead of T(x). We call T a *linear operator*.

Theorem 2.16. For normed spaces X, Y and a linear operator $T: X \to Y$, the following are equivalent:

- (a) There exists C > 0 such that $||Tx||_Y \le C||x||_X$.
- (b) T is uniformly continuous on X.
- (c) There exists $a \in X$ such that T is continuous at a.
- (d) $||T|| = \sup_{\substack{x \in X \\ ||x|| \le 1}} ||Tx||_Y < \infty.$

Proof.

- $\begin{array}{ll} (a)\Rightarrow (b) \ \ \text{For} \ \ x,y \in X, \ \|T(x)-T(y)\|_Y = \|T(x-y)\|_Y \leq C\|x-y\|_X, \ \text{so, for} \ \varepsilon > 0, \\ d(u,v) < \frac{\varepsilon}{C} \ \ \text{implies} \ d\big(T(u),T(v)\big) < \varepsilon. \end{array}$
- $(b) \Rightarrow (c)$ Trivial.
- $(c) \Rightarrow (d) \ \text{For } \varepsilon = 1 \text{, there exists } \delta > 0 \text{ such that } \|x a\|_X \leq \delta \text{ implies } \|Tx Ta\|_Y \leq 1. \text{ For all } \\ x \in X \text{ with } \|x\| \leq 1, \, \|(a + \delta x) a\|_X \leq \delta. \text{ So } \|T(\delta x)\|_Y = \|T(a + \delta x) T(a)\|_Y \leq 1. \\ \text{So } \|Tx\|_Y \leq \frac{1}{\delta} < \infty \text{ for all } x \in X \text{ with } \|x\| \leq 1. \text{ So } \|T\| \leq \frac{1}{\delta} < \infty.$
- $(d) \Rightarrow (a) \text{ For } x \neq 0, \ \left\| \frac{x}{\|x\|_X} \right\|_X = 1, \text{ so } \left\| T \left(\frac{x}{\|x\|_X} \right) \right\|_X \leq \sup_{\|x\|_X \leq 1} \|Tx\|_Y = \|T\|. \text{ Hence,}$ $\frac{1}{\|x\|_X} \|Tx\|_Y \leq \|T\|, \text{ so } \|Tx\|_Y \leq \|T\| \|x\|_X.$

Remark. In this case, the number ||T|| in (d) is the smallest number such that (a) holds, i.e. $||T|| = \sup_{x \neq 0} \frac{||Tx||_Y}{||x||_X}$. It is called the operator norm of T.

Definition 2.17. Let X, Y be normed spaces, and T a linear operator such that one (hence, all) of the conditions in 2.16 holds. Then T is called a *bounded linear operator*. The set of all such operators is denoted B(X, Y). If X = Y, we write B(X).

Remark 2.18.

- 1. B(X,Y) is the set of all continuous and linear maps from X to Y. However, if $T \in B(X,Y)$, then it is *not* a bounded map as defined in 1.42: The range R(T) is not a bounded subset of Y. However, the image $T(B_1(0, \|\cdot\|_X))$ of the unit ball in X is a bounded subset of Y.
- 2. Not all linear maps are bounded, i.e. there exist discontinuous linear maps; these are called unbounded operators. Let $X = \mathcal{C}^1[0, 2\pi]$, $Y = \mathcal{C}[0, 2\pi]$, $\|\cdot\|_X = \|\cdot\|_Y = \|\cdot\|_\infty$, and let $T = \frac{\mathrm{d}}{\mathrm{d}x} \colon X \to Y$. Then T is well-defined and linear. But T is not bounded: Let $f_n(t) = e^{int}$. Then $\|f_n\|_\infty = 1$ but $Tf_n = (in)f_n$, so $\|Tf_n\|_\infty = n$. Hence, there does not exist C > 0 such that $\|Tf\|_\infty \le C\|f\|_\infty$. (But try $\|f\|_{\mathcal{C}^1} = \|f\|_\infty + \|f'\|_\infty$ on X.)
- 3. If $T: X \to Y$ is bounded and one chooses an equivalent norm on X or Y, or on both, then T remains bounded. Note, however, that the number $||T|| = \sup_{||x||_X \le 1} ||Tx||_Y$ might very well change.
- 4. If $T: X \to Y$ is linear and $\dim X < \infty$, then T is bounded, in particular, any linear map $\mathbb{R}^n \to \mathbb{R}^m$ is bounded: Choose a basis $\{e_1, \ldots, e_n\}$ of X and define, for $x = \sum_{i=1}^n x_i e_i$, $\|x\|_1 = \sum_{i=1}^n |x_i|$. Then $\|\cdot\|_1$ is a norm on X. Since T is linear, $Tx = \sum_{i=1}^n x_i T(e_i)$. So $\|Tx\|_1 \le \sum_{i=1}^n |x_i| \|Te_i\|_Y$. Let $C = \max_{i=1,\ldots,n} \|Te_i\|_Y$. Then $\|Tx\|_Y \le \sum_{i=1}^n |x_i| C = C\|x\|_1$. So T is $(\|\cdot\|_1, \|\cdot\|_Y)$ -bounded. Since $\dim X < \infty$, $\|\cdot\|_1$ is equivalent to $\|\cdot\|_X$. Hence, T is $(\|\cdot\|_X, \|\cdot\|_Y)$ -bounded.
- 5. Let X,Y be normed spaces. Then B(X,Y) is a vector space: $(\alpha T + S)(x) := \alpha T(x) + S(x)$ for $\alpha \in \mathbb{K}$ and $T,S \in B(X,Y)$. This defines a linear map $\alpha T + S : X \to Y$. Also, if $x \in X$, $||x||_X \le 1$, then

$$\|(\alpha T + S)x\|_{Y} \le |\alpha| \|Tx\|_{Y} + \|Sx\|_{Y} \le |\alpha| \|T\| + \|S\|,$$

hence $\|\alpha T + S\| \leq |\alpha| \|T\| + \|S\| < \infty$. Hence, $\alpha T + S \in B(X,Y)$. Also, $\|T\| = \sup_{\|x\|_X \leq 1} \|Tx\|_Y$ defines a norm on B(X,Y): Clearly, $T = 0 \iff \|T\| = 0$. From above, $\|T + S\| \leq \|T\| + \|S\|$ and $\|\lambda T\| = \sup_{\|x\|_X \leq 1} \|(\lambda T)x\|_Y = |\lambda| \|T\|$. Hence, $(B(X,Y),\|\cdot\|)$ is a normed vectorspace. Note, that if dim $X = m < \infty$ and dim $Y = n < \infty$, then B(X,Y) can be identified with $\mathbb{K}^{n \times m} \cong \mathbb{K}^{n \cdot m}$.

6. Let X, Y, Z be normed vectorspaces, and let $T \in B(X, Y)$ and $S \in B(Y, Z)$. Then $ST \in B(X, Z)$ and $||ST|| \le ||S|| ||T||$, since for $x \in X$, $||x||_X \le 1$:

$$||S(Tx)||_Z \le ||S|| ||Tx||_Y \le ||S|| ||T|| ||x||_X \le ||S|| ||T||.$$

7. If X is normed an $Y = \mathbb{L}$, then $B(X, \mathbb{K}) =: X'$ is called the dual space of X. It is a normed linear space. Note, that $L(X, \mathbb{K})$ is the algebraic dual of X. An element of $B(X, \mathbb{K})$ is called a bounded linear functional. For example, $T : \mathscr{C}[0,1] \to \mathbb{K}, x \mapsto x(0)$ is in $\mathscr{C}[0,1]'$, ||T|| = 1; $T :: \mathscr{C}^1[0,1] \to \mathbb{K}, x \mapsto x(0) + x'(1)$ is in $\mathscr{C}^1[0,1]'$, ||T|| = 1; $T :: \mathscr{C}[0,1] \to \mathbb{K}, x \mapsto \int_0^1 x(t) dt$ is in $\mathscr{C}[0,1]'$, ||T|| = 1 and, for any $g \in \mathscr{C}[0,1], T :: \mathscr{C}[0,1] \to \mathbb{K}, x \mapsto \int_0^1 x(t)g(t) dt$ is in $\mathscr{C}[0,1]'$ with $||T|| = \int_0^1 |g(t)| dt$.

Proposition 2.19. Let X, Y be normed spaces, and let $(B(X, Y), \|\cdot\|)$ be the normed space of bounded linear operators.

- (a) If Y is Banach, then so ist B(X,Y).
- (b) X' is a Banach space.

Remark. The result is independent of whether or not X is Banach.

Proof. (b) follows immediately from (a), since \mathbb{K} is complete. Let $\{T_n\}_{n\in\mathbb{N}}\subseteq B(X,Y)$ be Cauchy. Since, for all $x\in X$, $\|T_nx-T_mx\|_Y=\|(T_n-T_m)x\|_Y\leq \|T_n-T_m\|\|x\|_X$, $\{T_nx\}_{n\in\mathbb{N}}\subseteq Y$ is Cauchy for all $x\in X$. Since Y is Banach, $\{T_nx\}$ is convergent in Y. Let $Tx=\lim_{n\to\infty}T_nx$. So $T\colon X\to Y$ is linear, since for $x_1,x_2\in X$, $x\in\mathbb{K}$,

$$T(\alpha x_1 + x_2) = \lim_{n \to \infty} T_n(\alpha x_1 + x_2) \stackrel{2.2}{=} \alpha \lim_{n \to \infty} T_n(x_1) + \lim_{n \to \infty} T_n(x_2) = \alpha T(x_1) + T(x_2).$$

Let $\varepsilon > 0$ and choose $N \in \mathbb{N}$ such that $n, m \geq N$ implies $||T_n - T_m|| < \varepsilon$. Let $x \in X$, $||x||_X \leq 1$. Take an m > N such that $||T_m x - Tx||_Y < \varepsilon$. Then, for all $n \geq N$,

$$||Tx - T_n x||_Y \le ||Tx - T_m x||_Y + ||T_m x - T_n x||_Y \le \varepsilon + ||T_m - T_n|| ||x||_X.$$

Hence, $||Tx - T_m x||_Y \le 2\varepsilon$ for all $x \in X$ with $||x||_X \le 1$. So,

$$||T - T_n|| = \sup_{\|x\|_X \le 1} ||Tx - T_n x||_Y \le 2\varepsilon < \infty \quad \forall n \ge N$$

So, $T - T_n \in B(X, Y)$, hence $T = (T - T_n) + T_n \in B(X, Y)$ and $T_n \to T$ as $n \to \infty$ in B(X, Y).

Remark. $0 \in B(X,Y)$. If X = Y, then we denote the identity map by I. Clearly, ||I|| = 1 and $I \in B(X)$. Since $S, T \in B(X,Y)$ implies $ST \in B(X)$, B(X) is a \mathbb{K} -algebra.

Definition 2.20. Let X, Y be normed spaces.

- (a) A linear map $T: X \to Y$ is called an *isomorphism* iff T is bijective and both T and T^{-1} are bounded, i.e. an isomorphism is a linear homeomorphism.
- (b) A surjective linear map $T: X \to Y$ is called an *isometry from* X *on* Y iff $||Tx||_Y = ||x||_X$ for all $x \in X$, in particular, T is an isomorphism.
- (c) A linear map $T: X \to Y$ is called an isometry from X in Y iff $T: X \to R(T)$ is an isometry of X on R(T).
- (d) X and Y are called *isomorphic* (written $X \simeq Y$) iff there exists an isomorphism $X \to Y$. They are called *isometric* (or *isometrically isomorphic*) iff there exists an isometry from X on Y (written $X \cong Y$).
- (e) If a linear map $T: X \to Y$ is injective, it is called an *embedding* of X in Y (and if $T \in B(X,Y)$, then T is called a continuous/bounded embedding).
- (f) If a linear map $P: X \to Y$ satisfies $P^2 = P$, it is called a projection.
- (g) If $T \in B(X,Y)$ is bijective then $T^{-1} \in B(Y,X)$ (i.e. the inverse is automatically bounded). The proof of this is nontrivial, and we shall do this later. We call T invertible.

Remark.

- 1. Both " \simeq " and " \cong " are equivalence relations.
- 2. Normed spaces of the same finite dimension are always isomorphic. However $\{\mathbb{R}^2, \|\cdot\|_2\}$ and $\{\mathbb{R}^2, \|\cdot\|_1\}$ are not isometrically isomorphic.
- 3. The question which ("known") Banach spaces are isomorphic or isometrically isomorphic to which other spaces is/was an important one.
- 4. If $T: X \to Y$, and dim $X = \dim Y = \infty$, then it is (in general) not enough that T is injective or surjective to conclude that T is a bijection.

Proposition 2.21. Let X be a normed space, Y a Banach space, $V \subseteq X$ a linear subspace, and $T: V \to Y$ a continuous linear map (i.e. $T \in B(V,Y)$). Then there exists a unique extension $\overline{T}: \overline{V} \to Y$ (i.e. $\overline{T}|_V = T$), with $\overline{T} \in B(\overline{V},Y)$ and $\|\overline{T}\| = \|T\|$.

Proof. Assume $x \in \overline{V}$; then there exists $\{v_n\} \subseteq V$ such that $||x-v_n|| \to 0$ as $n \to \infty$. So, if \overline{T} exists, then $\overline{T}x = \lim_{n \to \infty} \overline{T}v_n = \lim_{n \to \infty} Tv_n$. This proves uniqueness. Let $x \in \overline{V}$ and take $\{v_n\} \subseteq V$ such that $v_n \to x$ as $n \to \infty$. Then $||Tv_n - Tv_m|| = ||T(v_n - v_m)|| \le ||T|| ||v_n - v_m||$. Since $\{v_n\}$ is convergent, it is Cauchy, so this proves that $\{Tv_n\} \subseteq Y$ is Cauchy, hence, since Y is Banach, it is convergent. If also $\{u_n\} \subseteq V$ with $u_n \to x$ as $n \to \infty$, then

$$||Tu_n - Tv_n|| = ||T(u_n - v_n)|| \le ||T|| ||u_n - v_n|| \le ||T|| (||u_n - x|| + ||x - v_n||) \xrightarrow{n \to \infty} 0,$$

hence, $\lim_{n\to\infty} Tu_n - Tv_n = 0$. Hence, $\lim_{n\to\infty} Tu_n = \lim_{n\to\infty} Tv_n$ by 2.2. So, $\overline{T}x = \lim_{n\to\infty} Tv_n$ is well-defined $(x\in \overline{V}, v_n\to x \text{ as } n\to\infty)$. Clearly, \overline{T} is an extension of T. Also, $\overline{T}\colon \overline{V}\to Y$ is linear (take $x,y\in \overline{V}, \lambda\in \mathbb{K}$, take $\{v_n\},\{w_n\}\subseteq V \text{ s.t. } v_n\to x \text{ as } n\to\infty, w_n\to y \text{ as } n\to\infty \text{ and use the definition of } \overline{T}, \text{ linearity of } T, \text{ and 2.2})$. Since T is bounded (on V), we have $||Tv_n|| \le ||T|| ||v_n||$. Taking $n\to\infty$, by 2.2 $||\overline{T}x|| \le ||T|| ||x||$, hence $||\overline{T}|| \le ||T||$. So $\overline{T}\in B(\overline{V},Y)$, and since $||T|| \le ||\overline{T}||$, we get $||T|| = ||\overline{T}||$.

