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0 Introduction
Example. Consider the ordinary differential equation dx

dt (t) = f
(
t, x(t)

)
with boundary

conditions x(t = t0) = x0 with x : I → Rn for some interval I ⊆ R and f : I × Rn → Rn.
By integrating both sides, we get an integral equation for x:

x(t) = x0 +
∫ t

t0
f
(
s, x(s)

)
ds.

Define a map K : C(I;Rn)→ C(I;Rn) by

(
K(x)

)
(t) = x0 +

∫ t

t0
f
(
s, x(s)

)
ds.

Now the integral equation becomes the fixed point equation K(x) = x. But K is not
linear (consider for example f(t, x) = t〈x, x〉x).

Example. For an example of a linear problem consider a map k : [0, 1]2 → R and for
x : [0, 1]→ R let

(Kx)(t) =
∫ 1

0
k(t, s)x(s) ds.

This defines a linear map K : C(I;R) → C(I;R). The idea now is to study the linear
map K and solutions to the equations Kx = y and Kx = λx.

1 Topological and metric spaces
We will start by generalising the concept of “continuous functions”, i.e. of “continuity”.
We will first talk about the euclidean topology on Rn. For x, y ∈ Rn let

‖x− y‖Eucl =

√√√√ n∑
i=1

(xi − yi)2

and let dEucl(x, y) = ‖x− y‖Eucl. A subset U ⊆ Rn is called open if and only if (iff) for
all x0 ∈ U there exists ε > 0 such that (s.t.) if ‖y − x0‖Eucl < ε then y ∈ U . Writing
Bε(x0) = {y ∈ Rn : ‖x − y‖Eucl < ε} we can say that U is open iff for all x0 ∈ U there
exists ε > 0 s.t. Bε(x0) ⊆ U . In particular Bε(x) is open for all x ∈ Rn und all ε > 0.
We denote TEucl the family of all open subsets of Rn:

TEucl = {U ⊆ Rn : U is open}.

Note that TEucl is a subfamily of the powerset 2Rn of Rn. The following should be known:

Proposition 1.1.
• ∅ and Rn are open.
• If U1, U2 ∈ TEucl, then U1 ∩ U2 ∈ TEucl.
• If I is some index set and (Ui)i∈I is a family of sets in TEucl, then

⋃
i∈I Ui ∈ TEucl.
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We used all of this to study continuity of functions. Let f : Rn → Rm be any map. f
is called continuous at x0 ∈ Rn iff for all ε > 0 there exists δ > 0 s.t. if ‖x− x0‖Rn < δ
then ‖f(x)− f(x0)‖Rm < ε, i.e. f

(
Bδ(x0)

)
⊆ Bε

(
f(x0)

)
. We say f is continuous iff it is

continuous at all x0 ∈ Rn. Recall the following:

Proposition 1.2. A map f : Rn → Rm is continuous iff f−1(U) is open (in Rn) for all
open U ⊆ Rm.

We shall use Proposition 1.1 and 1.2 to generalise the concept of continuity of maps
between other sets than Rn and Rm.

Definition 1.3. A topological space T = {A,T } consist of a non-empty set A and a
family T of subsets of A (i.e. T ⊆ 2A) satisfying

1. ∅, A ∈ T .
2. If U1, U2 ∈ T , then U1 ∩ U2 ∈ T .
3. If I is some index set and (Ui)i∈I is a family of sets in T , then

⋃
i∈I Ui ∈ T .

Then the collection T of subsets of A is called a topology on/for A and the elements of
A are called points. The elements of T are called open sets.

Remark.
1. In general, T ⊆ 2A, but T 6= 2A.
2. It follows, by induction, that the intersection of finitely many open sets is open.
3. Let A 6= ∅ and let T = {∅, A}. Then {A,T } is a topological space; it is called an

indiscrete space.
4. Let A 6= ∅ and let T = 2A. Then {A,T } is also a topological space; it is called a

discrete space. In particular any set (with at least two points) can be given several
topologies.

Definition 1.6. Let T1,T2 be two topologies on the same set A, then we say that T1 is
stronger or finer than T2 iff T1 ) T2, and that then T2 ist weaker or coarser than T1.

Remark.
1. Given two topologies T1,T2 on the same set these do not need to be comparable

in the sense above.
2. The discrete topology (2A) is stronger than any other topology and the indiscrete

topology is ({∅, A}) is weaker than any other topology.

Using the notion of topologies and inspired by Proposition 1.2, we can generalise
continuity.

Definition 1.7. Given two topological spaces Ti = {Ai,Ti}, i = 1, 2, a map f : A1 → A2
is called continuous iff f−1(U) ∈ T1 for all U ∈ T2. For emphasis, we say that f is
(T1,T2)-continuous.

Definition 1.8. For T1, T2 as above, and a ∈ A1, f is said to be continuous at a iff for
any U2 ∈ T2, with f(a) ∈ U , there exists a U1 ∈ T1 s.t. a ∈ U1 and f(U1) ⊆ U2.
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Remark. f is continuous iff f is continuous at all a ∈ A.

Proposition 1.9.
1. Let T = {A,T } be a topological space and let id : A → A be the identity map.

Then id is (T ,T )-continuous.
2. Any constant map f : A1 → A2 is continuous.

Proof.
1. Let U ⊆ A be open. Then id−1(U) = U ∈ T .
2. Let U ⊆ A2 be open. Then if f−1(U) = ∅ if a 6∈ U and f−1(U) = A1 if a ∈ U . In

either case f−1(U) is open.

The result of Proposition 1.9 is reassuring (but not surprising); same for the next
result, which however shows the strength of the definitions.

Proposition 1.10. Let Ti = {Ai,Ti}, i = 1, 2, 3, be three topological spaces and assume
that f : A1 → A2 and g : A2 → A3 are continuous maps. Then g ◦ f is continuous.

Proof. Let U ∈ T3. Then since g is (T2,T3)-continuous, g−1(U) ∈ T2. Also f−1(V ) ∈
T1 for any V ∈ T2 since f is (T1,T2)-continuous. In particular f−1(g−1(U)

)
∈ T1 —

but f−1(g−1(U)
)

= (g ◦ f)−1(U).

Definition 1.11. Let T = {A,T } be a topological space and let H ⊆ A, H 6= ∅. Then
the induced topology (or relative topology) on H is defined by

TH = {V ⊆ H : ∃U ∈ T . V = H ∩ U} = {U ∩H : U ∈ T }.

Then {H,TH} is called a topological subspace of T = {A,T }.

Definition 1.12. Let Ti = {Ai,Ti}, i = 1, 2, be two topological spaces. A map f : A1 →
A2 is called a homeomorphism of topological spaces iff f is a bijection and both f and
f−1 are continuous. If such a map exists, T1 and T2 are called homeomorphic.

Definition 1.13. Let T = {A,T } be a topological space. We call V ⊆ A closed iff
Ar V ∈ T . I.e. a set is closed if its complement is open.

Example 1.14.
1. [a, b] ⊆ R is closed in the euclidean topology since Rr [a, b] = (−∞, a) ∪ (b,∞).
2. [a, b) ⊆ R is closed in the discrete topology. (Obviously, [a, b) ⊆ R is not closed in

the euclidean topology.)
3. [a,∞) ⊆ R is closed in the euclidean topology on R since Rr [a,∞) = (−∞, a) is

open.

Proposition 1.15. Let T = {A,T } be a topological space. Then
1. ∅ and A are closed.
2. The union of two (and, hence by induction any finite number) of closed sets is

closed.
3. The intersection of any number of closed sets is closed.
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Proof. Use the definition of “topology” and de Morgan’s laws.

Definition 1.16. A neighbourhood of a point x ∈ A, where T = {A,T } is a topological
space, is a set V ⊆ A s.t. there exists U ∈ T with x ∈ U ⊆ V .

Definition 1.17. Let T = {A,T } be a topological space and let x ∈ A, and H ⊆ A.
The point x is called a limit point of H iff every open set containing x, contains some
point of H other than x (U ∈ T , U 3 x =⇒ U ∩ (H r {x}) 6= ∅).

Example.
1. In {R,TEucl} the point a is a limit point of both (a, b) and [a, b] (i.e. limit points

of a set may or may not belong to the set).
2. Let H = {0} ∪ (1, 2) ⊆ R with the euclidean topology. Then 0 is not a limit point

of H (the set of limit points of H is [1, 2]). Hence the points of the set may or may
not be limits points of the set.

Definition 1.18. The closure H of H ⊆ A is the union of H and its limit points.

Proposition 1.19. x ∈ H iff for any open set U containing x the intersection H ∩ U
is nonempty.

Proposition 1.20. Let T = {A,T } be a topological space. Then
1. H is closed in T iff H = H.
2. If H ⊆ K then H ⊆ K.
3. H = H.
4. H is closed in T .

Proof. 2 follows from the definitions. 4 follows from 1 and 3. Assume H ⊆ A is closed.
Since H ⊆ H by definition, we need to prove H ⊆ H, or ArH ⊇ ArH. Let x ∈ ArH.
Since H is closed, ArH is open, but (ArH)∩H = ∅. Hence, x is not a limit point of
H. So x ∈ ArH. Conversely, assume H = H. Let x ∈ ArH. Then x 6∈ H and x is not
a limit point of H, since H = H. So there exists Ux ∈ T with Ux 3 x and Ux ∩H = ∅.
Hence, Ux ⊆ ArH. Then

⋃
x∈ArH Ux = ArH. Since all Ux are open, ArH is open,

hence H is closed.
Clearly H ⊆ H. To prove H ⊇ H, let x ∈ H. Then, for any open set U with x ∈ U ,

H ∩ U 6= ∅. Let y ∈ H ∩ U . Then U is an open set containing y, and y ∈ H, hence
H ∩U 6= ∅. Hence for any open set U containing x, U ∩H 6= ∅, hence x ∈ H. So, H, so
H = H.

Definition 1.21. Let T = {A,T } be a topological space, H ⊆ A. H is called (every-
where) dense in T (in A) iff H = A. T (or A) is called a separable topological space iff
it has a countable dense subset.

Example. Q ⊆ R is dense in the euclidean topology. So is R r Q. Also Qn ⊆ Rn is
dense. Since Qn is countable, Rn with the euclidean topology is separable. But R is not
separable in the discrete topology.

5



Definition 1.22. The interior H◦ or Int(H) of a set H ⊆ A is the union of all open
subsets of H, i.e.

H◦ =
⋃
{U ⊆ H : U is open}.

Then H◦ ⊆ H and H◦ is open. It is the largest open subset of H.

Example.
1. [a, b]◦ = (a, b) in {R,TEucl}.
2. [a, b]◦ = [a, b] in {R, 2R}.
3. Let (a, b] ⊆ (−∞, b] = H and give H the induced topology fro {R,TEucl}. Then

(a, b]◦ = (a, b].
4. Q◦ = ∅ in {R,TEucl}.

Definition 1.23. Let T = {A,T } be a topological space. ThenH ⊆ A is called nowhere
dense iff Int(H) = ∅.

Example.
{

1
n : n ∈ N

}
⊆ R is nowhere dense in {R,TEucl}.

Proposition 1.24. H ⊆ A is nowhere dense in T iff A rH is (everywhere) dense in
T .

Proof. Use the fact x ∈ H ⇐⇒ ∀U ∈ T
(
x ∈ U =⇒ U ∩H 6= ∅

)
.

Corollary 1.25. A closed subset H of A is nowhere dense in T if and only if ArH is
dense in T .

Definition 1.26. The boundary ∂H of a set H ⊆ A in a topological space T = {A,T }
is defined by ∂H = H ∩ (ArH).

Definition 1.27. A sequence in a topological space T = {A,T } is a map S : N → A.
We shall normally write xn = S(n) and {xn}n∈N ⊆ A.

Definition 1.28. A sequence {xn}n∈N ⊆ A is said to converge to x ∈ A (“xn → x as
n → ∞”) iff for every open set U containing x, there exists N ∈ N such that n ≥ N
implies xn ∈ U .

Example 1.29. Let T be any indiscrete space, let {xn}n∈N be any sequence in T ={
A, {∅, A}

}
, and let x ∈ A. Then xn → x as n→∞: Let U be open in T , such that U

contains x — so U = A. Hence, xn ∈ U for all n ∈ N. There are not “enough” open sets
in this space.

Definition 1.30. A topological space T = {A,T } is called a Hausdorff-space iff for all
x, y ∈ A, x 6= y, there exist U, V ∈ T , U ∩ V = ∅, with x ∈ U and y ∈ V .

Proposition 1.31. In a Hausdorff space, limits of convergent sequences are unique, i.e.
if xn → x and xn → y as n→∞, then x = y.
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Proof. Assume for contradiction that {xn}n∈N ⊆ A, T = {A,T }, and x, y ∈ A, x 6= y,
with xn → x and xn → y as n → ∞. Since T is Hausdorff and x 6= y there exist
U, V ∈ T , U ∩ V = ∅, U 3 x, V 3 y. Since xn → x as n → ∞ and x ∈ U ∈ T , there
exists Nx ∈ N such that n ≥ Nx implies xn ∈ U . Also, xn → y as n→∞ and y ∈ V ∈ T ,
so there exists Ny ∈ N such that n ≥ Ny implies xn ∈ V . Let N = max{Nx, Ny}, then
n ≥ N implies xn ∈ U ∩ V = ∅, a contradiction.

Proposition 1.32.
1. Any subspace of a Haudorff space is Hausdorff.
2. Let Ti = {Ai,Ti}, i = 1, 2, be topological spaces and let f : A1 → A2 be continuous.

If T2 is Hausdorff and f is injective, then T1 is Hausdorff.

Definition 1.33. A metric space M = {A, d} consists of a nonempty set A, and a map
d : A×A→ R satisfying for x, y, z ∈ A

1. d(x, y) ≥ 0 and d(x, y) = 0 ⇐⇒ x = y.
2. d(x, y) = d(y, x).
3. d(x, y) ≤ d(x, z) + d(z, y).