Remark.

- 1. In particular, if $V \subseteq X$ $(V \neq X)$, $\overline{V} = X$, $T \in B(V,Y)$, Y Banach, then there exists a unique $\overline{T} \in B(X,Y)$ extending T with $\|\overline{T}\| = \|T\|$.
- 2. If $T: V \to Y$ is an isometry, then also \overline{T} is an isometry. However, if T is injective, one cannot be sure that also \overline{T} is injective.
- 3. Note, that the special case $Y=\mathbb{K},$ gives extensions of certain linear bounded functionals.

We shall now study a special class of normed spaces, namely those where the norm comes from a scalar product.

Definition 2.22. Let H be a \mathbb{K} -vectorspace. A map $\langle \cdot, \cdot \rangle \colon H \times H \to \mathbb{K}$ is called *scalar product* (or *inner product*) iff for all $x, y_1, y_2, y \in H$ and $\lambda \in \mathbb{K}$

- (a) $\langle x, \lambda y_1 + y_2 \rangle = \lambda \langle x, y_1 \rangle + \langle x, y_2 \rangle$.
- (b) $\langle x, y \rangle = \overline{\langle y, x \rangle}$.
- (c) $\langle x, x \rangle \ge 0$ and $\langle x, x \rangle = 0$ iff x = 0.

Note that $\langle \lambda x_1 + x_2, y \rangle = \overline{\lambda} \langle x_1, y \rangle + \langle x_2, y \rangle$. If $\mathbb{K} = \mathbb{R}, \langle \cdot, \cdot \rangle$ is called *bilinear*, if $\mathbb{K} = \mathbb{C}$, $\langle \cdot, \cdot \rangle$ is called a sesquilinear form. Property (c) is called positive definiteness. Property (b) is called *symmetry*. Hence, $\langle x, x \rangle = \overline{\langle x, x \rangle} \in \mathbb{R}$. The space $(H, \langle \cdot, \cdot \rangle)$ is called a pre-Hilbert space.

Proposition 2.23. Let $(H, \langle \cdot, \cdot \rangle)$ be a pre-Hilbert space, and let $||x|| = \sqrt{\langle x, x \rangle}$ for $x \in H$.

- 1. $\|\cdot\|$ is a norm on H.
- 2. $|\langle x,y\rangle| \leq \|x\| \|y\|$ with equality if $x = \lambda y$ for $\lambda \in \mathbb{K}$ (Cauchy-Schwarz inequality). 3. $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$ (parallelogramme rule).

Proof.

1. $\|\cdot\|$ is positive definite by definition. Also, for $x \in H$, $\alpha \in \mathbb{K}$, $\|\alpha x\|^2 = \langle \alpha x, \alpha x \rangle = 0$ $\overline{\alpha}\alpha\langle x,x\rangle=|\alpha|^2\|x\|^2$. The triangle inequality follows from 2:

$$||x + y||^2 = \langle x + y, x + y \rangle = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x, y \rangle \le$$

$$\le ||x||^2 + ||y||^2 + 2||x|| ||y|| = (||x|| + ||y||)^2.$$

2. Let $\lambda \in \mathbb{K}$ be arbitrary, $x, y \in H$, then

$$0 \le \langle x + \lambda y, x + \lambda y \rangle = ||x||^2 + \overline{\lambda} \langle y, x \rangle + \lambda \langle x, y \rangle + |\lambda|^2 ||y||^2$$

Taking $\lambda = -\overline{\langle x, y \rangle} / ||y||^2$, Cauchy-Schwarz follows.

3. Follows from the first 2 lines in the computation in 1.

Definition. Hence, a pre-Hilbert space $(H, \langle \cdot, \cdot \rangle)$ gives rise to a normed space $(H, \| \cdot \|)$, $||x|| = \sqrt{\langle x, x \rangle}$. If this space is complete, $(H, \langle \cdot, \cdot \rangle)$ is called a *Hilbert space*.

Remark. For $\mathbb{K} = \mathbb{R}$

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2)$$

and for $\mathbb{K} = \mathbb{C}$

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2).$$

This is called *polarization identity*. So, the scalar product defines the norm, on the other hand, the scalar product is uniquely determined by the norm.

Proposition 2.24. A normed space X is a pre-Hilbert space iff

$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2) \quad \forall x, y \in X$$
 (*)

Proof. If X is a pre-Hilbert space, then (*) holds. So assume (*) holds, and set $(\mathbb{K} = \mathbb{R})$

$$\langle x, y \rangle := \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2).$$

Then (!) one proves that this does define a scalar product on X. (For $\mathbb{K} = \mathbb{C}$, use the polarization identity).

In the proof of the above proposition one needs the following lemma.

Lemma 2.25. The scalar product on a pre-Hilbert space is a continuous map $H \times H \rightarrow$

Proof. Form the Cauchy-Schwarz inequality, it follows that

$$|\langle x_1, y_1 \rangle - \langle x_2, y_2 \rangle| = |\langle x_1 - x_2, y_1 \rangle + \langle x_2, y_1 - y_2 \rangle| \le ||x_1 - x_2|| ||y_1|| + ||x_2|| ||y_1 - y_2||.$$

This proves continuity.

Example 2.26.

- 1. \mathbb{C}^n with $\langle x, y \rangle = \sum_{i=1}^n \overline{x_i} y_i$. 2. ℓ_2 with $\langle x, y \rangle = \sum_{i=1}^\infty \overline{x_i} y_i$, since for $x, y \in \ell_2(\mathbb{N}), N \in \mathbb{N}$,

$$\left| \sum_{i=1}^{N} \overline{x_i} y_i \right| \le \left(\sum_{i=1}^{N} |x_i|^2 \right)^{1/2} \left(\sum_{i=1}^{N} |y_i|^2 \right)^{1/2} \le \|x\|_2 \|y\|_2$$

and $\langle x, x \rangle = ||x||_2$.

3. Let $H = \mathscr{C}([0,1],\mathbb{C})$ and define

$$\langle f, g \rangle = \int_0^1 \overline{f(t)} g(t) \, \mathrm{d}t$$

This is a scalar product, so $(H, \langle \cdot, \cdot \rangle)$ is a pre-Hilbert space. However, this is not a Hilbert space. We shall "repair" this later, when studying Lebesgue-integration.

4. Let $H = \mathcal{C}^k([0,1],\mathbb{C})$, and let

$$\langle f, g \rangle_{\mathscr{C}^k} = \sum_{j=0}^k \left\langle f^{(j)}, g^{(j)} \right\rangle$$

with $\langle \cdot, \cdot \rangle$ the scalar product in 3. This gives a pre-Hilbert space.

Definition 2.27. Let H be a pre-Hilbert space.

- (a) If $\langle x,y\rangle=0$ then we say that x and y are orthogonal and write $x\perp y$. In this case it follows that $||x||^2 + ||y||^2 = ||x + y||^2$.
- (b) Let $Y, Z \subseteq H$ be two subsets of H. Then we call Y and Z orthogonal iff $\langle z, y \rangle = 0$ for all $z \in Z$ and $y \in Y$. If Y, Z are linear subspaces, then $Y \cap Z = \{0\}$ if Y and Z are orthogonal.
- (c) For a subset $Y \subseteq H$ we define the *orthogonal complement* of Y by

$$Y^{\perp} = \{ x \in H : \forall y \in Y. \ x \perp y \}$$

Then $Y \cap Y^{\perp} = \{0\}$ if Y is a linear subspace.

Remark.

- 1. A^{\perp} is always a linear closed subspace of H.
- 2. $(\overline{A})^{\perp} = A^{\perp}$.

3.
$$A \subseteq (A^{\perp})^{\perp}$$
.

Proposition 2.28. Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space, and let $K \subseteq H$ be a closed and convex subset and let $x_0 \in H$. Then there exists a unique $x \in K$ such that $||x_0 - x|| = d(x_0, K)$, i.e. there exists a unique best approximation to x_0 in K.

Proof. This is trivial if $x_0 \in K$. So assume $x_0 \notin K$. Also, assume $x_0 = 0$ (otherwise, subtract x_0 everywhere). Since $d := d(x_0, K) = \inf_{y \in K} ||y||$, there exists a sequence $\{y_n\} \subseteq K$ such that $||y_n|| \to d$ as $n \to \infty$. We aim to prove that $\{y_n\}$ is Cauchy. Use the parallelogramme rule to get

$$\left\| \frac{y_n + y_m}{2} \right\|^2 + \left\| \frac{y_n - y_m}{2} \right\|^2 = \frac{1}{2} \left(\|y_n\|^2 + \|y_m\|^2 \right)$$

Note that $\frac{y_n+y_m}{2} \in K$ since K is convex. So, $\left\|\frac{y_n+y_m}{2}\right\|^2 \geq d^2$. Also, $\frac{1}{2}\left(\|y_n\|^2+\|y_m\|^2\right) \to d^2$ as $n, m \to \infty$. Hence, $\|y_n-y_m\|^2 \to 0$ as $n, m \to \infty$, hence $\{y_n\}$ is Cauchy. So, let $x = \lim_{n \to \infty} y_n \in H$. Then $x \in K$. Also (by 2.2), $\|x\| = \lim_{n \to \infty} \|y_n\| = d$. So x is a best approximation of x_0 .

Assume $x, \tilde{x} \in K$, $\|x\| = \|\tilde{x}\| = \inf_{y \in K} \|y\| = d$, $x \neq \tilde{x}$. Then, by the parallelogramme rule

$$\left\| \frac{x + \tilde{x}}{2} \right\|^2 < \left\| \frac{x + \tilde{x}}{2} \right\|^2 + \left\| \frac{x - \tilde{x}}{2} \right\|^2 = \frac{1}{2} \left(\|x\|^2 + \|\tilde{x}\|^2 \right) = d^2$$

Hence, $\left\| \frac{x+\tilde{x}}{2} \right\| < d$ and $\frac{x+\tilde{x}}{2} \in K$ — a contradiction.

Remark. This gives a map $P: H \to H$ with $||x - P(x)|| = \inf_{y \in K} ||x - y|| = d(x, K)$. Clearly, $P(x) \in K$ for $x \in H$, so $P(H) \subseteq K$. So P(P(x)) = P(x) for all $x \in H$, i.e. $P^2 = P$, so P is a projection (not necessarily linear). This typically is used when K is a closed linear subspace of H.

Proposition 2.29. Let H be a Hilbert space, $K \subseteq H$ be convex and closed and $x_0 \in H$. Then the following are equivalent for $x \in K$:

- (i) $||x_0 x|| = d(x_0, K)$.
- (ii) Re $\langle x_0 x, y x \rangle \leq 0$ for all $y \in K$.

Proof.

 $(ii) \Rightarrow (i)$ This follows from

$$||x_0 - y||^2 = ||(x_0 - x) + (x - y)||^2 = ||x_0 - x||^2 + 2\operatorname{Re}\langle x_0 - x, x - y\rangle + ||x - y||^2$$

$$\geq ||x_0 - x||^2$$

for all $y \in K$. So $||x_0 - x|| = d(x_0, K)$.

(i) \Rightarrow (ii) Let $y \in K$, and for $\lambda \in [0,1]$ let $y_{\lambda} = (1-\lambda)x + \lambda y \in K$. So

$$||x_0 - x||^2 \le ||x_0 - y_\lambda||^2 = \langle x_0 - x + \lambda(x - y), x_0 - x + \lambda(x - y) \rangle =$$
$$= ||x_0 - x||^2 + 2\operatorname{Re}\langle x_0 - x, \lambda(x - y) \rangle + \lambda^2 ||x - y||^2$$

Hence, Re $\langle x_0 - x, y - x \rangle \leq \frac{\lambda}{2} ||x - y||^2$ for $\lambda \in (0, 1]$, so Re $\langle x_0 - x, y - x \rangle \leq 0$.

Theorem 2.30 (Orthogonal projections). Let $U \neq \{0\}$ be a closed linear subspace of a Hilbert space H. Then there exists a linear projection $P_U \colon H \to H$ with $P_U(H) = U$, $\|P_U\| = 1$, and $N(P_U) = U^{\perp}$. Also, $I - P_U$ is a projection on U^{\perp} with $\|I - P_U\| = 1$ (except if U = H), and $H = U \oplus_2 U^{\perp}$. P_U is called the orthogonal projection on U.

Proof. Note that U is closed and convex, so $P_U \colon H \to H$ is defined (see above), with $P_U(x)$ the best approximation to x in U. We have seen above that $P_U^2 = P_U$ and $P_U(H) = U$. By 2.29 Re $\langle x_0 - P_U(x_0), y - P_U(x_0) \rangle \leq 0$ for all $y \in U$. Since U is a linear subspace, $y - P_U(x_0) \in U$ for all $y \in U$. Hence, (put $y = \tilde{y} + P_U(x_0), \tilde{y} \in U$) Re $\langle x_0 - P_U(x_0), \tilde{y} \rangle \leq 0$ for all $\tilde{y} \in U$. Now do the same for $-\tilde{y} \in U$ and $i\tilde{y} \in U$ ($\mathbb{K} = \mathbb{C}$). Then

$$\langle x_0 - P_U(x_0), \tilde{y} \rangle = 0 \quad \forall \tilde{y} \in U$$
 (*)

Hence, $P_U(x_0)$ is the unique element in U such that

$$x_0 - P_U(x_0) \in U^\perp \tag{**}$$

Since U^{\perp} is a linear subspace of H it follows that, if $x_1, x_2 \in H$, $\lambda \in \mathbb{K}$, $x_1 - P_U(x_1) \in U^{\perp}$, $x_2 - P_U(x_2) \in U^{\perp}$, so $(x_1 + \lambda x_2) - (P_U(x_1) + \lambda P_U(x_2)) \in U^{\perp}$. But $P_U(x_1 + \lambda x_2)$ is the unique w such that $(x_1 + \lambda x_2) - w \in U^{\perp}$. Hence, $P_U(x_1 + \lambda x_2) = P_U(x_1) + \lambda P_U(x_2)$, i.e. P_U is linear. By construction, $R(P_U) = U$ and from (**) it follows that $P_U(x_0) = 0$ iff $x_0 \in U^{\perp}$. So $N(P_U) = U^{\perp}$. Then also $I - P_U$ is a projection:

$$(I - P_U)^2(x) = (I - P_U)(x - P_U(x)) = x - P_U(x) - P_U(x) + P_U^2(x) = x - P_U(x) = (I - P_U)(x).$$

Also $R(I - P_U) = U^{\perp}$ and $N(I - P_U) = U$. From Pythagoras it follows that $||x||^2 = ||(x - P_U(x)) + P_U(x)||^2 = ||x - P_U(x)||^2 + ||P_U(x)||^2$, hence $||P_U(x)|| \le ||x||$ for all x, so $||P_U|| \le 1$. On the other hand (for any projection) $||P_U|| = ||P_U^2|| = \le ||P_U||^2$, hence $||P_U|| = 0$ or $||P_U|| \ge 1$. So $||P_U|| = 1$ and similarly $||I - P_U|| = 1$. By Pythagoras' theorem it is clear that $H = U \oplus_2 U^{\perp}$.