The map d is called a metric on A (or a distance function).

Example.
1. Rn with d = dEucl is a metric space.
2. Let A 6= ∅ any set, and define

d(x, y) =
{

0 x = y

1 x 6= y

for all x, y ∈ A. This is a metric, called the discrete metric.
3. Let A = R2, x = (x1, x2) ∈ R2, y = (y1, y2) ∈ R2 and let, for p ≥ 1 (not necessarily
p ∈ N),

dp(x, y) = (|x1 − y1|p + |x2 − y2|p)
1
p .

Note, that for p = 2, dp = dEucl. Then {R2, dp} is a metric space for any p ≥ 1.
Additionally let d∞(x, y) = max{|x1 − y1|, |x2 − y2|}. This is also a metric.

4. Let A = C, z1, z2 ∈ C, and define d(z1, z2) = |z1 − z2|. Then {C, d} is a metric
space.

Proposition 1.34. Let M = {A, d} be a metric space. We will denote by Br(x; d) =
{y ∈ A : d(x, y) < r} the open ball of radius r around x. Let

Td = {U ⊆ A : ∀x ∈ U ∃ε > 0. Bε(x; d) ⊆ U}.

Then T = {A,Td} is a topological space.

Proof. Obviously ∅, A ∈ Td. Let U1, U2 ∈ Td, and let x ∈ U1∩U2. Then x ∈ U1 ∈ Td, so
there exists ε1 > 0 such that Bε1(x; d) ⊆ U1. Similarly, since x ∈ U2 ∈ Td, there exists
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ε2 > 0 such that Bε2(x; d) ⊆ U2. Let ε = min{ε1, ε2} > 0, then Bε(x; d) ⊆ U1 ∩ U2, so
U1 ∩ U2 ∈ Td.
Let I be some index set, and assume Ui ∈ Td, for all i ∈ I, and let x ∈

⋃
i∈I Ui,

that is, there exists i0 ∈ I such that x ∈ Ui0 ∈ Td. Then there exists ε > 0 such that
Bε(x; d) ⊆ Ui0 ⊆

⋃
i∈I Ui. Hence,

⋃
i∈I Ui ∈ Td. So Td is a topology.

Example. For A = Rn, TEucl = TdEucl .

In other words, any metric space is a topological space. Note however, that the
converse is not true, i.e. there are topological spaces whose topology does not come
from a metric:

Definition 1.35. A topological space T = {A,T } which comes from a metric space in
this way (i.e. there exists a metric d such that T = Td) is called a metrizable space.
(Td is called the topology arising from d).

Example.
1. The discrete topology on a set A comes from the discrete metric on A.
2. On the other hand, no indiscrete space with more than two points is metrizable.
3. There exist much more interesting (but also more complicated) examples of non-

metrizable spaces. Sometimes it is also more useful to work directly with the
topology.

Proposition 1.36. Every metric space {A, d} is a Hausdorff space.

Proof. Let x, y ∈ A, x 6= y. Let ε = d(x, y) > 0. Then Bε/2(x; d) ∩ Bε/2(y; d) = ∅, and
Bε/2(x; d), Bε/2(y; d) ∈ Td containing x and y respectively.

Proposition 1.37. Let M = {A, d} be a metric space. A subset H ⊆ A is dense iff for
all x ∈ A and ε > 0, Bε(x; d) ∩H 6= ∅.

Definition 1.38. A subset K ⊆ A of a metric space {A, d} is called bounded iff there
exist a ∈ A, R > 0 s.t. K ⊆ BR(a; d).

Remark. If this holds for some a ∈ A, then it holds for any ã ∈ A with R replaced by
R̃ = R+ d(a, ã), since d(x, ã) ≤ d(x, a) + d(a, ã) < R+ d(a, ã) = R̃ for all x ∈ K.
Remark. If K is bounded, and x0, R as above, x, y ∈ K, then d(x, y) ≤ d(x, x0) +
d(x, y) < 2R <∞. So the following definition makes sense.

Definition 1.39. If M = {A, d} is a metric space and K ⊆ A is bounded, then the
diameter diam(K) of K is defined by

diam(K) = sup{d(x, y) : x, y ∈ K}.

Proposition 1.40. The union of any finite number of bounded sets is bounded.

Proof. By induction, it is enough to proof this for 2 sets, which is left as an exercise.

Proposition 1.41. Let Ni = {Ai, di}, i = 1, 2, be metric spaces, and let f : A1 → A2
be a map. Let Ti = {Ai,Tdi}, i = 1, 2, be the corresponding topological spaces.
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1. The map f is continuous iff

∀a ∈ A1 ∀ε > 0 ∃δ > 0
(
d1(x, a) < δ =⇒ d2

(
f(x), f(a)

))
.

2. The map f is continuous at a iff

∀ε > 0 ∃δ > 0
(
d1(x, a) < δ =⇒ d2

(
f(x), f(a)

))
.

Proof. Assume f is continuous. Let a ∈ A1, and ε > 0. Note that Bε
(
f(a); d2

)
⊆

A)2 is an open set in A2, so by assumption f−1(Bε(f(a); d2)
)
∈ Td1 . Since a ∈

f−1(Bε(f(a); d2)
)
, there exists δ > 0 such that Bδ(a; d1) ⊆ f−1(Bε(f(a); d2)

)
, i.e.

f
(
Bδ(a; d1)

)
⊆ Bε

(
f(a); d2

)
.

Conversely, assume the “ε-δ-condition” holds, and let U ∈ Td2 . Then let a ∈ f−1(U),
i.e. f(a) ∈ U ∈ Td2 , so there exists ε > 0 s.t. Bε

(
f(a); d2

)
⊆ U . So, by assumption

there exists δ > 0 s.t. f
(
Bδ(a; d1)

)
⊆ Bε

(
f(a); d2

)
⊆ U . Hence, Bδ(a; d1) ⊆ f−1(U).

The proof of 2. is left as an exercise.

Definition 1.42. Let M = {A, d} be a metric spaces, X 6= ∅, and let f : X → A be a
map. Then f is called bounded iff f(X) ⊆ A is bounded.

Example 1.43. Let A = Rn, let p ∈ (1,∞) and let

dp(x, y) =
(

n∑
i=1
|xi − yi|p

) 1
p

.