Corollary 2.31. Let U be a linear subspace of a Hilbert space H. Then $\overline{U} = (U^{\perp})^{\perp}$.

Proof.
$$U^{\perp} = (\overline{U})^{\perp}$$
 is a closed subspace, and by 2.30 $P_{(U^{\perp})^{\perp}} = I - P_{U^{\perp}} = I - (I - P_{\overline{U}}) = P_{\overline{U}}$. So $\overline{U} = R(P_{\overline{U}}) = R(P_{(U^{\perp})^{\perp}}) = (U^{\perp})^{\perp}$.

Theorem 2.32 ((Fréchet-)Riesz representation theorem). For any Hilbert space H the map $\Phi \colon H \to H' = B(H, \mathbb{K}), y \mapsto \langle y, \cdot \rangle$ is bijective, isometric, and conjugate linear, i.e. $\Phi(\lambda y_1 + y_2) = \overline{\lambda}\Phi(y_1) + \Phi(y_2)$. In other words, for every $x' \in H'$ there exists a unique $y \in H$ such that $x'(x) = \langle y, x \rangle$ for all $x \in H$.

Proof. Take any $y \in H$. Then $\Phi(y) \in B(H, \mathbb{K})$, because $H \ni x \mapsto \langle y, x \rangle$ is linear and bounded, since, for all $x \in H$, $|\Phi(y)x| = |\langle y, x \rangle| \leq ||y|| ||x||$. So $||\Phi(y)||_{H'} \leq ||y||$. Furthermore, Φ is isometric, since for any $y \in H \setminus \{0\}$

$$||y|| = \left\langle y, \frac{y}{||y||} \right\rangle \le \sup_{||x|| \le 1} |\langle y, x \rangle| = ||\Phi(y)||_{H'},$$

hence $\|\Phi(y)\|_{H'} = \|y\|$.

To see that Φ is surjective, take $x' \in H'$, $x' \neq 0$. Then $U := N(x') = (x')^{-1}(\{0\})$ is a closed subspace of H. Hence, $H = U \oplus_2 U^{\perp}$, where $U^{\perp} \neq \{0\}$ since $x' \neq 0$. Take any $y \in U^{\perp}$, ||y|| = 1, and set $a = x'(y) \in \mathbb{K}$. Then, for all $x \in H$, $x'(x)y - x'(y)x \in N(x') \perp y$. Hence, $0 = \langle y, x'(x)y - x'(y)x \rangle = x'(x)\langle y, y \rangle - x'(y)\langle y, x \rangle$ for all $x \in H$. Hence, $x'(x) = \langle \overline{a}y, x \rangle$ for all $x \in H$, i.e. $x' = \Phi(\overline{a}y)$. Additionally, $\Phi(0) = 0$.

Definition 2.33. Let X be a \mathbb{K} -vector space. $\mathscr{B} \subseteq X$ is called *algebraic basis*, or *Hamel basis*, iff \mathscr{B} is linearly independent and $\mathrm{span}(\mathscr{B}) = X$. $|\mathscr{B}|$ is called the *algebraic dimension* of X.

Theorem 2.34. Every vector space has an algebraic basis.

Lemma 2.35 (Zorn). If (M, \leq) is a nonempty, partially ordered set in which every nonempty totally ordered subset $\mathscr{C} \subseteq M$ has an upper bound in M, then M contains a maximal element.

For purposes of functional analysis algebraic bases are de facto useless, because:

Proposition 2.36. Let X be a Banach space and $\mathscr{B} \subseteq X$ an algebraic basis. If $|\mathscr{B}| = \infty$, then \mathscr{B} is uncountable.

Definition 2.37. Let X be a Banach space and I be any index set.

- (a) A map $x: I \to X$ is called *family*, written $\{x(i)\}_{i \in I}$. We denote by F(I) the set of all finite subsets of I.
- (b) A family $\{x_i\}_{i\in I}\subseteq X$ is called absolutely summable, iff

$$||x||_1 = \sum_{i \in I} ||x_i||_X := \sup \left\{ \sum_{i \in \tilde{I}} ||x_i||_X : \tilde{I} \in F(I) \right\} < \infty.$$

We write

$$\ell_1(I, X) = \{x \colon I \to X \colon ||x||_1 < \infty\}.$$

- (c) For $x \in \ell_1(I, X)$ define the support of x by $supp(x) = \{i \in I : x(i) \neq 0\}$.
- (d) For $x \in \ell_1(I, X)$, $x = \{x_i\}_{i \in I}$, we can find a bijection $\varphi \colon \mathbb{N} \to J \supseteq \operatorname{supp}(x)$ (if necessary, take a countable $J \supseteq I$ and define x(j) = 0 for $j \in J \setminus I$). Then

$$\sum_{i \in I} x_i := \sum_{k=1}^{\infty} x_{\varphi(k)}$$

Here, $\sum_{k=1}^{\infty} x_{\varphi(k)} = \lim_{K \to \infty} \sum_{k=1}^{K} x_{\varphi(k)}$ converges absolutely, hence this is independent of the choice of φ .

(e) A family $\{x_i\}_{i\in I}\subseteq \mathbb{K}$, is called square summable iff

$$||x||^2 := \sum_{i \in I} |x_i|^2 = \sup \left\{ \sum_{i \in \tilde{I}} |x_i|^2 : \tilde{I} \in F(I) \right\} < \infty.$$

Again supp(x) is countable if $x \in \ell_2(I) = \{x \colon I \to \mathbb{K} \colon ||x||^2 < \infty\}$. Define a scalar product by

$$\langle x, y \rangle = \sum_{i \in I} \overline{x_i} y_i := \sum_{k=1}^{\infty} \overline{x_{\varphi(k)}} y_{\varphi(k)}$$

for $x = \{x_i\}_{i \in I}, y = \{y_i\}_{i \in I} \in \ell_2(I)$ and some bijection $\varphi \colon \mathbb{N} \to J \supseteq \operatorname{supp}(x) \cap \operatorname{supp}(y)$. Completeness of $\ell_2(I)$ follows from the completeness of $\ell_2(\mathbb{N})$, hence $\ell_2(I)$ is a Hilbert space.

Remark. If $x \in \ell_1(I, X)$, then $\operatorname{supp}(x)$ is countable. In fact, for all $n \in \mathbb{N}$, $S_n = \{i \in I : ||x_i||_X \ge \frac{1}{n}\}$ is finite. So, $\operatorname{supp}(x) = \bigcup_{n \in \mathbb{N}} S_n$ is countable.

Definition 2.38. A set $\{e_i : i \in I\} \subseteq H$ in a pre-Hilbert space H is called *orthonormal system* iff for all $i, j \in I$, $\langle e_i, e_j \rangle = \delta_{ij}$. An orthonormal system E is called *maximal* iff $E^{\perp} = \{0\}$. For $x \in H$, the numbers $\hat{x}(i) = \langle e_i, x \rangle$, $i \in I$, are called *Fourier coefficients* of x.

Example.

- 1. In $\ell_2(I)$ the canonical unit vectors $e_k \colon I \to X, i \mapsto \delta_{ik}, k \in I$, form a maximal orthonormal system.
- 2. $[0, 2\pi] \to \mathbb{C}, t \mapsto (2\pi)^{-1/2} e^{ikt}, k \in \mathbb{Z}$, form an orthonormal system in the pre-Hilbert space $\mathscr{C}[0, 2\pi]$ with the scalar product

$$\langle f, g \rangle = \int_0^{2\pi} \overline{f(t)} g(t) dt.$$

Lemma 2.39. Let $\{e_i: i \in I\}$ be an orthonormal system in a pre-Hilbert space H. For every finite subset $J \subseteq I$ we have, for any family $\{x_i\}_{i \in J} \subseteq \mathbb{K}$, Pythagoras' identity

$$\left\| \sum_{i \in J} x_i e_i \right\|^2 = \sum_{i \in J} |x_i|^2$$

and, for any $x \in H$,

$$0 \le \left\| x - \sum_{i \in J} \hat{x}(i)e_i \right\|^2 = \|x\|^2 - \sum_{i \in J} |\hat{x}(i)|^2 \tag{*}$$

Proof. Clearly,

$$\left\| \sum_{i \in J} x_i e_i \right\|^2 = \sum_{i,j \in J} \overline{x_i} x_j \langle e_i, e_j \rangle = \sum_{i \in J} |x_i|^2.$$

Using this and $\langle x+y, x+y \rangle = ||x||^2 + ||y||^2 + 2\operatorname{Re}\langle x,y \rangle$ for any $x,y \in H$, we get

$$\left\| x - \sum_{i \in J} \hat{x}(i)e_i \right\|^2 = \|x\|^2 + \sum_{i \in J} |\hat{x}(i)|^2 - 2\operatorname{Re} \sum_{i \in J} \hat{x}(i)\langle x, e_i \rangle = \|x\|^2 - \sum_{i \in J} |\hat{x}(i)|^2. \quad \Box$$

Corollary 2.40 (Bessel's inequality). Let $\{e_i : i \in I\}$ be an orthonormal system in a pre-Hilbert space H. Then, for any $x \in H$, only countably many Fourier coefficients $\hat{x}(i)$ are nonzero and

$$\sum_{i \in I} |\hat{x}(i)|^2 \le ||x||^2.$$

In particular, $\{\hat{x}(i)\}_{i\in I} \in \ell_2(I)$.

Proof. By the lemma, for any $J \in F(I)$,

$$\sum_{i \in I} |\hat{x}(i)|^2 \le ||x||^2.$$

Hence,

$$\sum_{i \in I} |\hat{x}(i)|^2 = \sup_{J \in F(I)} \sum_{i \in J} |\hat{x}(i)|^2 \le ||x||^2.$$

Remark 2.41.

(a) Given some $x = \{x_i\}_{i \in I} \in \ell_2(I)$ and some orthonormal system $\{e_i : i \in I\}$ in a Hilbert space H, one can construct $\sum_{i \in I} x_i e_i$. In fact, pick some bijection $\varphi \colon \mathbb{N} \to J \supseteq \operatorname{supp}(x)$ as in definition 2.37 and observe, using Pythagoras, that

$$\left\| \sum_{k=m}^{n} x_{\varphi(k)} e_{\varphi(k)} \right\|^{2} = \sum_{k=m}^{n} |x_{\varphi(k)}|^{2} \xrightarrow{m,n \to \infty} 0.$$

So $\left\{\sum_{k=1}^n x_{\varphi(k)} e_{\varphi(k)}\right\}_{n\in\mathbb{N}}$ is Cauchy in the Hilbert space H, hence is convergent. We define

$$\sum_{i \in I} x_i e_i := \lim_{n \to \infty} \sum_{k=1}^n x_{\varphi(k)} e_{\varphi(k)}.$$

This is independent of the choice of φ , because $y = \sum_{i \in I} x_i e_i$ satisfies

$$\forall \varepsilon > 0 \,\exists I_{\varepsilon} \in F(I) \,\forall J \in F(I). \, J \supseteq I_{\varepsilon} \implies \left\| \sum_{i \in J} x_i e_i - y \right\| < \varepsilon.$$

(b) Let $\{e_i: i \in I\}$ be an orthonormal system in a Hilbert space H. By Bessel's inequality

$$\mathscr{F}: H \to \ell_2(I), x \mapsto \{\hat{x}(i) = \langle e_i, x \rangle\}_{i \in I}$$

is linear and bounded, since

$$\|\mathscr{F}(x)\|^2 = \sum_{i \in I} |\hat{x}(i)|^2 \le \|x\|^2$$

hence $\|\mathscr{F}\| \leq 1$. $\mathscr{F}: H \to \ell_2(I)$ is always surjective: given $x = \{x_i\}_{i \in I} \in \ell_2(I)$, define

$$y = \sum_{i \in I} x_i e_i.$$

Then $\mathcal{F}(y) = x$, since for any $j \in I$, (with notation as in (a))

$$\langle e_j, y \rangle = \lim_{n \to \infty} \sum_{k=1}^n \left\langle e_j, x_{\varphi(k)} \right\rangle e_{\varphi(k)} = x_j.$$

 \mathscr{F} is injective iff $\{e_i : i \in I\}$ is maximal.

Theorem 2.42. Let $\{e_i : i \in I\}$ be an orthonormal system in a Hilbert space H. Then the following are equivalent

- (a) For all $x \in H$, $x = \sum_{i \in I} \hat{x}(i)e_i$.
- (b) For all $x \in H$, $||x||^2 = \sum_{i \in I} |\hat{x}(i)|^2$ (Parseval's identity)
- (c) $\mathscr{F}: H \to \ell_2(I)$ is isometric.
- (d) span $\{e_i : i \in I\}$ is dense in H.
- (e) $\mathscr{F}: H \to \ell_2(I)$ is injective.
- (f) $\{e_i : i \in I\}$ is maximal.

Proof.

- (a) \Leftrightarrow (b) Follows from (*).
- (b)⇔(c) Follows from the definition of "isometry".
- $(a) \Rightarrow (d)$ Clear.
- (d) \Rightarrow (f) $\{e_i : i \in I\}^{\perp} = \overline{\operatorname{span}\{e_i : i \in I\}}^{\perp} = \{0\}.$
- (f) \Rightarrow (e) $\mathscr{F}(x) = 0$ is equivalent to $\langle e_i, x \rangle = 0$ for all $i \in I$, i.e $x \in \{e_i : i \in I\}^{\perp} = \{0\}$.
- (e) \Rightarrow (a) Note $\mathscr{F}(x) = {\{\hat{x}(i)\}_{i \in I} \text{ and }}$

$$\mathscr{F}\Big(\sum_{i\in I}\hat{x}(i)e_i\Big) = \{\hat{x}(i)\}_{i\in I}.$$

Hence, by injectivity of \mathscr{F} , $x = \sum_{i \in I} \hat{x}(i)e_i$.

Remark 2.43. A maximal orthonormal system is also called *complete* or *orthonormal* basis. If dim $H = \infty$, then an orthonormal basis in general is *not* an algebraic basis, i.e. the expansion $x = \sum_{i \in I} \hat{x}(i)e_i$ in general has infinitely many summands.

Theorem 2.44.

- (a) Every Hilbert space H has an orthonormal basis $\{e_i : i \in I\}$. In particular, H is isometrically isomorphic to $\ell_2(I)$.
- (b) H has a countable orthonormal basis iff H is separable. In this case $H \cong \ell_2(\mathbb{N})$, if H is infinite dimensional.

Proof.

- (a) Write \mathfrak{M} for the set of all orthonormal systems in H. Then \mathfrak{M} is partially ordered by \subseteq . Let $\mathfrak{C} \subseteq \mathfrak{M}$ be a totally ordered subset. Then $\hat{B} = \bigcup \mathfrak{C}$ is an orthonormal system and an upper bound of \mathfrak{C} in \mathfrak{M} . Indeed $\hat{B} \in \mathfrak{M}$, since take $e_1, e_2 \in \hat{B}, e_1 \neq e_2$. Then $e_i \in B_i \in \mathfrak{C}$, i = 1, 2. Since \mathfrak{C} is totally ordered by \subseteq , we have $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$, say $B_1 \subseteq B_2$. Then $e_1, e_2 \in B_2$, hence $e_1 \perp e_2$. So by Zorn's lemma, there is a maximal element $M \in \mathfrak{M}$. M is an orthonormal basis, since if $\overline{\operatorname{span} M} \neq H$, there would exist some $e \in H$, ||e|| = 1 such that $e \perp M$ and $M \cup \{e\} \supseteq M$ a contradiction.
- (b) If H has a countably infinite orthonormal basis $\{e_i : i \in \mathbb{N}\}$ then $\mathscr{F} : H \to \ell_2(\mathbb{N})$ is an isometric isomorphism. Since $\ell_2(\mathbb{N})$ is separable, H must be separable. Conversely, every orthonormal system $\{e_i : i \in I\}$ is discrete, since for all $i, j \in I$, $i \neq j$, $||e_i e_j||^2 = 2$. Hence, if the orthonormal system $\{e_i : i \in I\}$ is uncountable, H cannot be separable.

Remark. All orthonormal bases of a Hilbert space H have the same cardinality. This cardinality is then called the *Hilbert space dimension* of H.

3 Lebesgue integration

In Lebesgue integration the concept of measure is essential. But to make this concept useful one has to consider σ -algebras different from the power set. In fact Vitali proved in 1905 that there can be no measure $\mu \colon 2^{\mathbb{R}^d} \to [0,\infty]$ such that $\mu([0,1]^d) = 1$ and $\mu \circ \beta = \mu$ for every rigid motion β . Even worse, Banach and Tarski proved in 1924 that for any two bounded sets $A, B \subseteq \mathbb{R}^d$ such that $A^{\circ} \neq \emptyset \neq B^{\circ}$ there exist disjoint $C_1, \ldots, C_n \subseteq \mathbb{R}^d$ and rigid motions $\beta_1, \ldots, \beta_n \colon \mathbb{R}^d \to \mathbb{R}^d$ such that $\beta_1(C_1), \ldots, \beta_n(C_n)$ are disjoint and

$$A = \bigcup_{\ell=1}^{n} C_{\ell}, \quad B = \bigcup_{\ell=1}^{n} \beta_{\ell}(C_{\ell}).$$

This shows that there have to exist sets for which the notion of volume does not make sense. Instead one has to consider σ -algebras:

Definition 3.1. Let X be a set. A system of sets $\mathfrak{A} \subseteq 2^X$ is called σ -algebra iff

- (i) $\emptyset \in \mathfrak{A}$.
- (ii) For any $A \in \mathfrak{A}$, $A^c = X \setminus A \in \mathfrak{A}$.
- (iii) For any countable family $\{A_i\}_{i\in\mathbb{N}}\subseteq\mathfrak{A}, \bigcup_{i\in\mathbb{N}}A_i\in\mathfrak{A}$.

Example.

- (a) 2^X is a σ -Algebra.
- (b) For any index set I and σ -algebras \mathfrak{A}_i , $i \in I$, $\bigcap_{i \in I} \mathfrak{A}_i$ is again a σ -algebra.
- (c) Take any $\mathscr{E} \subseteq 2^X$. Then

$$\sigma(\mathscr{E}) := \bigcap \{ \mathfrak{A} \subseteq 2^X \colon \mathscr{E} \subseteq \mathfrak{A} \text{ and } \mathfrak{A} \text{ is a } \sigma\text{-algebra} \}$$

is a σ -algebra. $\sigma(\mathcal{E})$ is called the σ -algebra generated by \mathcal{E} .

(d) Let $\{X, \mathcal{T}\}$ be a topological space. Then $\mathscr{B}(X) := \sigma(\mathcal{T})$ is called *Borel \sigma-algebra*. We have $\mathscr{B}(\mathbb{R}^d) \subseteq 2^{\mathbb{R}^d}$.

Definition 3.2. Let \mathfrak{A} be a σ -algebra. Then a map $\mu \colon \mathfrak{A} \to [0, \infty]$ is called *measure* iff $\mu(\emptyset) = 0$ and it is σ -additive, i.e. for any countable disjoint family $\{A_n\}_{n \in \mathbb{N}} \subseteq \mathfrak{A}$,

$$\mu\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)=\sum_{n=1}^{\infty}\mu(A_n).$$

Example.

(a) Let X be a set and define $\zeta: 2^X \to [0, \infty]$ by

$$\zeta(A) = \begin{cases} n & \text{if } |A| = n \in \mathbb{N} \\ \infty & \text{if } A \text{ is infinite} \end{cases}$$

 ζ is called *counting measure* on X.

(b) For any $a \in X$, the measure δ_A defined on 2^X by

$$\delta_a(A) := \begin{cases} 1 & a \in A \\ 0 & a \notin A \end{cases}$$

is called *Dirac measure* at a.

Definition 3.3. A system $\mathfrak{h} \subseteq 2^X$ is called *semi-ring* iff

- (i) $\emptyset \in \mathfrak{h}$.
- (ii) For all $A, B \in \mathfrak{h}$, $A \cap B \in \mathfrak{h}$.
- (iii) For all $A, B \in \mathfrak{h}$ there exist disjoint $C_1, \ldots, C_n \in \mathfrak{h}$ such that $A \setminus B = C_1 \cup \cdots \cup C_n$.

Example. For $a=(a_1,\ldots,a_d), b=(b_1,\ldots,b_d)\in\mathbb{R}^d$ we write $a\leq b$ iff $a_j\leq b_j$ for all $1\leq j\leq n$, and $(a,b]=(a_1,b_1]\times\cdots\times(a_d,b_d]$. Then

$$J^d = \{(a, b] \colon a, b \in \mathbb{R}^d, a \le b\}$$

and

$$J^d_{\mathbb{Q}} = \{(a, b] \colon a, b \in \mathbb{Q}^d, a \le b\}$$

are semi-rings and $\sigma(J^d_{\mathbb{Q}}) = \sigma(J^d) = \mathscr{B}(\mathbb{R}^d).$

Definition 3.4. Let \mathfrak{h} be a semi-ring. A map $\mu \colon \mathfrak{h} \to [0, \infty]$ is called *content* if $\mu(\emptyset) = 0$ and μ is finitely additive, i.e. for all disjoint $A_1, \ldots, A_n \in \mathfrak{h}$ such that $\bigcup_{i=1}^n A_i \in \mathfrak{h}$, $\mu(\bigcup_{i=1}^n A_i) = \sum_{i=1}^n \mu(A_i)$. A content is called *premeasure* if it is σ -additive, i.e. for all disjoint $A_1, A_2, \cdots \in \mathfrak{h}$ such that $\bigcup_{i=1}^\infty A_i \in \mathfrak{h}$, $\mu(\bigcup_{i=1}^\infty A_i) = \sum_{i=1}^\infty \mu(A_i)$.

Example.

(a) Define $\lambda^d \colon J^d \to [0, \infty)$ by

$$\lambda^d((a,b]) = \prod_{i=1}^n (b_i - a_i)$$

for all $a, b \in \mathbb{R}^d$, $a \leq b$. λ^d is called *Lebesgue-content*. It can be shown that λ^d is a premeasure.

(b) Let $F: \mathbb{R} \to \mathbb{R}$ be a monotonically increasing function. Then $\mu_F((a, b]) = F(b) - F(a)$, $a \leq b$, defines the *Lebesgue-Stieltjes content* associated with F. μ_F is a premeasure iff F is upper semicontinuous.

Definition 3.5. An exterior measure is a map $\eta: 2^X \to [0, \infty]$ such that

- (i) $\eta(\emptyset) = 0$.
- (ii) $A \subseteq B$ implies $\eta(A) \le \eta(B)$.
- (iii) For any countable family $\{A_n\}_{n\in\mathbb{N}}\subseteq 2^X$,

$$\eta\Big(\bigcup_{n\in\mathbb{N}}A_n\Big)\leq \sum_{n=1}^{\infty}\eta(A_n).$$

Then $A \subseteq X$ is called η -measurable if for all $Q \subseteq X$, $\eta(Q) = \eta(Q \cap A) + \eta(Q \cap A^c)$.

Theorem 3.6 (Carathéodory). Let $\mu \colon \mathfrak{h} \to [0, \infty]$ be a content on the semi-ring $\mathfrak{h} \subseteq 2^X$ and define for all $A \subseteq X$:

$$\eta(A) := \inf \left\{ \sum_{n=1}^{\infty} \mu(A_n) \colon A_n \in \mathfrak{h}, A \subseteq \bigcup_{n=1}^{\infty} A_n \right\}$$
 (*)

Then $\eta \colon 2^X \to [0,\infty]$ is an exterior measure and every $A \in \mathfrak{h}$ is η -measurable. Additionally, $\mathfrak{A}_{\eta} = \{A \subseteq X \colon A \ \eta$ -measurable\} is a σ -algebra and $\eta|_{\mathfrak{A}_{\eta}}$ is a measure. If μ is a premeasure then $\eta|_{\mathfrak{h}} = \mu$.

Example. The exterior Lebesgue measure is

$$\lambda_*^d(A) = \inf \left\{ \sum_{n=1}^\infty \lambda^d(A_n) \colon A_n \in J^d, A \subseteq \bigcup_{n=1}^\infty A_n \right\}$$

 $\mathfrak{A}_{\lambda^d_*}$ is the σ -algebra of Lebesgue-measurable sets. We have $\mathscr{B}(\mathbb{R}^d) \subsetneq \mathfrak{A}_{\lambda^d_*}$. $\lambda^d := \lambda^d_* |_{\mathfrak{A}_{\lambda^d_*}}$ is called Lebesgue-measure on \mathbb{R}^d and $\lambda^d|_{\mathscr{B}(\mathbb{R}^d)}$ is called Lebesgue-Borel-measure.

Definition 3.7. A content $\mu: \mathfrak{h} \to [0, \infty]$ is called σ -finite if there exist countably many $A_1, A_2, \ldots \in \mathfrak{h}$ such that $\mu(A_n) < \infty, n \in \mathbb{N}$, and $\bigcup_{n \in \mathbb{N}} A_n = X$.

Theorem 3.8. A σ -finite premeasure $\mu \colon \mathfrak{h} \to [0, \infty]$ can be uniquely extended to a measure on $\sigma(\mathfrak{h})/on \mathfrak{A}_{\eta}$ with η as in (*).

Example. The Lebesgue and Lebesgue-Stieltjes premeasures $\lambda^d \colon J^d \to [0, \infty]$ and $\mu_F \colon J^1 \to [0, \infty]$ are σ -finite. E.g.

$$\mathbb{R}^d = \bigcup_{n \in \mathbb{N}} (-n, n]^d.$$

3.1 Measurable Functions

Definition 3.9. Let \mathfrak{A} be a σ -algebra on X. $f: X \to \overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, \infty\}$ is called \mathfrak{A} -measurable if for all $a \in \mathbb{R}$, $f^{-1}((a, \infty]) \in \mathfrak{A}$.

Remark 3.10.

- (a) If f, g, f_1, f_2, \ldots are measurable functions, $f+g, fg, \max_{1 \leq i \leq n} \{f_1, \ldots, f_n\}$, $\sup_{n \in \mathbb{N}} f_n$, $\inf_{n \in \mathbb{N}} f_n$, $\lim \sup_{n \to \infty} f_n$ and $\lim \inf_{n \to \infty} f_n$ are all measurable.
- (b) $f: X \to [0, \infty]$ is measurable iff there exists a sequence of measurable step functions $\{u_n\}$, i.e. $u_n: X \to [0, \infty], |u_n(X)| < \infty$ such that $u_n \nearrow f$ pointwise, i.e $u_1 \le u_2 \le \cdots \le f$ and $u_n(t) \to f(t)$ as $n \to \infty$. Indeed for a measurable function $f: X \to [0, \infty]$, define

$$u_n = \sum_{j=0}^{n2^n - 1} \frac{j}{2^n} \chi_{\{j/2^n \le f < (j+1)/2^n\}} + n\chi_{\{f \ge n\}}$$

Example. Any $f \in \mathscr{C}(\mathbb{R}^n, \mathbb{R})$ is measurable, if we take $\mathscr{B}(\mathbb{R}^n)$ as a σ -algebra on \mathbb{R}^n .

To define the Lebesgue integral we first define the integral of measurable step functions $u = \sum_{i=1}^{n} \alpha_i \chi_{A_i}$, $A_i = u^{-1}(\{\alpha_i\}) \in \mathfrak{A}$, $\alpha_i \geq 0$, with respect to the measure μ by

$$\int_X u \, \mathrm{d}\mu := \sum_{i=1}^n \alpha_i \mu(A_i) \in [0, \infty].$$

Now, taking a measurable function $f: X \to [0, \infty]$, pick measurable step functions $\{u_n\}$ with $u_N \nearrow f$ pointwise and define

$$\int_{Y} f \, \mathrm{d}\mu = \lim_{n \to \infty} \int_{Y} u_n \, \mathrm{d}\mu.$$

This is independent of the choice of $\{u_n\}$ which we will not prove here. It may happen that $\int_X f d\mu = \infty$. We call f μ -integrable if $\int_X f d\mu < \infty$. Finally, let $f: X \to \mathbb{R}$ be measurable. Split $f = f_+ - f_-$ with $f_{\pm} \geq 0$. If at least one of the integrals $\int_X f_{\pm} d\mu$ are finite, we define

$$\int_X f \, \mathrm{d}\mu = \int_X f_+ \, \mathrm{d}\mu - \int_X f_- \, \mathrm{d}\mu.$$

f is called μ -integrable if $\int_X f \, \mathrm{d}\mu \in \mathbb{R}$. Analogously, for $f: X \to \mathbb{C} \cup \{\infty\}$ define

$$\int_{X} f \, d\mu = \int_{X} (\operatorname{Re} f)_{+} \, d\mu + i \int_{X} (\operatorname{Im} f)_{+} \, d\mu - \int_{X} (\operatorname{Re} f)_{-} \, d\mu - i \int_{X} (\operatorname{Im} f)_{-} \, d\mu$$

assuming all integrals are finite and defined. Note, that $f: X \to \mathbb{C} \cup \{\infty\}$ is integrable iff |f| is integrable.

Remark. If $f:[0,1] \to \mathbb{R}$ is Riemann-integrable then f is Lebesgue-integrable (with respect to λ^1) and

$$\int_0^1 f(t) \, dt = \int_{[0,1]} f \, d\lambda^1.$$

Convention. A statement P(x) is said to hold μ -almost everywhere if $\mu(\{x: \neg P(x)\}) = 0$, e.g. "f = g μ -almost everywhere" if $\mu(\{x: f(x) \neq g(x)\}) = 0$.

Remark.

- (a) For all measurable $f \colon X \to [0, \infty], \int_X f \, \mathrm{d}\mu = 0$ implies f = 0 μ -almost everywhere.
- (b) For all integrable $f, g: X \to \mathbb{C} \cup \{0\}, f = g \mu$ -almost everywhere implies

$$\int_X f \, \mathrm{d}\mu = \int_X g \, \mathrm{d}\mu.$$

3.2 p-integrable functions, p > 1

Definition 3.11. For a measure space (X, \mathfrak{A}, μ) we define

$$\mathscr{L}^p(X,\mu) = \left\{ f \colon X \to \mathbb{C} \cup \{\infty\} \colon f \text{ is measurable and } \int_X |f|^p \, \mathrm{d}\mu < \infty \right\}$$

and, for $f \in \mathcal{L}^p(X,\mu)$, we set

$$||f||_p = \left(\int_X |f|^p \,\mathrm{d}\mu\right)^{1/p}$$

Remark. $\|\cdot\|_p$ is only a semi-norm on $\mathscr{L}^p(X,\mu)$, since $\|f\|_p = 0$ only implies f = 0 μ -almost everywhere. Because of this we consider equivalence classes with respect to the equivalence relation

$$f \sim g \iff f = g \mu$$
-almost everywhere.