Then {Rn, dp} are metric spaces. Also, let d∞(x, y) = max{|xi−yi| : i = 1, . . . , n}. Then
{Rn, d∞} is also a metric space. This will be proven in the tutorials. Also prove Hölder’s
inequality: For p ∈ (1,∞), x, y ∈ Rn∣∣∣∣∣

n∑
i=1

xiyi

∣∣∣∣∣ ≤
(

n∑
i=1
|xi|p

) 1
p
(

n∑
i=1
|xi|q

) 1
q

where 1
p + 1

q = 1. This implies Minkowski’s inequality: For p ∈ (1,∞), x, y ∈ Rn

(
n∑
i=1
|xi + yi|p

) 1
p

≤
(

n∑
i=1
|xi|p

) 1
p

+
(

n∑
i=1
|yi|p

) 1
p

Generalising this to “infinite coordinates”, let M (N;R) be the set of real sequences, i.e.
maps N→ R. We would like to define dp(x, y) for x = {xn}n∈N, y = {yn}n∈N ∈M (N;R).
However “often” dp(x, y) =∞. The solution is to restrict to a subset of M (N;R). Define

`p =
{
{xn}n∈N ∈M (N;R) :

n∑
i=1
|xi|p <∞

}

Note that `p ( M (N;R). Also let

`∞ = {{xn}n∈N ∈M (N;R) : ∃K ∈ R ∀n ∈ N. |xn| ≤ K}
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be the set of bounded real sequences. Note that `∞ = B(N;R), so (`∞, d∞) is a metric
space. For 1 < p <∞, x, y ∈ `p, fix N ∈ N, then

tN :=
(

N∑
i=1
|xi − yi|p

) 1
p

≤
(

N∑
i=1
|xi|p

) 1
p

+
(

N∑
i=1
|yi|p

) 1
p

≤

≤
( ∞∑
i=1
|xi|p

) 1
p

+
( ∞∑
i=1
|xi|p

) 1
p

<∞

since x, y ∈ `p. Furthermore {tN}N∈N is increasing and bounded above, so {tN} is
convergent and dp(x, y) <∞ is well-defined, i.e. dp : `p×`p → R. Note, that dp(x, y) ≥ 0,
dp(x, x) = 0 and dp(x, y) = 0 implies x = y. For the triangle inequality, let x, y, z ∈ `p,
let N ∈ N, then

sN :=
(

N∑
i=1
|xi − yi|p

) 1
p

=
(

N∑
i=1
|xi − zi + zi − yi|p

) 1
p

≤

≤
(

N∑
i=1
|xi − zi|p

) 1
p

+
(

N∑
i=1
|zi − yi|p

) 1
p

≤ dp(x, z) + dp(z, y)

Since {sN}N∈N is increasing and bounded above, it follows that dp(x, y) ≤ dp(x, z) +
dp(z, y). Hence, {`p, dp}, 1 < p ≤ ∞, are metric spaces. Note that `p 6= `q for p 6= q.

Definition 1.44. Let A 6= ∅. A family U ⊆ 2A is called a cover for A iff A =
⋃

U .
Let T = {A,T } be a topological space. A cover U ⊆ 2A is called open iff U ⊆ T . A
subcover V of a cover U is a subfamily V ⊆ U such that A =

⋃
V . A topological space

is called compact (“is a compact space”) iff every open cover has a finite subcover.

Definition 1.45. A subset H ⊆ A where T = {A,T } is a topological space, is compact
iff {H,TH} is compact, where TH is the induced topology.

Proposition 1.46. A subset of Rn is compact in the euclidean topology iff it is both
closed and bounded.

Proposition 1.47. Any compact set in a metric space is bounded.

Proof. Exercise.

Proposition 1.48. Let T = {A,T } be a Hausdorff space, and assume C ⊆ A is compact.
Then C is closed.

Proof. Exercise.

Remark. In particular, in a metric space any compact set is closed and bounded.

Proposition 1.49. Let T = {A,T } be a compact topological space, and assume C ⊆ A
is closed. Then C is compact.
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Proof. Assume U ⊆ T covers C, i.e. C ⊆
⋃

U . Since C is closed, the set U0 = Ar C
is open. So V = U ∪ {U0} is an open cover of A. Since A is compact, there exists a
finite subcover W ⊆ V . Then W r {U0} ⊆ U is finite and covers C.

Proposition 1.50. Let f : A1 → A2 be a continuous map between topological spaces
Ti = {Ai,Ti}, i = 1, 2. If T1 is compact, then the image R f is compact.

Proof. It is enough to look at the case when f is surjective. Let U be an open cover
of A2: A2 ⊆

⋃
U and U ⊆ T2. Since f is continuous, f−1(V ) ∈ T1 for all V ∈ U .

Also,
⋃
V ∈U f−1(V ) = A1. Hence {f−1(V ) : V ∈ U } is an open cover of A1. Since

A1 is compact, there exist f−1(V1), . . . , f−1(Vk) such that A1 =
⋃k
i=1 f

−1(Vi). Then
A2 =

⋃k
i=1 Vi, and so {V1, . . . , Vk} is a finite subcover of U for A2.

Corollary 1.51. Let {C,T } be a compact space, {A, d} a metric space, and assume
f : C → A is continuous. Then f is bounded.

Corollary 1.52. Assume {C,T } is a compact space, and that f : C → R is continuous.
Then f attains its bounds, i.e there exist xN , xM ∈ C such that f(xN ) ≤ f(x) ≤ f(xM )
for all x ∈ C.

Definition 1.53. Let M = {A, d} be a metric space. A sequence {xn} ⊆ A is called a
Cauchy sequence (is said “to be Cauchy”) iff

∀ε > 0 ∃N ∈ N (n,m ≥ N =⇒ d(xn, xm) < ε) .

Lemma 1.54. Any convergent sequence is Cauchy.

Proof. Assume {xn} ⊆ A is convergent in a metric spaceM = {A, d}, xn → x as n→∞.
Let ε > 0. Then there exists N ∈ N such that d(xn, x) < ε

2 for all n ≥ N . So if n,m ≥ N ,
then d(xn, xm) ≤ d(xn, x) + d(x, xm) < ε.

Remark. Not all Cauchy sequences are convergent, for example
{

1
n

}
n∈N

⊆ (0, 1] in
{(0, 1], dEucl} is Cauchy but not convergent.

Definition 1.55. Let M = {A, d} be a metric space. M is called complete iff every
Cauchy sequence in M is convergent in M .

Proposition 1.56. {Rn, dEucl} is a complete metric space. So is {C, | · |}.

Lemma 1.57. Let {A, d} be a metric space. Then K ⊆ A is closed iff for any sequence
{xn} ⊆ K, xn → x as n→∞ implies x ∈ K.

Proof. Problem 5 of Sheet 2.

Remark. {xnk}k∈N is a subsequence of {xn}n∈N — formally S : N → A,n 7→ s(n) ≡ xn
— is defined by an injective, increasing function ϕ : N→ N so S ◦ ϕ : N→ A, k 7→ xnk .

Lemma 1.58. In a metric space {A, d}, if the Cauchy sequence {xn} ⊆ A has a conver-
gent subsequence {xnk}, say, xnk → x as k →∞, then {xn} also converges to x.
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Proof. Let ε > 0, and choose N ∈ N s.t. n,m ≥ N implies d(xn, xm) < ε
2 . Also, choose

K ∈ N s.t. k ≥ K implies d(xnk , x) < ε
2 . For any n ≥ N , choose k ≥ K so large that

nk ≥ N . Then, for n ≥ N , d(xn, x) ≤ d(xn, xnk) + d(xnk , x) < ε.

Definition 1.59. A subspace C of a metric space M = {A, d} is called sequentially
compact in itself (in M) if and only if every sequence in C has a subsequence which
converges in C (in M).

Theorem 1.60. A subspace C of a metric space is compact iff it is sequentially compact
in itself.

Proof. Later.

Corollary 1.61. Any bounded sequence in {Rd, dEucl} has a convergent subsequence.

Proof. Let {xn}n∈N ⊆ Rd be a bounded sequence, and let S = {xn : n ∈ N} ⊆ Rd. Then
S is bounded. So, S is closed and bounded, hence compact, hence sequentially compact.
So {xn} ⊆ S has a convergent subsequence.

Proposition 1.62. Any compact metric space is complete.

Proof. Let {xn} ⊆ A be Cauchy in a metric space M = {A, d}. Since M is compact, it
is sequentially compact in itself, hence {xn} has a convergent subsequence. So, by 1.58,
{xn} is convergent. Hence M is complete.

Proposition 1.63. Let M = {A, d} be a metric space and H ⊆ A. Then
1. if M̃ = {H, d} is complete, then H is closed in M .
2. if M is complete, and H ⊆ A is closed, then M̃ is complete.

Proof.
1. Let x ∈ H. Then there exists a sequence {xn}n∈N ⊆ H such that xn → x as
n → ∞. Since {xn} is convergent, it is Cauchy. Since {xn} ⊆ M̃ is Cauchy, it is
convergent with limit in H. By uniqueness of limits, this limit is x. So, x ∈ H,
hence H = H.

2. By assumption, H = H. Let {xn}n∈N ⊆ H be a Cauchy sequence in M̃ . But then
{xn}n∈N ⊆ A is a Cauchy sequence in M . Since M is complete, there is an x ∈ A
such that xn → x as n → ∞. Since H is closed and {xn} ⊆ H, it follows that
x ∈ H. Hence M̃ is complete.

Proposition 1.64. Let X be any set, and let M = {A, d} be a metric space. Denote by
B(X,A) the set of bounded maps X → A, and let

d∞(f, g) = sup
x∈X

d
(
f(x), g(x)

)
.

Then {B(X,A), d∞} is complete iff {A, d} is complete.

12



Proof. Assume M = {A, d} is not complete. Take any non-convergent Cauchy sequence
{xn}n∈N. Let, for n ∈ N, fn : X → A, t 7→ xn. Then d∞(fn, fm) = d(xn, xm),
so {fn}n∈N ⊆ B(X,A) is Cauchy in d∞. But {fn}n∈N is not convergent, since if
d∞(fn, f) → 0 as n → ∞ for some f ∈ B(X,A) then, since d

(
fn(t), f(t)

)
≤ d∞(fn, f)

for all t ∈ X, xn = fn(t)→ f(t) as n→∞. But {xn} is not convergent.
On the other hand, assume M = {A, d} is complete. Let {fn}n∈N ⊆ B(X,A) be any

Cauchy sequence. Let ε > 0. Since {fn} is Cauchy, there exists N ∈ N such that n,m ≥
N implies d∞(fn, fm) < ε. Hence, for any x ∈ X fixed, d

(
fn(x), fm(x)

)
≤ d∞(fn, fm) <

ε. So
{
fn(x)

}
n∈N is Cauchy in d. Since M = {A, d} is complete ,

{
fn(x)

}
n∈N is

convergent. Let f(x) = limn→∞ fn(x). Then f : X → A. We need to prove that
f ∈ B(X,A) and that d∞(fn, f)→ 0 as n→∞. Since, for all a ∈ A fixed, the map A→
R, x 7→ d(a, x) is continuous, it follows that limm→∞ d

(
fn(x), fm(x)

)
= d

(
fn(x), f(x)

)
.

Hence, d
(
fn(x), f(x)

)
≤ ε for n ≥ N and all x ∈ X. Then d∞(fn, f) ≤ ε. Hence

f ∈ B(X,A) and d∞(fn, f) → 0 as n → ∞. Hence, the Cauchy sequence {fn}n∈N is
convergent to an element in B(X,A). So {B(X,A), d∞} is complete.

Example. `∞ is complete.

Definition 1.65. Let Mi = {Ai, di}, i = 1, 2, be two metric spaces, and define

C (A1, A2) = {f : A1 → A2 : f is (d1, d2)-continuous}
Cb(A1, A2) = {f ∈ C (A1, A2) : f is bounded}

Then Cb(A1, A2) ⊆ C (A1, A2) and Cb(A1, A2) ⊆ B(A1, A2). Also, if {A1, d1} is compact,
then Cb(A1, A2) = C (A1, A2) (for example C ([0, 1],R)).

Theorem 1.66. LetMi = {Ai, di}, i = 1, 2, be two metric spaces. Then {Cb(A1, A2), d∞}
is a complete metric space iff {A2, d2} is complete.

Proof. If {A2, d2} is not complete, then neither is {Cb(A1, A2), d∞} (same proof as in
1.64). On the other hand, assume {A2, d2} is complete, and let {fn}n∈N ⊆ Cb(A1, A2) be
Cauchy in d∞. Since then {fn}n∈N is Cauchy in B(A1, A2) which is complete, there exists
f ∈ B(A1, A2) such that d∞(fn, f)→ 0 as n→∞. We shall prove that f is continuous
at a for all a ∈ A1. Let a ∈ A1, ε > 0. Let N ∈ N such that n ≥ N implies d∞(fn, f) < ε.
Then n ≥ N implies d2

(
fn(x), f(x)

)
< ε for all x ∈ A1. Since fN is continuous at A, so

there exists δ > 0 such that d1(x, a) < δ implies d2
(
fN (x), fN (a)

)
< ε. Hence, d1(x, a) <

δ implies d2
(
f(x), f(a)

)
≤ d2

(
f(x), fN (x)

)
+d2

(
fN (x), fN (a)

)
+d2

(
fN (a), f(a)

)
< 3ε.

Definition 1.67. A map f : A1 → A2 for a metric space Mi = {Ai, di}, i = 1, 2, is
uniformly continuous (on A1) iff

∀ε > 0 ∀x ∈ A1 ∃δ > 0
(
d1(x, y) < δ =⇒ d2

(
f(x), f(y)

)
< ε

)
.

Proposition 1.68. A continuous map on a compact space is uniformly continuous.

Proof. Let f : A1 → A2 be a continuous map between metric spaces Mi = {Ai, di},
i = 1, 2, and assume M1 is compact. Then, for any ε > 0, there exists δ(x) > 0

13



such that d1(x, y) < 2δ(x) implies d2
(
f(x), f(y)

)
< ε. Then U = {Bδ(x)(x; d1) : x ∈

A1} is an open cover of A1. Since M1 is compact, there exist x1, . . . , xN such that
A1 =

⋃N
i=1Bδ(xi)(xi; d). Let δ = min{δ(x1), . . . , δ(xN )} > 0 and let x, y ∈ A1 such

that d1(x, y) < δ. Then there is i0 ∈ {1, . . . , N} such that x ∈ Bδ(xi0 )(xi0 ; d), so
d1(x, xi0) < δ(xi0) < 2δ(xi0), hence d2

(
f(x), f(xi0)

)
< ε. Also, d(y, xi0) ≤ d1(y, x) +

d1(x, xi0) < δ(xi0) + δ(xi0) = 2δ(xi0), hence, d2
(
f(y), f(xi0)

)
< ε. So d2

(
f(x), f(y)

)
≤

d2
(
f(x), f(xi0)

)
+ d2

(
f(xi0), f(y)

)
< 2ε.