Then f = 0 μ -almost everywhere is equivalent to [f] = 0.

Definition 3.12. For a measure space (X, \mathfrak{A}, μ) we define

$$L^p(X,\mu)=\mathscr{L}^p(X,\mu)/{\sim}=\{[f]\colon f\in\mathscr{L}^p(X,\mu)\}$$

and $||[f]||_p = ||f||_p$. Then $||\cdot||_p$ is non-degenerate on $L^p(X,\mu)$.

Convention. One always writes f instead of [f] for elements in $L^p(X,\mu)$. It should be clear from context when f is a function and when f is an equivalence class.

Our goal is to prove the following theorem:

Theorem 3.13 (Riesz-Fischer). $\{L^p(X,\mu), \|\cdot\|_p\}$ is a Banach space.

For this we will prove that $L^p(X,\mu)$ is a vectorspace (1), $\|\cdot\|_p$ is a norm on $L^p(X,\mu)$ (2) and that any Cauchy sequence in $L^p(X,\mu)$ converges to an element in $L^p(X,\mu)$.

Proof of (1). Assume $f, g \in L^p(X, \mu)$. Note that for any $\alpha \in \mathbb{C}$, $\alpha \colon X \to \mathbb{C} \cup \{\infty\}$, $x \mapsto \alpha$ is measurable. Hence $\alpha f + g$ is measurable. Also,

$$\int_{X} |\alpha f + g|^{p} d\mu \leq \int_{X} (|\alpha f| + |g|)^{p} d\mu \leq \int_{X} (2 \max\{|\alpha f|, |g|\})^{p} d\mu \leq
\leq 2^{p} \int \max\{|\alpha|^{p} |f|^{p}, |g|^{p} d\} \mu \leq 2^{p} \left(|\alpha|^{p} \int_{X} |f|^{p} d\mu + \int_{X} |g|^{p} d\mu\right) < \infty$$

Hence, $\alpha f + g \in L^p(X, \mu)$, i.e. $L^p(X, \mu)$ is a vectorspace.

Proposition 3.14 (Hölder's inequality). Let $1 , and <math>\frac{1}{p} + \frac{1}{q} = 1$. If $f \in L^p(X, \mu)$, $g \in L^q(X, \mu)$, then $fg \in L^1(X, \mu)$ and

$$\int_X |fg| \, \mathrm{d}\mu = \|fg\|_1 \le \|f\|_p \|g\|_q.$$

Proof. Recall that if $a, b \geq 0$, then

$$ab = \inf_{\varepsilon > 0} \varepsilon^p \frac{a^p}{p} + \varepsilon^{-q} \frac{b^q}{q}$$

So for all $\varepsilon > 0$ and $t \in X$

$$|f(t)g(t)| = |f(t)||g(t)| \le \varepsilon^p \frac{|f(t)|^p}{p} + \varepsilon^{-q} \frac{|g(t)|^q}{q}$$

Hence, for all $\varepsilon > 0$,

$$\int_{X} |fg| \, \mathrm{d}\mu \le \varepsilon^{p} \frac{\|f\|_{p}^{p}}{p} + \varepsilon^{-q} \frac{\|g\|_{q}^{q}}{q}$$

and

$$||fg||_1 = \int_X |fg| \,\mathrm{d}\mu \le \inf_{\varepsilon > 0} \varepsilon^p \frac{||f||_p^p}{p} + \varepsilon^{-q} \frac{||g||_q^q}{q} = ||f||_p ||g||_q.$$

Corollary 3.15 (Minkowski's inequality). For $p \geq 1$, and $f, g \in L^p(X, \mu)$, we have

$$||f + g||_p \le ||f||_p + ||g||_p$$

Proof. We have for $\frac{1}{p} + \frac{1}{q} = 1$ and p > 1

$$\int_{X} |f + g|^{p} d\mu = \int_{X} |f + g||f + g|^{p-1} d\mu \le \int_{X} |f||f + g|^{p-1} d\mu + \int_{X} |g||f + g|^{p-1} d\mu \le$$

$$\le ||f||_{p} ||f + g|^{p-1}||_{q} + ||g||_{p} ||f + g|^{p-1}||_{q} = (||f||_{p} + ||g||_{p})||f + g||_{p}^{p-1}$$

since $||f+g|^{p-1}||_q = ||f+g||_p^{p-1}$. Dividing by $||f+g||_p^{p-1}$ yields Minkowski's inequality for p > 1. The cases $||f+g||_p = 0$ and p = 1 are trivial.

For the proof of (3) recall proposition 2.5:

Lemma 3.16. Let X be a normed space. The following are equivalent:

- (i) X is a Banach space.
- (ii) Any absolutely convergent series is convergent.

Additionally we will need the following two important convergence results for Lebesgue integration (they "solve" the question: if $f_n(t) \to f(t)$ as $n \to \infty$ "for all t", is it true that $\int f_n \to \int f$ as $n \to \infty$?)

Theorem 3.17 (Beppo-Levi's theorem/Lebesgue's theorem on monotone convergence). Let (X, \mathfrak{A}, μ) be a measure space, and let $f_1, f_2, \ldots : X \to [0, \infty]$ be measurable, with $f_1 \leq f_2 \leq \ldots$ Let $f(t) = \lim_{n \to \infty} f_n(t) \in [0, \infty]$. Then f is measurable and

$$\lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

Theorem 3.18 (Lebesgue's theorem on dominated convergence). Let $f_1, f_2, \ldots : X \to \mathbb{C}$ be integrable and assume $f(t) = \lim_{n \to \infty} f_n(t)$ for μ -almost every t, and that f is measurable. Furthermore, assume there exists an integrable $g: X \to [0, \infty]$ such that $|f_n| \leq g$ for all $n \in \mathbb{N}$. Then

$$\lim_{n \to \infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu.$$

Now we can prove the completeness of $L^p(X,\mu)$.

Proof of (3). Take $f_1, f_2, \dots \in L^p(X, \mu)$ such that $a = \sum_{n=1}^{\infty} ||f_n||_p < \infty$. Let $\hat{g}(t) = \sum_{i=1}^{\infty} ||f_i(t)|_i$, $t \in X$. Then $\hat{g}: X \to [0, \infty]$. Note that

$$\hat{g}(t) = \sup_{n \in \mathbb{N}} \sum_{i=1}^{n} |f_i(t)| = \lim_{n \to \infty} \hat{g}_n(t)$$

Where $\hat{g}_n(t) = \sum_{i=1}^n |f_i(t)|$. Hence, \hat{g}_n and \hat{g} are measurable. Also, $\hat{g}_n \in L^p(X, \mu)$, and

$$\|\hat{g}_n\|_p \le \sum_{i=1}^n \|f_i\|_p \le \sum_{i=1}^\infty \|f_i\|_p = a < \infty$$

for all $n \in \mathbb{N}$. By construction, $\hat{g}_n \nearrow \hat{g}$ as $n \to \infty$. Hence, $\hat{g}_n^p \nearrow \hat{g}^p$. Hence,

$$\int_{X} \hat{g}^{p} d\mu = \lim_{n \to \infty} \int_{X} \hat{g}_{n}^{p} d\mu = \lim_{n \to \infty} \|\hat{g}_{n}\|_{p}^{p} \le a^{p} < \infty.$$

Hence, $\hat{g} \in L^p(X, \mu)$. Since $\hat{g} \colon X \to [0, \infty]$, this implies \hat{g} ist finite μ -almost everywhere, i.e., by possibly changing \hat{g} on a set of measure 0, we get a finite-valued function $g \colon X \to [0, \infty)$ with $g(t) = \sum_{i=1}^{\infty} |f_i(t)| \mu$ -almost everywhere. By Lemma 3.16 (for the Banach space \mathbb{K}), it follows that $f(t) := \sum_{i=1}^{\infty} f_i(t)$ is welldefined/finite for all $t \in X \setminus N$, $\mu(N) = 0$. Setting f(t) = 0 for all $t \in \mathbb{N}$ makes f measurable, $f \colon X \to \mathbb{K}$. It remains to show that $f \in L^p(X, \mu)$ and that $f = \sum_{i=1}^{\infty} f_i$ in $L^p(X, \mu)$, i.e. $\left\|\sum_{i=1}^{n-1} f_i - f\right\|_p \to 0$ as $n \to \infty$, i.e.

$$\int_X \left| \sum_{i=n}^{\infty} f_i \right|^p d\mu \to 0, \quad n \to \infty.$$

By construction, $|f| \leq \sum_{i=1}^{\infty} |f_i| = \hat{g}$ and

$$\int_X |f|^p d\mu \le \int_X \hat{g}^p d\mu \le a^p < \infty.$$

So, $f \in L^p(X,\mu)$. Finally, let

$$h_n = \Big| \sum_{i=n}^{\infty} f_i \Big|^p.$$

Then $h_n \to 0$ μ -almost everywhere as $n \to \infty$ and $0 \le h_n \le (\sum_{i=n}^{\infty} |f_i|)^p \le \hat{g}^p \in L^1(X, \mu)$. Now, by Lebesgue's theorem of dominated convergence,

$$\int_X h_n \, \mathrm{d}\mu \to \int_X 0 \, \mathrm{d}\mu = 0, \quad n \to \infty.$$

Remark. In the case $X = \mathbb{N}$, $\mathfrak{A} = 2^{\mathbb{N}}$ and μ the counting measure on \mathbb{N} , we have $L^p(X,\mu) = \ell_p(\mathbb{N})$. So, in fact, the proof of completeness of ℓ_p is contained in the above.

For $p = \infty$, the definition of $L^{\infty}(X, \mu)$ is slightly different (here, $(B(X, \mathbb{C}), d_{\infty})$ is not the good concept).

Definition 3.19. Define

 $\mathscr{L}^{\infty}(X,\mu) = \{f \colon X \to \mathbb{C} \colon f \text{ is measurable and } \exists N \in \mathfrak{A}, \mu(N) = 0. \ f|_{X \setminus N} \text{ is bounded} \}.$

and $L^{\infty}(X,\mu)=\mathscr{L}^{\infty}(X,\mu)/\sim$ where again $f\sim g$ iff f=g μ -almost everywhere. We set

$$||[f]||_{\infty} = \inf_{N \in \mathfrak{A} \atop \mu(N) = 0} \sup_{t \in X \setminus N} |f(t)| = \inf_{N \in \mathfrak{A} \atop \mu(N) = 0} ||f|_{X \setminus N}||_{\infty}.$$

 $||[f]||_{\infty}$ is called the *essential supremum* of f. It is "easy" to see that $L^{\infty}(X,\mu)$ is a vectorspace and $||\cdot||_{\infty}$ is a norm on $L^{\infty}(X,\mu)$, and that $(L^{\infty}(X,\mu),||\cdot||_{\infty})$ is a Banach space.

Remark. Hölder's inequality holds for $p, q \in [1, \infty], \frac{1}{p} + \frac{1}{q} = 1$ (with the convention $\frac{1}{\infty} = 0$).

4 Cornerstones of functional analysis

We return to the general abstract theory, to prove some of the most important results in functional analysis. Recall, for X a normed \mathbb{K} -vectorspace, $X' = B(X, \mathbb{K})$ is called the dual of X. There are two important questions about this space. Firstly, is $X' = \{0\}$? Secondly, what "is" X' for concrete examples of Banach spaces X?

Definition 4.1. Let E be an \mathbb{R} -vector space. A map $p \colon E \to \mathbb{R}$ is called a *sublinear* functional iff for $x, y \in E$

- (i) $p(x+y) \le p(x) + p(y)$
- (ii) p(tx) = tp(x) for all $t \ge 0$.

Example. Any semi-norm and any norm is a sublinear functional

Theorem 4.2 (Hahn-Banach). Let E be an \mathbb{R} -vector space, $V_0 \subseteq E$ a linear subspace. Let $p: E \to \mathbb{R}$ be a sublinear functional, and $f_0: V_0 \to \mathbb{R}$ a linear form, such that $f_0(x) \leq p(x)$ for all $x \in V_0$. Then there exists a linear form $f: E \to \mathbb{R}$ such that $f|_{V_0} = f_0$ and $f(x) \leq p(x)$ for all $x \in E$.

Proof. Idea: 1) Extend f_0 to "one dimension more" (preserving the bound) and 2) "keep going until done".

For step 1), let $x_1 \in E \setminus V_0$ (this is nonempty, otherwise we are done) and define $V_1 = V_0 \oplus \operatorname{span} x_1 = \{x + \lambda x_1 \colon x \in V_0, \lambda \in \mathbb{R}\} \subseteq E$ (linear subspace). For $x, y \in V_0$: $f_0(x) + f_0(y) = f_0(x+y) \leq p(x+y) = p(x-x_1+x_1+y) \leq p(x-x_1) + p(x_1+y)$. Hence, $f_0(x) - p(x-x_1) \leq p(x_1+y) - f_0(y)$. Let $\alpha = \sup_{x \in V_0} (f_0(x) - p(x-x_1))$. Then $f_0(x) - p(x-x_1) \leq \alpha$ for all $x \in E$, hence

- (1) $f_0(x) \alpha \le p(x x_1)$ for all $x \in V_0$
- (2) $f_0(y) + \alpha \le p(x_1 + y)$ for all $y \in V_0$.

Now, let $f_1: V_1 \to \mathbb{R}$ be given by $f_1(x+\lambda x_1) = f_0(x) + \lambda \alpha$ for $x+\lambda x_1 \in V_1$ $(x \in V_0, \lambda \in \mathbb{R})$. Then f_1 is linear and $f_1|_{V_0} = f_0$. We still need to prove that $f_1(x+\lambda x_1) \leq p(x+\lambda x_1)$ for all $x \in V_0$, $\lambda \in \mathbb{R}$. Use (2) for $\lambda > 0$, $y \in V_0$

$$f_0\left(\frac{y}{\lambda}\right) + \alpha \le p\left(\frac{y}{\lambda} + x_1\right)$$

So

$$f_1(y + \lambda x_1) = f_0(y) + \lambda \alpha = \lambda \left(f_0\left(\frac{y}{\lambda}\right) + \alpha \right) \le \lambda p \left(\frac{y}{\lambda} + x_1\right) = p(y + \lambda x_1)$$

If $\lambda < 0$, then $-\lambda > 0$. Let $x \in V_0$. By (1),

$$f_0\left(\frac{x}{-\lambda}\right) - \alpha \le p\left(\frac{x}{-\lambda} - x_1\right)$$

Hence

$$f_1(x + \lambda x_1) = f_0(x) + \lambda \alpha = -\lambda \left(f_0\left(\frac{x}{-\lambda}\right) - \alpha \right) \le -\lambda p\left(\frac{x}{-\lambda} - x_1\right) = p(x + \lambda x_1)$$

Hence, $f_1: V_1 \to \mathbb{R}$ is linear, $f_1|_{V_0} = f_0$ and $f_1(x) \le p(x)$ for all $x \in V_1$.