Definition 1.69. A metric space M = {A, d} is called totally bounded or pre-compact
iff for all ε > 0 there exist finitely many x1, . . . , xN ∈ A such that A ⊆

⋃N
i=1Bε(xi; d).

Theorem 1.6̃0. Let M = {A, d} be a metric space, C ⊆ A. Then the following are
equivalent:
(a) C is compact.
(b) C is sequentially compact.
(c) C is complete and totally bounded.

Proof.
(a)⇒ (b) Let {xn} ⊆ C be any sequence. Let Sk = {xn : n ≥ k}. Then Sk is closed and⋂∞

k=1 Sk 6= ∅, for assume otherwise and let Uk = (A r Sk) ∩ C. Then Uk is open
in the relative topology on C, and

⋃∞
k=1 Uk = C ∩

⋃∞
k=1 S

c
k = C ∩ (

⋂∞
k=1 Sk)

c = C.
So C = U1 ∪ · · · ∪ UN for some N .Then C ∩ S1 ∩ . . . SN = ∅ which is impossible.
Then {xn} has a convergent subsequence.

(b)⇒ (c) Let {xn}n∈N be a Cauchy sequence in C. Then {xn}n∈N has convergent subse-
quence, say, xnk → x as k → ∞, with x ∈ C since C is sequentially compact. So
by 1.58, {xn} is also convergent, with the same limit. Hence, C is complete.
Assume that C is not totally bounded. Then there exists ε0 > 0 such that for
no choice of finitely many points {x1, . . . , xN} do we have C ⊆

⋃N
i=1Bε0(xi; d).

In particular for all x ∈ A, C r Bε0(x; d) 6= ∅. Let y1 ∈ C be arbitrary. Define
inductively yn ∈ C such that yn ∈ C r

⋃n−1
i=1 Bε0(yi; d). Then {yi}i∈N ⊆ C, and,

for any m 6= k, d(ym, yk) > ε0. Hence, no subsequence of {yi}i∈N will converge —
a contradiction, since C is sequentially compact.

(c)⇒ (a) Assume that there exists an open cover U = {Ui}i∈I of C with no finite subcover.
We will construct, inductively, a sequence of open balls Bn, with radii 2−n and
centres xn. Since C is totally bounded, there exists {y1, . . . , yM} ∈ C such that C ⊆⋃M
i=1B1/2(yi; d). Then at least one of the B1/2(yi; d)’s cannot be covered by finitely

many Ui’s (otherwise, so could C). Let B1 be one of these balls; B1 = B1/2(x1; d).
Assume now Bn−1 = B21−n(xn−1; d) chosen, for some n ≥ 2. Again, there exist
{z1, . . . , zK} such that C ⊆

⋃K
i=1B2−n(zi; d); of all the B2−n(zi; d) which have non-

empty intersection with Bn−1, at least one cannot be covered by finitely many Ui’s.
So let Bn be such a ball, so Bn = B2−n(xn; d), Bn ∩ Bn−1 6= ∅ and Bn cannot be
covered by finitely many Ui’s. This gives a sequence {xn}n∈N which is Cauchy: For
y ∈ Bn ∩ Bn−1, d(xn−1, xn) ≤ d(xn−1, y) + d(y, xn) < 21−n + 2−n < 22−n. So, for
m > n, d(xn, xm) ≤ d(xn, xn+1) + · · ·+ d(xm−1, xm) < 22−n + · · ·+ 22−m < 8 · 1

2n .
Hence, {xn}n∈N is Cauchy, so convergent, i.e. there exists x ∈ C such that xn → x
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as n → ∞. Since U is an open cover for C, there exists Ui0 such that x ∈ Ui0 ,
and some r > 0 such that Br(x; d) ⊆ Ui0 . Since xn → x as n → ∞, there exists
N ∈ N such that m ≥ N implies d(x, xm) < r

2 . Choose m such that 2−m < r
2 .

Then Bm = B2−m(xm; d) ⊆ Br(x; d) ⊆ Ui0 — a contradiction to the construction
of the Bn’s: none of the Bn’s can be covered by finitely many balls.

Theorem 1.70 (Arzelà-Ascoli). Let {A1, d1} be a compact metric space and {A2, d2} a
complete metric space. M ⊆ C (A1, A2) is compact iff the following holds:
(a) For all x ∈ A1, the set M(x) = {f(x) : f ∈M} ⊆ A2 is compact.
(b) M is equicontinuous, i.e.

∀ε > 0∃δ > 0∀x, y ∈ A1 ∀f ∈M
(
d1(x, y) < δ =⇒ d2

(
f(x), f(y)

)
< ε

)
(c) M is closed.

Proof.
“⇒” Assume M is compact. Then it is closed. Note that for f, g ∈ (A1, A2) and

x ∈ A1, d2
(
f(x), g(x)

)
≤ d∞(f, g). So φx : C (A1, A2) → A2, f 7→ f(x) is (d∞, d2)-

continuous. Since M ⊆ C (A1, A2) is compact, the set M(x) = φx(M) is compact.
Let ε > 0. Then there exists {Bε/3(f1; d∞), . . . , Bε/3(fN ; d∞)} such that M ⊆⋃N
i=1Bε/3(fi; d∞). Now each fi : A1 → A2 is uniformly continuous since {A1, d1} is

compact, so there exists δ > 0 such that d1(x, y) < δ implies d2(fj(x), fj(y)) < ε/3
for j = 1, . . . , N . Let f ∈ M , and x, y ∈ A1 with d1(x, y) < δ. Then there exists
j0 ∈ {1, . . . , N} such that f ∈ Bε/3(fj0 ; d∞). So d2(f(x), f(y)) ≤ d2(f(x), fj0(x))+
d2(fj0(x), fj0(y)) + d2(fj0(y), f(y)) < ε. Hence, M is equicontinuous.

“⇐” Since M ⊆ C (A1, A2) is closed, and {C (A1, A2), d∞} is complete, {M,d∞} is com-
plete. Let ε > 0, and choose δ > 0 such that d1(x, y) < δ implies d2

(
f(x), f(y)

)
<

ε/4 for all f ∈ M . Since A1 is compact, there exist x1, . . . , xN ∈ A1 such that
A1 ⊆

⋃N
j=1Bδ(xj ; d1). Similarly, since all M(xi), i = 1, . . . , N , are compact,

there exists y1, . . . , yP ∈ A2 such that B =
⋃N
i=1M(xi) ⊆

⋃P
k=1Bε/4(yk; d2). Let

Φ = {φ : {1, . . . , N} → {1, . . . , P}}. Then for any φ ∈ Φ define Mφ = {f ∈
M : d2(f(xj), yφ(j)) < ε/4 for j = 1, . . . , N}. Then M =

⋃
φ∈ΦMφ. Let φ ∈ Φ,

and f, g ∈Mφ. For all x ∈ A1, there exists j ∈ {1, . . . , N} such that d1(x, xj) < δ.
Then d2(f(x), f(xj)) < ε/4 and d2(g(x), g(xj)) < ε/4. So, d2

(
f(x), g(x)

)
≤

d2
(
f(x), f(xj)

)
+ d2

(
f(xj), yφ(j)

)
+ d2

(
yφ(j), g(xj)

)
+ d2

(
g(xj), g(x)

)
< ε. Hence,

d∞(f, g) ≤ ε. So Mφ is contained in a ball of radius 2ε. Hence, since |Φ| < ∞,
M is contained in a union of finitely many balls of radius 2ε. Hence, M is totally
bounded. Hence, by 1.60, M is compact.