For step 2), let S be the family of all pairs (V', f') with $V_0 \subseteq V' \subseteq E$, V' linear subspace, and $f' \colon V' \to \mathbb{R}$ with $f'|_{V_0} = f_0$ and $f'(x) \leq p(x)$ for all $x \in V'$. We define a partial ordering \prec on S by $(V', f') \prec (V'', f'')$ iff $V' \subseteq V''$ and $f''|_{V'} = f'$. Let $\mathcal{T} \subseteq S$ be totally ordered (i.e. for any $(V', f'), (V'', f'') \in \mathcal{T}$, either $(V', f') \prec (V'', f'')$ or $(V'', f'') \prec (V', f')$). Let $V^* = \bigcup_{V \in \mathcal{T}} V$. V^* is a linear subspace of E. Let $f^*(x) = f'(x)$ for $x \in V' \in \mathcal{T}$. This is well-defined since \mathcal{T} is totally ordered. Now $(V', f') \prec (V^*, f^*)$ for all $(V', f') \in \mathcal{T}$. Hence, (V^*, f^*) is an upper bound for \mathcal{T} . In other words: Every totally ordered subfamily \mathcal{T} of S has an upper bound. By Zorn's Lemma, S has a maximal element, i.e. there exists $(V, f) \in S$ such that if $(V', f') \in S$ satisfies $(V, f) \prec (V', f')$, then (V, f) = (V', f'). Note (by step 1), $V \equiv E$, and so $f \colon E \to \mathbb{R}$ is linear and $f_{V_0} = f_0$ and $f(x) \leq p(x)$ for all $x \in E$.

Remark. Note that $-f(x) = f(-x) \le p(-x)$, so $-p(-x) \le f(x) \le p(x)$ for all $x \in E$.

Theorem 4.3 (Hahn-Banach for semi-norms). Let E be a \mathbb{K} -vector space ($\mathbb{K} = \mathbb{R}$ or $\mathbb{K} = \mathbb{C}$) and $V_0 \subseteq E$ a linear subspace. Let $p: E \to \mathbb{R}$ be a semi-norm, and $f_0: V_0 \to \mathbb{K}$ be a \mathbb{K} -linear form, with $|f_0(x)| \leq p(x)$ for all $x \in V_0$. Then there exists a \mathbb{K} -linear form $f: E \to \mathbb{K}$ such that $f|_{V_0} = f_0$ and $|f(x)| \leq p(x)$ for all $x \in E$.

Proof. If $\mathbb{K} = \mathbb{R}$, then $|f(x)| \leq p(x)$ is equivalent to $-p(-x) \leq f(x) \leq p(x)$, since p is a seminorm, so the result follows from 4.2. If $\mathbb{K} = \mathbb{C}$: Consider the real linear form $u_0 = \operatorname{Re} f_0 \colon V_0 \to \mathbb{R}$ ($\operatorname{Re} f_0 \leq |f_0| \leq p$). By 4.2, there exists a real linear form $u \colon E \to \mathbb{R}$ with $u(x) \leq p(x)$ for all $x \in E$ and $u|_{V_0} = u_0 = \operatorname{Re} f_0$. Let $f \colon E \to \mathbb{C}$ be defined by $f(x) := u(x) - iu(ix) \in \mathbb{C}$ using that u is real linear, one gets that f is \mathbb{C} -linear and, using $z = \operatorname{Re} z - i\operatorname{Re}(iz)$, one has that $f|_{V_0} = f_0$. For $x \in E$, choose $\alpha \in \mathbb{C}$, $|\alpha| = 1$, such that $|f(x)| = \alpha f(x) = f(\alpha x) = u(\alpha x) \leq p(\alpha x) = |\alpha| p(x) = p(x)$.

Theorem 4.4 (Hahn-Banach). Let X be a normed \mathbb{K} -linear vector space, let $V_0 \subseteq X$, and $f_0 \colon V_0 \to \mathbb{K}$, $f_0 \in V_0'$ (f_0 is a bounded linear form). Then f_0 has an extension $f \colon X \to \mathbb{K}$, $f|_{V_0} = f_0$, $f \in X'$ and $||f|| = ||f_0||$.

Proof. Use Theorem 4.3 with $p(x) = ||f_0|| \cdot ||x||$.

Corollary 4.5. Let X be a Banach space and $x \in X$, $x \neq 0$. Then there exists an $f \in X'$ such that $f(x) \neq 0$.

Proof. Define $f_0(\alpha x) = \alpha ||x||$ for $\alpha x \in \text{span}\{x\} \equiv V_0$. Then there exists $f: X \to \mathbb{K}$, $f \in X'$, such that $f|_{V_0} = f_0$. In particular, $f(x) = f_0(x) = ||x|| \neq 0$.

Remark. If $x \neq y$, $x, y \in X$, then $x - y \neq 0$, so there exists $f \in X'$ such that $f(x - y) \neq 0$, hence $f(x) \neq f(y)$. Hence, X' separates points in X: If f(x) = f(y) for all $f \in X'$, then x = y.

4.1 3 consequences of Baire's theorem

Recall Baire's theorem: If $M = \{A, d\}$ is a complete metric space and $\{V_n\}_{n \in \mathbb{N}}$ is a countable family of open, dense subsets of A, then $\bigcap_{n \in \mathbb{N}} V_n$ is also dense. On problem sheet 5 it was proven a corollary of Baire's theorem that a complete metric space is never the union of a countable number of nowhere dense, closed subsets.

Theorem 4.6 (Banach-Steinhaus/Principle of uniform boundedness). Let X be a Banach space, Y a normed space, I some index set, and for each $i \in I$ a bounded linear operator $T_i \colon X \to Y$. If $\sup_{i \in I} ||T_i x|| < \infty$ for all $x \in X$, then $\sup_{i \in I} ||T_i|| < \infty$.

Proof. For $n \in \mathbb{N}$, let $E_n = \{x \in X : \sup_{i \in I} ||T_i x|| \leq n\}$. Then $X = \bigcup_{n \in \mathbb{N}} E_n$. Now, $E_n = \bigcap_{i \in I} ||T_i(\cdot)||^{-1}([0,n])$, hence all E_n are closed, since [0,n] is closed and $||T_i(\cdot)||$ is continuous because T_i is continuous. So, by Baire, there exists $n_0 \in \mathbb{N}$ such that E_{n_0} has an interior point $y \in E_{n_0}$, i.e. there is an $\varepsilon > 0$ such that $||x - y|| \leq \varepsilon$ implies $x \in E_{n_0}$. Note, that E_{n_0} is symmetric, i.e. $z \in E_{n_0}$ implies $-z \in E_{n_0}$. Hence, $||x - (-y)|| \leq \varepsilon$ implies $x \in E_{n_0}$. Also, E_{n_0} is convex, so $||u|| \leq \varepsilon$ implies $u = \frac{1}{2}((u+y) + (u-y)) \in E_{n_0}$. Hence, $||u|| \leq \varepsilon$ implies $u \in E_{n_0}$, that is $||u|| \leq \varepsilon$ implies $||T_i u|| \leq n_0$ for all $i \in I$. So, if $x \in X$, $||x|| \leq 1$, then $||\varepsilon x|| \leq \varepsilon$, so $||T_i(\varepsilon x)|| \leq n_0$ for all $i \in I$. Hence, $||x|| \leq 1$ implies $||T_i x|| \leq n_0/\varepsilon$ for all $i \in I$, so $||T_i|| \leq n_0/\varepsilon < \infty$ for all $i \in I$.

Remark. There exist more general versions of this theorem, but the one given here is the most used.

Definition 4.7. A map between two metric spaces is called *open* iff the image of any open set is open.

Remark.

- (a) Note the difference to "continuity".
- (b) One cannot in general replace with "closed to closed".
- (c) Clearly, a bijective map is open iff its inverse is continuous.

Lemma 4.8. Let X, Y be normed spaces and $T: X \to Y$ linear. Then the following are equivalent:

- (i) T is open.
- (ii) For all r > 0 there exists $\varepsilon > 0$ such that $B_{\varepsilon}(0) \subseteq T(B_r(0))$.
- (iii) There exists $\varepsilon > 0$ such that $B_{\varepsilon}(0) \subseteq T(B_1(0))$.

Proof. To see $(i) \Rightarrow (ii)$ note that $T(B_r(0))$ is open in Y and $0 \in T(B_r(0))$. To prove $(ii) \Rightarrow (i)$, let $U \subseteq X$ be open, and $x \in U$. Then $Tx \in T(U)$. Since U is open, there exists r > 0 such that $B_r(x) \subseteq U$. Note that $B_r(x) = x + B_r(0) = x + rB_1(0)$. Hence, $x + B_r(0) \subseteq U$, so $Tx + T(B_r(0)) \subseteq T(U)$. Form (ii) we have $\varepsilon > 0$ such that $B_\varepsilon(0) \subseteq T(B_r(0))$, hence, $Tx + B_\varepsilon(0) \subseteq Tx + T(B_r(0)) \subseteq T(U)$. Now, $Tx + B_\varepsilon(0) = B_\varepsilon(Tx)$, so $Tx + B_\varepsilon(0)$ is open, contains Tx and is contained in T(U). $(ii) \Leftrightarrow (iii)$ is clear.

Remark. If $T: X \to Y$ is linear and open, then T is surjective.

Theorem 4.9 (Open mapping theorem). Let X and Y be Banach spaces, and assume $T \in B(X,Y)$ is surjective. Then T is open.

Proof. We shall prove that (iii) in Lemma 4.8 holds. This is done in 2 steps: First we prove that there exists $\varepsilon_0 > 0$ such that $B_{\varepsilon_0} \subseteq \overline{T(B_1(0))}$. Since T is a surjection, $Y = \bigcup_{n \in \mathbb{N}} T(B_n(0))$. Since Y is Banach, Baire's theorem implies that there exists $N \in \mathbb{N}$ such that $(\overline{T(B_N(0))})^\circ \neq \emptyset$, i.e. there exists $y_0 \in \overline{T(B_N(0))}$ and $\varepsilon > 0$ such that $B_{\varepsilon}(y_0) \subseteq \overline{T(B_N(0))}$, in other words $\|z - y_0\| < \varepsilon$ implies $z \in \overline{T(B_N(0))}$ (*). Now, $\overline{T(B_N(0))}$ is symmetric, hence $y_0 = y_0 = y_0$ also satisfies (*). Let $y \in Y$ with $\|y\| < \varepsilon$. Then $\|(y_0 + y) - y_0\| < \varepsilon$, hence $y_0 + y \in \overline{T(B_N(0))}$. Similarly, $\|y\| < \varepsilon$ implies $y_0 + y \in \overline{T(B_N(0))}$. Therefore, since $\overline{T(B_N(0))}$ is convex, we have $y = \frac{1}{2}((y_0 + y + (-y_0 + y)) \in \overline{T(B_N(0))}$, if $\|y\| < \varepsilon$. Hence, $y_0 \in \overline{T(B_N(0))}$. So, $y_0 \in \overline{T(B_N(0))}$. Then $y_0 \in \overline{T(B_N(0))}$ is as claimed.

Now for the second step, let $\varepsilon_0 > 0$ be as above. We now prove that $B_{\varepsilon_0} \subseteq T(B_1(0))$. This will complete the proof. Let $y \in Y$ with $\|y\| < \varepsilon_0$. Take $\varepsilon > 0$ such that $\|y\| < \varepsilon < \varepsilon_0$ and write $\overline{y} = \frac{\varepsilon_0}{\varepsilon} y$. Then $\|\overline{y}\| < \varepsilon_0$, so $\overline{y} \in \overline{T(B_1(0))}$. Choose $\alpha \in (0,1)$ such that $0 < \frac{\varepsilon}{\varepsilon_0} \frac{1}{1-\alpha} < 1$ and take $y_0 \in T(B_1(0))$ such that $\|\overline{y} - y_0\| < \alpha \varepsilon_0$. Since $y_0 \in T(B_1(0))$, there is a $x_0 \in B_1(0)$ such that $y_0 = Tx_0$. Now let $z_0 = \frac{\overline{y} - y_0}{\alpha}$. Then $\|z_0\| < \varepsilon_0$. So $z_0 \in B_{\varepsilon_0}(0) \subseteq \overline{T(B_1(0))}$. So there exists $y_1 \in T(B_1(0))$ such that $\|z_0 - y_1\| < \alpha \varepsilon_0$, that is $\|\overline{y} - (y_0 + \alpha y_1)\| \le \alpha^2 \varepsilon_0$. Repeat on $z_1 = \frac{\overline{y} - (y_0 + \alpha y_1)}{\alpha^2}$, to get $y_2 = Tx_2 \in T(B_1(0))$ with $\|z_1 - y_2\| < \alpha \varepsilon_0$. Inductively, we get a sequence $\{x_n\}_{n \in \mathbb{N}} \subseteq B_1(0)$ such that

$$\left\| \overline{y} - \sum_{i=0}^{n} \alpha^{i} y_{i} \right\| = \left\| \overline{y} - T \left(\sum_{i=0}^{n} \alpha^{i} x_{i} \right) \right\| < \alpha^{n+1} \varepsilon_{0}.$$

Since $\alpha \in (0,1)$, and $||x_i|| < 1$ for all $i \in \mathbb{N}$, the series $\sum_{i=0}^{\infty} \alpha^i x_i$ is absolutely convergent. Since X is Banach, the series $\sum_{i=0}^{\infty} \alpha^i x_i$ is convergent in X. Write $\overline{x} = \sum_{i=1}^{\infty} \alpha^i x_i \in X$. Since T is bounded,

$$T\left(\sum_{i=0}^{n} \alpha^{i} x_{i}\right) \xrightarrow{n \to \infty} T\overline{x}$$

in Y and by construction

$$T\left(\sum_{i=0}^{n} \alpha^{i} x_{i}\right) \xrightarrow{n \to \infty} \overline{y}.$$

Finally, let $x = \frac{\varepsilon}{\varepsilon_0} \overline{x}$. Then Tx = y. Also

$$||x|| = \frac{\varepsilon}{\varepsilon_0} ||\overline{x}|| = \frac{\varepsilon}{\varepsilon_0} ||\sum_{i=0}^{\infty} \alpha^i x_i|| \le \frac{\varepsilon}{\varepsilon_0} \sum_{i=0}^{\infty} \alpha^i \le \frac{\varepsilon}{\varepsilon_0} \frac{1}{1-\alpha} < 1.$$

Corollary 4.10. Let X and Y be Banach spaces, and assume $T \in B(X,Y)$ which is bijective. Then T is a homeomorphism.

Corollary 4.11. Let $\|\cdot\|$ and $\|\cdot\|'$ be two norms on the same vectorspace X, such that $\{X, \|\cdot\|\}$ and $\{X, \|\cdot\|'\}$ are both Banach. Assume there exists a constant M > 0 such that $\|x\| \le M\|x\|'$ for all $x \in X$. Then $\|\cdot\|$ and $\|\cdot\|'$ are equivalent.