Theorem 1.71 (Baire’s theorem). Let M = {A, d} be a complete metric space, and let
{Vn}n∈N be a countable family of dense, open subsets Vn ⊆ A. Then

⋂∞
n=1 Vn is dense.

Proof. We need to prove that if W ⊆ A is open and W 6= ∅, then
⋂∞
n=1 Vn ∩W 6= ∅.

Let W ⊆ A be open. Since V1 is dense, V1 ∩W 6= ∅. Since V1 and W are open, there
exists x1 ∈ A, r1 > 0 such that Br1(x1; d) ⊆ V1 ∩W and 0 < r1 < 1. Assume n ≥ 2
and xn−1, rn−1 have been chosen. Then, since Vn is dense, Vn ∩Brn−1(xn−1; d) 6= ∅, and
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since Vn is open, there exists xn ∈ A, rn > 0 such that Brn(xn; d) ⊆ Vn ∩Brn−1(xn−1; d)
and 0 < rn <

1
n . This gives sequences {xn}n∈N ⊆ A, and {rn}n∈N ⊆ R.

If i, j > n, then xi, xj ∈ Brn(xn; d). So

d(xi, xj) ≤ d(xi, xn) + d(xn, xj) < 2rn <
2
n

So {xn}n∈N is Cauchy. Since M is complete, there exists x ∈ A such that xn → x as
n → ∞. Since xi ∈ Brn(xn; d) for all i ≥ n, we get that x ∈ Brn(xn; d) for all n ∈ N.
Hence, x ∈ Vn for all n ∈ N. Also, x ∈W , hence x ∈

⋂∞
n=1 Vn ∩W .

2 Banach and Hilbert spaces
“All maths” is about solutions to equations (existence, uniqueness, properties). Linear
Algebra is about the equation Ax = b for a matrix A and vectors b and x. Some problems
— for example diagonalisation of matrices — can be turned into such equations. All of
this is assumed known. In particular, the axioms of a vectorspace are assumed known
(all vectorspaces will be over R or C for which we will write K). Also, all vectorspaces
will be nontrivial, i.e. not {0}.

Definition 2.1. Let X be a K-vectorspace.
1. A map p : X → [0,∞) is called a semi-norm iff

(a) p(λx) = |λ|p(x) for all x ∈ X and λ ∈ K.
(b) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X.

2. A semi-norm p is called a norm iff p(x) = 0 implies x = 0. In this case we will
write ‖x‖ := p(x).

The pair {X, p} is called a semi-normed space and {X, ‖ · ‖} is called normed space.

Remark. (a) implies p(0) = 0.
Remark. A normed space is a metric space: Define d(x, y) := ‖x−y‖. Then d is a metric.
This is the canonical metric we will use when treating normed spaces.

Proposition 2.2. Let {X, ‖ · ‖} be a normed space. Then

1. If xn → x as n→∞ and yn → y as n→∞, then xn + yn → x+ y as n→∞.
2. If λn → λ as n→∞ and xn → x as n→∞, then λnxn → λx as n→∞.
3. If xn → x as n→∞ then ‖xn‖ → ‖x‖ as n→∞.

I.e. the vectorspace-structure and the topological structure are compatible.

Proof.
1. ‖(xn + yn)− (x+ y)‖ ≤ ‖xn − x‖+ ‖yn − y‖ → 0 as n→∞.
2. ‖λnxn − λx‖ ≤ ‖λnxn − λnx‖+ ‖λnx− λx‖ = |λn|‖xn − x‖+ |λn − λ|‖x‖ → 0.
3. This follows from

∣∣‖x‖ − ‖y‖∣∣ ≤ ‖x− y‖, since ∣∣‖xn‖ − ‖x‖∣∣ ≤ ‖xn − x‖ → 0.

Definition 2.3. A normed space {X, ‖ · ‖} which is complete is called a Banach space.
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Example 2.4.
(a) Rn with ‖x‖2 =

(∑n
i=1 |xi|2

)1/2 — or, more generally, {Rn, ‖ · ‖p}, with ‖x‖p =
(
∑n
i=1 |xi|p)

1/p for 1 ≤ p <∞ and ‖x‖∞ = maxi=1,...,n |xi|.
(b) `∞(K) = {x : N→ K, i 7→ xi : x is bounded} with ‖x‖∞ = supi∈N |xi|. `∞(K) is com-

plete, since {`∞(K), d∞} = {B(N,K), d∞}. In fact, let {Y, ‖·‖Y } be a Banach space,
andM 6= ∅ any set. Then define `∞(M,Y ) = B(M,Y ) and ‖f‖∞ = supt∈M ‖f(t)‖Y .
Then {`∞(M,Y ), ‖ · ‖∞} is a Banach space.

(c) Let M = {A, d} be a metric space, X a Banach space and Cb(A,X) the continuous
and bounded maps from A to X. Write ‖f‖∞ = supt∈M ‖f(t)‖X . Then Cb(A,X)
with ‖ · ‖∞ is a Banach space.

(d) {Cα, ‖ · ‖∞} is a Banach space.
(e) {C1[0, 1], ‖ · ‖C1} is a Banach space, where ‖f‖C1 = supt∈[0,1] |f(t)|+supt∈[0,1] |f ′(t)|.

Note that supt∈[0,1] |f ′(t)| is a semi-norm but not a norm.
(f) `p = {x : N → K :

∑∞
i=1 |xi|p < ∞} with ‖x‖p = (

∑∞
i=1 |xi|p)

1/p is a normed vec-
torspace. This is a Banach space: Let {xn}n∈N ⊆ `p be a Cauchy sequence, i.e.
xn ∈ `p: xn : N→ K, i 7→ xn(i). Let ε > 0. Since {xn} is Cauchy, there exists N ∈ N
such that ‖xn− xm‖p < ε for n,m ≥ N . Then |xn(i)− xm(i)| ≤ ‖xn− xm‖p < ε for
n,m ≥ N and all i ∈ N, hence, {xn(i)}n∈N ⊆ K is a Cauchy sequence, for all i ∈ N.
Since K is complete, there exists, for all i ∈ N, x(i) ∈ K such that xn(i) → x(i)
as n → ∞. This defines a sequence x = {x(i)}i∈N in K. For n,m ≥ N and for all
M ∈ N,

(
M∑
i=1
|xn(i)− xm(i)|p

)1/p

≤
( ∞∑
i=1
|xn(i)− xm(i)|p

)1/p

= ‖xn − xm‖p < ε

For n fixed, let m → ∞ in the inequality
(∑M

i=1 |xn(i)− xm(i)|p
)1/p

< ε; we get

that
(∑M

i=1 |xn(i)− x(i)|p
)1/p

≤ ε for all M ∈ N. Hence,

‖xn − x‖p =
( ∞∑
i=1
|xn(i)− x(i)|p

)1/p

≤ ε

for all n ≥ N . Hence, x − xn ∈ `p for all n ≥ N . So x = (x − xn) + xn ∈ `p and
‖xn − x‖p → 0 as n→∞, hence xn → x as n→∞.