Corollary 4.12. Let X, Y be Banach spaces, and assume $T \in B(X,Y)$ is injective. Then $T^{-1} \colon R(T) \to X$ is bounded iff $R(T) \subseteq Y$ is closed.

Definition 4.13. Let X, Y be normed spaces, $D \subseteq X$ a linear subspace, and $T: D \to Y$ a linear map (we write $D = \text{dom}(T), T: X \supseteq D \to Y$). We call T closed (a closed linear operator) iff for any sequence $\{x_n\}_{n\in\mathbb{N}} \subseteq D$ such that $x_n \to x$ as $n \to \infty$ and $Tx_n \to y$ as $n \to \infty$ we have $x \in D$ and Tx = y.

Remark. Note the relation to continuity: If dom(T) = X, look at:

- (a) $x_n \to x$ as $n \to \infty$.
- (b) $\{Tx_n\}$ is convergent.
- (c) Tx = y.

Then T is continuous iff $(a) \Rightarrow (b) \land (c)$. T is closed iff $(a) \land (b) \Rightarrow (c)$.

Remark. A closed operator does not in general map closed sets to closed sets.

Definition 4.14. For linear $T: X \supseteq D \to Y$ we define the *graph* of T by

$$gr(T) = \{(x, Tx) : x \in D\} \subseteq X \times Y.$$

Lemma 4.15. Let X, Y, D, T be as in 4.14. Then

- (a) gr(T) is a linear subspace of $X \times Y$.
- (b) T is a closed operator iff gr(T) is closed in $X \oplus_1 Y$ (here $||(x,y)||_1 = ||x||_X + ||y||_Y$).

Proof. This is left as an exercise.

Lemma 4.16. Let X, Y be Banach spaces, $D \subseteq X$ a linear subspace, $T: X \supseteq D \to Y$ a closed operator. Then

(a) $(D, \|\cdot\|')$ with $\|x\|' = \|x\|_X + \|Tx\|_Y$ is a Banach space. $\|\cdot\|'$ is called the graph norm.

(b) $T: (D, \|\cdot\|') \to (Y, \|\cdot\|_Y)$ is bounded.

Proof. Let $\{x_n\}_{n\in\mathbb{N}}\subseteq D$ be Cauchy with respect to $\|\cdot\|'$. Then $\{x_n\}$ is Cauchy with respect to $\|\cdot\|_X$, and $\{Tx_n\}_{n\in\mathbb{N}}$ is Cauchy (in Y) with respect to $\|\cdot\|_Y$. Hence, since X and Y are Banach, there exist $x\in X$, $y\in Y$ such that $x_n\to x$ as $n\to\infty$ and $Tx_n\to y$ as $n\to\infty$. Since T is closed, $x\in D$ and y=Tx. Then $\|x_n-x\|'=\|x_n-x\|_X+\|Tx_n-y\|_Y\to 0$ as $n\to\infty$. So, $x_n\to x$ as $n\to\infty$ with respect to $\|\cdot\|'$. (b) is trivial.

Theorem 4.17. Let X, Y be Banach spaces, $D \subseteq X$ a linear subspace, $T: X \supseteq D \to Y$ closed and surjective. Then T is open. If T is also bijective, then T^{-1} is continuous.

Proof. By Lemma 4.16 and Theorem 4.9, $T: (D, \|\cdot\|') \to (Y, \|\cdot\|_Y)$ is open. Since $\|x\|_X \leq \|x\|'$ for all $x \in D$, we have that any $\|\cdot\|_X$ -open set is also $\|\cdot\|'$ -open. So T is also open as a map $(D, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$. If T is also bijective, then T^{-1} is $(Y, \|\cdot\|_Y) - (X, \|\cdot\|_X)$ -continuous.

Theorem 4.18 (Closed graph theorem). Let X, Y be Banach spaces, and assume $T: X \to Y$ is linear and a closed operator. Then T is continuous.

Proof. By Lemma 4.16(b), $T: X \to Y$ is continuous, when X is equipped with the graph norm, $||x||' = ||x||_X + ||Tx||_Y$. By corollary 4.11, $||\cdot||_X$ and $||\cdot||'$ are equivalent norms, since $||x||_X \le ||x||'$ and $(X, ||\cdot||)$ is Banach by assumption and $(X, ||\cdot||')$ is Banach by 4.16(a). Therefore, T is also continuous with respect to $||\cdot||_X$.

Remark. The theorem says a closed operator on all of a Banach space is automatically continuous. This, and the following consequence of Banach-Steinhaus illustrates why it is almost impossible to explicitly define a non-continuous linear operator on a Banach space.

Proposition 4.19. Let X be a Banach space, Y a normed space, and let $T_n \in B(X,Y)$, $n \in \mathbb{N}$. Assume that $Tx := \lim_{n \to \infty} T_n x$ exists for all $x \in X$. Then T is linear and continuous.

Proof. It is clear that T is linear. Since $\{T_nx\}_{n\in\mathbb{N}}\subseteq Y$ is convergent for all $x\in X$, $\{T_nx\}_{n\in\mathbb{N}}\subseteq Y$ is bounded, hence $\sup_{n\in\mathbb{N}}\|T_nx\|_Y<\infty$ for all $x\in X$. Hence, by Banach-Steinhaus, $\sup_{n\in\mathbb{N}}\|T_n\|=M<\infty$. It follows that $\|Tx\|=\lim_{n\to\infty}\|T_nx\|\leq\lim_{n\to\infty}\|T_n\|\|x\|\leq M\|x\|$, hence $T\in B(X,Y)$.

Recall, that for a normed space $X, X' = B(X, \mathbb{K})$ is called the dual of X. Let $x \in X$, then $||x|| = \sup\{|f(x)|: f \in X', ||f|| \le 1\} = \max\{|f(x)|: f \in X', ||f|| \le 1\}$.

Remark. Let $x \in X$ and define $\iota(x) \colon X' \to \mathbb{K}, f \mapsto f(x)$. Then ι is linear: $(\iota(x))(\lambda f + g) = (\lambda f + g)(x) = \lambda f(x) + g(x) = \lambda \iota(x)(f) + \iota(x)(g)$ and

$$\sup\{|(\iota(x))(f)|\colon f\in X', \|f\|\leq 1\} = \sup\{|f(x)|\colon f\in X', \|f\|\leq 1\} = \|x\|<\infty.$$

Hence, $\iota(x) \in B(X', \mathbb{K})$, i.e. $\iota(x) \in X''$, and $\|\iota(x)\|_{X''} = \|x\|_X$. Hence, $\iota \colon X \to X''$ is an isometrical embedding. ι is called the *canonical embedding*.

Definition 4.20. A subset $M \subseteq X$ (X normed) is called *weakly bounded* if for all $f \in X'$, $\sup_{x \in M} |f(x)| < \infty$. By the above, M is weakly bounded iff $\iota(M) \subseteq X''$ is pointwise bounded.

Proposition 4.21. A weakly bounded set in a normed space is also bounded in the norm topology, i.e. there exists R > 0 such that $M \subseteq B_R(0)$.

Proof. Use the principle of uniform boundedness.

Definition 4.22. A normed space X is called *reflexive* if $\iota: X \to X''$ is surjective.

Remark. Any Hilbert space is reflexive.

Remark. Any reflexive space is complete.

Remark. If X is reflexive, and if $X \cong Y$, then Y is reflexive.

Remark. If X and Y are reflexive, $X \oplus_1 Y$ is reflexive.

Example. ℓ_p is reflexive for $1 , since <math>(\ell_p)' = \ell_q$, $\frac{1}{p} + \frac{1}{q} = 1$, and hence $(\ell_p)'' = (\ell_q)' = \ell_p$. However, $(\ell_1)' = \ell_\infty$ and $(\ell_\infty)' \neq \ell_1$. Hence, ℓ_1 and ℓ_∞ are not reflexive. Furthermore, $(L^p)' = L^q$ if 1 , which we will see later.

Definition 4.23.

- (a) A sequence $\{x_n\}_{n\in\mathbb{N}}\subseteq X$ is said to converge weakly $(x_k\rightharpoonup x \text{ as } k\to\infty \text{ in } X)$ if $f(x_k)\to f(x)$ as $k\to\infty$ for all $f\in X'$.
- (b) A sequence $\{f_n\}_{n\in\mathbb{N}}\subseteq X'$ converges weak* to $f\in X'$ (written $f_k\stackrel{*}{\rightharpoonup} f$) if $f_k(x)\to f(x)$ as $k\to\infty$ for all $x\in X$.
- (c) Similarly, one defines the notion of Cauchy sequences (weak, weak*).
- (d) A subset $M \subseteq X$ is called weakly sequentially compact if every sequence in M has a weakly convergent subsequence (with limit in M). Similarly for weak* sequentially compact.
- (e) To avoid confusion with usual convergence, we call convergence with respect to the norm *strong convergence*.

Remark. $x_k \to x$ implies $x_k \to x$ since $|f(x_k) - f(x)| \le ||f|| ||x_k - x||$.

Remark. Since X is only canonically embedded in X'', weak convergence in X' is a priori stronger than weak* convergence.

Remark. One can, both for weak and weak* convergence, define this convergence by topologies ("complicated").

Remark. By the canonical embedding $\iota: X \to X''$ we have $x_k \rightharpoonup x$ as $k \to \infty$ in X iff $\iota(x_k) \stackrel{*}{\rightharpoonup} \iota(x)$ as $k \to \infty$ in X''.

Remark 4.24.

1. The weak limit of a sequence is unique (use Hahn-Banach). Also the weak* limit is unique.

- 2. Strong convergence implies weak convergence (and it also implies weak* convergence). The opposite is not true: take $X = \ell_p$, $X' = \ell_q$ with $\frac{1}{p} + \frac{1}{q} = 1$ and $e_n \in \ell_q = X'$. Then for all $x \in \ell_p$, $e_n(x) = \sum_{i \in \mathbb{N}} \delta_{in} x_i = x_n \to 0$ as $n \to \infty$. I.e. $\{e_n\}_{n \in \mathbb{N}} \subseteq X'$ and $e_n(x) \to 0$ as $n \to \infty$ for all $x \in X$. Hence $e_n \stackrel{*}{\rightharpoonup} 0$ as $n \to \infty$. But $\|e_n\|_{X'} = 1$, so $e_n \not\to 0$ as $n \to \infty$.
- 3. $x_k \rightharpoonup x, k \to \infty$, in X implies $||x|| \le \liminf_{k \to \infty} ||x_k||$.
- 4. $f_k \stackrel{*}{\rightharpoonup} f$, $k \to \infty$, in X' implies $||f|| \le \liminf_{k \to \infty} ||f_k||$.
- 5. The norm $\|\cdot\|: X \to \mathbb{R}$ or $\|\cdot\|: X' \to \mathbb{R}$ is weak/weak* lower semi-continuous.
- 6. Weak and weak* convergent sequences are bounded (in norm).

Theorem 4.25. Let X be separable. Then the closed unit ball $\overline{B_1(0)} \subseteq X'$ is weak* sequentially compact, i.e. any bounded sequence in X' has a weak* convergent subsequence.

Proof. Let $\{x_n \colon n \in \mathbb{N}\} \subseteq X$ be dense and let $\{f_k\}_{k \in \mathbb{N}} \subseteq X'$, with $||f_k|| \leq 1$, $k \in \mathbb{N}$. Then $\{f_k(x_n)\}_{k \in \mathbb{N}} \subseteq \mathbb{K}$ $(n \in \mathbb{N} \text{ fixed})$ is a bounded sequence in \mathbb{K} . By a diagonal argument (à la Cantor, but different) there exists a subsequence $\{f_{k_m}\}_{m \in \mathbb{N}}$ such that, for all $n \in \mathbb{N}$, $\{f_{k_m}(x_n)\}_{m \in \mathbb{N}}$ is convergent in \mathbb{K} , i.e. $\lim_{m \to \infty} f_{k_m}(x_n)$ exists for all $n \in \mathbb{N}$. Then, for all $y \in Y = \text{span}\{x_n \colon n \in \mathbb{N}\} \subseteq X$ the limit $\lim_{m \to \infty} f_{k_m}(y)$ exists. Define $f(y) = \lim_{m \to \infty} f_{k_m}(y)$ for $y \in Y$. Then f is linear and $|f(y)| = \lim_{m \to \infty} |f_{k_m}(y)| \leq \lim_{m \to \infty} ||f_{k_m}|| ||y|| \leq ||y||$ for all $y \in Y$. Then f has a unique extension to a bounded linear functional on X (again called f). So $f \in X'$, with $||f|| \leq 1$ and, for $x \in X$, $y \in Y$,

$$|(f - f_{k_m})(x)| \le |(f - f_{k_m})(x - y)| + |(f - f_{k_m})(y)| \le 2||x - y|| + |(f - f_{k_m})(y)|.$$

The first term can be made arbitrarily small since $\overline{Y} = X$. The second term goes to 0 as $m \to \infty$ by definition of f. Hence $f_{k_m} \stackrel{*}{\rightharpoonup} f$ as $m \to \infty$.

Definition 4.26. For $(n, \varphi, \varepsilon)$ with $n \in \mathbb{N}$, $\varphi = (\varphi_1, \dots, \varphi_n) \in (X')^n$ and $\varepsilon > 0$ define

$$U_{n,\varphi,\varepsilon} = \{x \in X : |\varphi_k(x)| < \varepsilon \text{ for } k = 1,\ldots,n\}$$

and

$$\mathscr{T}_W = \{ A \subseteq X : x \in A \implies x + U_{n,\varphi,\varepsilon} \subseteq A \text{ for some } U_{n,\varphi,\varepsilon} \}.$$

Then \mathscr{T}_W is a topology on X and it is the weakest topology \mathscr{T} on X such that all $f \in X'$ are continuous with respect to \mathscr{T} as maps $f \colon X \to \mathbb{K}$. $\{X, \mathscr{T}_W\}$ is neither a normed nor a metric space, but (as in Lemma 2.2) the linear structure on X is \mathscr{T}_W continuous. Finally, convergence in \mathscr{T}_W is the same as weak convergence $(\{X, \mathscr{T}_W\})$ is a "locally convex topological vector space"). A similar construction works for the topology \mathscr{T}_{W^*} on X' giving weak* convergence in X'.

Remark 4.27.

- 1. If X is reflexive then weak* and weak convergence in X' is the same.
- 2. If X is reflexive and $V \subseteq X$ is a closed subspace, then V is reflexive.
- 3. X is reflexive iff X' is reflexive.
- 4. If X' is separable, X is separable.

Theorem 4.28 (Banach-Alaoglu). If X is a reflexive Banach space, then every normbounded sequence has a weakly convergent subsequence, i.e. $\overline{B_1(0)}$ is weakly sequentially compact.

Proof. Let $\{x_k\}_{k\in\mathbb{N}}\subseteq\overline{B_1(0)}\subseteq X$ and $Y=\overline{\operatorname{span}\{x_k\colon k\in\mathbb{N}\}}\subseteq X$. Then Y is reflexive and separable. Then $Y''=\iota(Y)$ (where ι is the canonical embedding) is separable, so Y' is separable. Therefore, we can use 4.25 on Y' on the sequence $\{\iota(x_k)\}_{k\in\mathbb{N}}\subseteq Y''$, i.e. there exists $y\in Y''$ such that for a subsequence $\{\iota(x_{k_m})\}_{m\in\mathbb{N}}, \iota(x_{k_m})(f)\to y(f)$ for all $f\in Y'$. Let $x=\iota^{-1}(y)\in Y$. Then this means that $\iota(x_{k_m})(f)=f(x_{k_m})\to y(f)=f(x)$ as $m\to\infty$ for all $f\in Y'$. Note that for $\varphi\in X'$, we have $\varphi|_Y\in Y'$. So it follows that $\varphi(x_{k_m})\to\varphi(x)$ as $m\to\infty$ for all $\varphi\in X'$, i.e. $x_{k_m}\to x$ as $m\to\infty$ in X.

Remark. In particular any Hilbert space is reflexive, so the closed unit ball in a Hilbert space is weakly sequentially compact.

5 Topics on operators

Definition 5.1. The compact (linear) operators from X to Y are defined by

$$K(X,Y) = \{T \in B(X,Y) : \overline{T(B_1(0))} \text{ is compact}\}.$$

Remark.

- (i) If Y is Banach, then " $\overline{T(B_1(0))}$ compact" can be replaced by " $T(B_1(0))$ precompact".
- (ii) That is, $T \in K(X,Y)$ iff T maps bounded sequences (in X) into sequences (in Y) which have a convergent subsequence.
- (iii) For $k \in C(I^2)$, I = [0, 1],

$$(Kf)(x) = \int_0^1 k(x, y) f(y) \, \mathrm{d}y, \quad x \in I, f \in C(I)$$

defines a compact operator $K : C(I) \to C(I)$.

Proposition 5.2. Let $T \in B(X,Y)$ and define, for $y' \in Y'$, T'(y')(x) = y'(Tx). This defines a linear map $T': Y' \to X'$ called the adjoint of T. We have $T' \in B(Y',X')$ with ||T'|| = ||T|| and $\cdot': B(X,Y) \to B(Y',X')$, $T \mapsto T'$ is an isometric embedding.

Proof. We have $(T'y')(\lambda x_1 + x_2) = y'(T(\lambda x_1 + x_2)) = \lambda y'(Tx_1) + y'(Tx_2) = \lambda (T'y')(x_1) + (T'y')(x_2)$. Hence, $T'y' : X \to \mathbb{K}$ is linear. Also $|(T'y')(x)| = |y'(Tx)| \le ||y'|| ||Tx|| \le ||y'|| ||T|| ||x||$, so $T'y' \in X'$. Hence, T' is well-defined. T' is linear, since $(T'(\lambda y'_1 + y'_2))(x) = (\lambda y'_1 + y'_2)(Tx) + \lambda y'_1(Tx) + y'_2(Tx) = \lambda T'y'_1(x) + T'y'_2(x) = (\lambda T'y'_1 + T'y'_2)(x)$, i.e. $T'(\lambda y'_1 + y'_2) = \lambda T'y'_1 + T'y'_2$.

From the above, one sees $||T'y'|| \le ||T|| ||y'||$, i.e. T' is bounded and $||T'|| \le ||T||$. On the other hand, for $||y'|| \le 1$, $y' \in Y'$, $||x|| \le 1$, $x \in X$, then

$$||T'|| \ge ||T'y'|| \ge |(T'y')(x)| = |y'(Tx)|.$$

If $Tx \neq 0$, then by Hahn-Banach, there is a \tilde{y}' such that $\|\tilde{y}'\| = 1$ and $\tilde{y}'(Tx) = \|Tx\|$. Hence, $\|T'\| \geq \|Tx\|$. Hence, $\|T'\| \geq \sup_{\|x\| \leq 1} \|Tx\| = \|T\|$, so $\|T'\| = \|T\|$.

Definition 5.3 (Hilbert space adjoint). Let H be a Hilbert space, and let $\Phi: H \to H', y \mapsto \langle y, - \rangle$ be the map in Theorem 2.32 (Fréchet-Riesz), and let $T \in B(H)$. Then $T^* = \Phi^{-1}T'\Phi$ is called the *Hilbert space adjoint of* T. It satisfies

$$\langle T^*x, y \rangle = \langle x, Ty \rangle, \quad \forall x, y \in H.$$

T is called *selfadjoint* if $T^* = T$. Note, that T is assumed to be bounded. For unbounded operators, the definition of adjoint and therefore of selfadjointness is more complicated (for example in quantum mechanics).

Lemma 5.4 (algebraic properties). We have

- (1) $(\alpha T_1 + T_2)' = \alpha T_1' + T_2' \text{ for } T_1, T_2 \in B(X, Y) \text{ and } \alpha \in \mathbb{K}.$
- $(1)^* (\alpha T_1 + T_2)^* = \overline{\alpha} T_1^* + T_2^* \text{ for } T_1, T_2 \in B(H) \text{ and } \alpha \in \mathbb{K}.$
- (2) I' = I for $I \in B(X)$, $I: X \to X$, $x \mapsto x$.
- (3) For $T_1 \in B(X,Y)$, $T_2 \in B(Y,Z)$, $(T_2T_1)' = T_1'T_2'$.
- (4) With $\iota_X \colon X \to X''$ and $\iota_Y \colon Y \to Y''$ the canonical embeddings and $T \in B(X,Y)$, we have $T''\iota_X = \iota_Y T$.
- $(4)^* For T \in B(H), T^{**} = T.$

Proposition 5.5. Let X, Y be Banach spaces and $T \in B(X, Y)$. Then $T^{-1} \in B(Y, X)$ exists if and only if $(T')^{-1} \in B(X', Y')$ exists and, in this case, $(T^{-1})' = (T')^{-1}$. (or, if X = Y = H a Hilbert space, $(T^*)^{-1} = (T^{-1})^*$).

Definition 5.6. Let $T \in B(X)$ with a Banach space X over \mathbb{C} . We define the *resolvent* set of T by

$$\rho(T) = \{ \lambda \in \mathbb{C} : N(T - \lambda I) = 0 \text{ and } R(T - \lambda I) = X \}$$

and the spectrum of T by

$$\sigma(T) = \mathbb{C} \setminus \rho(T).$$

The spectrum can be split in three parts. The *point spectrum* is

$$\sigma_p(T) = \{ \lambda \in \mathbb{C} : N(T - \lambda I) \neq 0 \}.$$

The continuous spectrum is

$$\sigma_c(T) = \{\lambda \in \mathbb{C} : N(T - \lambda I) = 0 \text{ and } R(T - \lambda I) \neq X, \text{ but } \overline{R(T - \lambda I)} = X\}.$$

The rest/residual spectrum is

$$\sigma_r(T) = \{\lambda \in \mathbb{C} \colon \lambda \in \mathbb{C} \colon \operatorname{N}(T - \lambda I) = 0 \text{ and } \overline{\operatorname{R}(T - \lambda I)} \neq X\}.$$

Remark.

- (1) Note that $\lambda \in \rho(T)$ if and only if $T \lambda I : X \to X$ is bijective. This is equivalent to the existence of $R_{\lambda}(T) := (T \lambda I)^{-1} \in B(X)$, called the *resolvent* of T (at λ).
- (2) $\lambda \in \sigma_p(T)$ if and only if there exists $x \neq 0$ such that $Tx = \lambda x$. In this case, λ is called an eigenvalue and x is called an eigenvector $(x \in X)$. However, in the cases where X is some space of functions $\mathscr{C}(I)$, $L^p(\Omega)$, $\mathscr{C}^{\alpha}(I)$, $\mathscr{C}^{k,\alpha}(I)$, ... such an X is normally called an eigenfunction. $N(T \lambda I)$ is called the eigenspace belonging to the eigenvalue λ . It is a T-invariant subspace, i.e. $T N(T \lambda I) \subseteq N(T \lambda I)$.

Remark. If f is an analytic function, i.e. f can be represented by a convergent power series, $f(x) = \sum_{n=0}^{\infty} a_n x^n$, we can define $f(T) = \sum_{n=0}^{\infty} a_n T^n$ (which is defined since B(X) is Banach).

Proposition 5.7. Let X be a Banach space, $T \in B(X)$ with ||T|| < 1. Then $(I-T)^{-1} \in B(X)$ and $(I-T)^{-1} = \sum_{n=0}^{\infty} T^n$ (the Neumann series) in B(X).

Proof. Let $S_k = \sum_{n=0}^k T^n$. Then, for $k < \ell$,

$$||S_{\ell} - S_{k}|| = \left| \left| \sum_{k < n \le \ell} T^{n} \right| \right| \le \sum_{k < n \le \ell} ||T^{n}|| \le \sum_{k < n \le \ell} ||T||^{n} \le \sum_{n = k+1}^{\infty} ||T||^{n} \xrightarrow{k \to \infty} 0$$

Hence, $\{S_k\}$ is Cauchy in B(X), so convergent. Let $S = \lim_{k \to \infty} S_k$ in B(X) and for $k \to \infty$:

$$(I-T)S_k x = \sum_{n=0}^k (T^n - T^{n+1})x = x - T^{k+1}x \xrightarrow{k \to \infty} x$$

since $||T^{k+1}x|| \le ||T||^{k+1}||x||$. On the other hand $(I-T)S_kx \to (I-T)S_kx$ as $k \to \infty$. Hence, $S = (I-T)^{-1}$.

Proposition 5.8. Let $T \in B(X)$. Then $\rho(T) \subseteq \mathbb{C}$ is an open set, i.e. $\sigma(T) = \mathbb{C} \setminus \rho(T)$ is closed, and the resolvent function $\rho(T) \ni \lambda \mapsto R_{\lambda}(T) \in B(X)$ is a complex analytic map from $\rho(T)$ to B(X) with $||R_{\lambda}(T)||^{-1} \le d(\lambda, \sigma(T))$, i.e. for all $\lambda_0 \in \rho(T)$, there exists r > 0 such that

$$R_{\lambda}(T) = \sum_{n=0}^{\infty} a_n (\lambda - \lambda_0)^n T^n$$

for all $\lambda \in B_r(\lambda_0)$.

Proof. Use that $(I - A)^{-1} = \sum_{n=0}^{\infty} A^n$ if ||A|| < 1 and $T - (\lambda - \mu)I = (T - \lambda I)(I - \mu R_{\lambda}(T)) =: (T - \lambda I)S(\mu)$. Then $S(\mu)$ is invertible if $|\mu| ||R_{\lambda}(T)|| < 1$. Hence, $R_{\lambda-\mu}(T) = S(\mu)^{-1}R_{\lambda}(T) = \sum_{k=0}^{\infty} \mu^k R_{\lambda}(T)^{k+1}$.

Proposition 5.9. Let X, Y be Banach spaces. Then the set of invertible operators in B(X,Y) is an open set. If $X \neq 0$ and $Y \neq 0$, then for $S,T \in B(X)$, T invertible and $||S-T|| < ||T^{-1}||^{-1}$ implies S is invertible.

Proof. Let
$$R = T - S$$
. Then $S = T(I - T^{-1}R) = (I - RT^{-1})T$ where $||T^{-1}R|| < 1$ and $||RT^{-1}|| < 1$. Now use 5.7.

Definition 5.10. An operator $A \in B(X,Y)$ is called a *Fredholm* operator ("is Fredholm") iff

- (i) $\dim N(A) < \infty$.
- (ii) $R(A) \subseteq Y$ is closed.
- (iii) $\operatorname{codim} R(A) := \dim (Y/R(A)) < \infty.$

The index of A is $ind(A) = \dim N(A) - \operatorname{codim} R(A)$.

Theorem 5.11. Let $T \in K(X)$. Then A = I - T is a Fredholm operator with ind(A) = 0.

For compact operators, one has the following spectral theorem for compact operators:

Theorem 5.12 (Riesz-Schauder). For every operator $T \in K(X)$ one has

- (i) $\sigma(T) \setminus \{0\}$ consists of countably (finite or infinitely) many eigenvalues, with 0 the only possible accumulation point. If $\sigma(T)$ consists of infinitely many elements, then it follows that $\overline{\sigma(T)} = \sigma_p(T) \cup \{0\}$.
- (ii) For $\lambda \in \sigma(T) \setminus \{0\}$ one has $1 \leq n_{\lambda} = \max\{n \in \mathbb{N} : \mathbb{N} ((T \lambda I)^{n-1}) \neq \mathbb{N} ((T \lambda I)^n)\} < \infty$. n_{λ} is the order (or index) of λ and dim $\mathbb{N}(T \lambda I)$ is the multiplicity of λ .
- (iii) (Riesz decomposition) For $\lambda \in \sigma(T) \setminus \{0\}$ one has $X = N((T \lambda I)^{n_{\lambda}}) \oplus R((T \lambda I)^{n_{\lambda}})$. Both subspaces are closed, T invariant and $N((T \lambda I)^{n_{\lambda}})$ is finite dimensional.
- (iv) $\sigma(T|_{R((T-\lambda I)^{n_{\lambda}})}) = \sigma(T) \setminus {\lambda}.$
- (v) Let, for $\lambda \in \sigma(T) \setminus \{0\}$, E_{λ} be the projection on $N((T \lambda I)^{n_{\lambda}})$ according to (iii). Then $E_{\lambda}E_{\mu} = \delta_{\mu,\lambda}E_{\mu}$ for $\lambda, \mu \in \sigma(T) \setminus \{0\}$.

Corollary 5.13. Let $T \in K(X)$ and $\lambda_0 \in \sigma(T) \setminus \{0\}$. Then the resolvent function $\lambda \mapsto R_{\lambda}(T)$ has an isolated pole of order n_{λ_0} at λ_0 , i.e. the map $\lambda \mapsto (\lambda - \lambda_0)^{n_{\lambda_0}} R_{\lambda}(T)$ can be analytically continued at the point λ_0 , and the value at λ_0 is not the zero operator.

The fact that $\sigma(T) \setminus \{0\} \subseteq \sigma_p(T)$ can be formulated as follows:

Proposition 5.14 (Fredholm alternative). For compact T, either the equation $A_{\lambda}x = Tx - \lambda x = y$ has a unique solution for all $y \in X$ or the equation $Tx - \lambda x = 0$ has non-trivial solutions.

Theorem 5.15 ("strong" Fredholm alternative). Let X be Banach, $T \in K(X)$, $\lambda \neq 0$. Then the equation $Tx - \lambda x = y$, $y \in X$, has a solution $x \in X$ iff x'(y) = 0 for all solutions $x \in X$ to the homogenous adjoint equation $T'x' - \lambda x' = 0$. The number of constraints on y (given by x'(y) = 0) is equal to the number of linearly independent solutions to the hoogenous equation $Tz - \lambda z = 0$ (i.e. to the dimension of $N(T - \lambda I)$).

Theorem 5.16 (Schauder). Let X, Y be Banach spaces and $T \in B(X, Y)$. Then $T \in K(X, Y)$ iff $T' \in K(Y', X')$.

Remark. If X = H a Hilbert space, $T \in K(X)$, $T = T^*$, then there exists an orthonormal system $\{e_n\}$ in H such that $Te_k = \lambda_k e_k$ for all k and $Tx = \sum \lambda_k \langle e_k, x \rangle e_k$.