Proposition 2.5. Let {X, ‖ · ‖} be a normed space. Then X is a Banach space iff
every absolutely convergent series is convergent: If {xn}n∈N ⊆ X is a sequence such that∑∞
n=1 ‖xn‖ < ∞, then there exists x ∈ X such that limM→∞

∥∥∥x−∑M
n=1 xn

∥∥∥ = 0, i.e.
x = limM→∞

∑M
n=1 xn =:

∑∞
n=1 xn.

Proof.
“⇒” The sequence

{∑M
i=1 xn

}
M∈N

is Cauchy in {X, ‖ · ‖} if
∑∞
n=1 ‖xn‖ <∞.
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“⇐” Assume {xn}n∈N is Cauchy. For all ε > 0 there exists N(ε) ∈ N such that n,m ≥
N(ε) implies ‖xn−xm‖ < ε. Do this for ε = εk = 2−k, k ∈ N, i.e. there exists Nk ∈
N such that n,m ≥ Nk implies ‖xn − xm‖ < 2−k. Using this, define inductively
a subsequence {xnk}k∈N such that ‖xnk+1 − xnk‖ < 2−k. Let yn = xnk+1 − xnk .
Then

∑∞
k=1 ‖yk‖ <

∑∞
k=1 2−k < ∞. So,

∑
yk is absolutely convergent, hence,

by assumption, there exists y ∈ X such that limM→∞
∥∥∥y −∑M

k=1 yk
∥∥∥ = 0. So

limM→∞ ‖y − (xnM+1 − xn1)‖ = 0. Hence, {xn}n∈N has a convergent subsequence,
and is Cauchy. So, by 1.58, also {xn}n∈N is convergent. Hence, X is Banach.

Definition 2.6. Let X be a vectorspace over K.
(a) A subset C ⊆ X is called convex iff x, y ∈ C, λ ∈ [0, 1] implies λx+ (1− λ)y ∈ C.
(b) The convex hull of a subset A ⊆ X is

co(A) =
{

n∑
k=1

skxk : n ∈ N, xk ∈ A, sk ∈ [0, 1],
n∑
k=1

sk = 1
}

the set of all linear convex combinations of elements in A.
(c) A subset A ⊆ X is called absolutely convex iff x, y ∈ A, s, t ∈ K, |s|+ |t| ≤ 1 implies

sx+ ty ∈ A. In particular, A is convex.
(d) The absolutely convex hull of a subset A ⊆ X is

Γ(A) =
{

n∑
i=1

skxk : n ∈ N, xk ∈ A, sk ∈ K,
n∑
k=1
|sk| ≤ 1

}

Now, let X be normed.
(e) X is called strictly normed (or strictly convex) iff for ‖x‖ = ‖y‖ = 1,

∥∥∥1
2(x+ y)

∥∥∥ = 1
implies x = y.

(f) X is called uniformly convex iff for sequences {xn}n∈N, {yn}n∈N ⊆ X, limn→∞ ‖xn‖ =
1, limn→∞ ‖yn‖ = 1 and limn→∞

∥∥∥1
2(x+ y)

∥∥∥ = 1 implies ‖xn − yn‖ → 0 as n→∞.

As usual we denote B1(0) = {y : ‖y‖ < 1} the unit ball in X. Also, S1(0) = {y : ‖y‖ = 1}.

Remark.
1. B1(0) = {y : ‖y‖ ≤ 1} = B1(0) ∪ S1(0).
2. B1(0) is convex (any open ball is convex).

Definition 2.7. Let X be a vectorspace. Then U ⊆ X is called a linear subspace iff
x, y ∈ U , λ ∈ K implies x+ λy ∈ U . Then x ∼ y ⇐⇒ x− y ∈ U defines an equivalence
relation and the quotient X/U is a vectorspace. We write [x] = x+ U ∈ X/U .

Lemma 2.8. Let {X, p} be a semi-normed space.
(a) N = {x ∈ X : p(x) = 0} is a linear subspace of X.
(b) ‖[x]‖ = p(x) defines a norm on X/N .
(c) If every Cauchy-sequence in {X, p} converges, then {X/N, ‖ · ‖} is Banach.

Proof.
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(a) 0 ≤ p(x+ λy) ≤ p(x) + |λ|p(y) = 0 if x, y ∈ N . So x+ λy ∈ N .
(b) ‖[x] + [y]‖ = p(x + y) ≤ p(x) + p(y) = ‖[x]‖ + ‖[y]‖, ‖λ[x]‖ = ‖[λx]‖ = p(λx) =
|λ|p(x) = |λ|‖[x]‖. Note: if y ∼ x, then x − y ∈ N , so p(x) = p(x − y + y) ≤
p(x − y) + p(y) = p(y) and p(y) = p(y − x + x) ≤ p(y − x) + p(x) = p(x). Hence,
‖[x]‖ is well-defined. Also, ‖[x]‖ = 0 implies p(x) = 0, so x ∈ N , i.e. [x] = 0.

(c) Clearly, {[xn]}n∈N is Cauchy or convergent in {X/N, ‖ · ‖} iff {xn}n∈N is Cauchy or
convergent in {X, p}.

Lemma 2.9. Let X be a normed space, and U ⊆ X be a linear subspace. Then U is
also a linear subspace.

Proof. Let x, y ∈ U , λ ∈ K. Then there exist {xn}, {yn} ⊆ U such that xn → x, yn → y
as n → ∞. Then, since U is a linear subspace, xn + λyn ∈ U . On the other hand, by
2.2, xn + λyn → x+ λy as n→∞. Hence, x+ λy ∈ U . So U is a linear subspace.

Definition 2.10. Two norms ‖ · ‖1 and ‖ · ‖2 on the same vectorspace X are called
equivalent iff there exist c, C > 0 such that c‖x‖1 ≤ ‖x‖2 ≤ C‖x‖1.

Remark 2.11.
• Two equivalent norms have exactly the same convergent sequences and give rise to
the same topology.
• Any two norms on Rn are equivalent.
• If ‖ · ‖1 and ‖ · ‖2 are equivalent norms on X, then {X, ‖ · ‖1} is Banach space iff
{X, ‖ · ‖2} is Banach.
• Let X = C [0, 1] = C ([0, 1],R), and ‖f‖∞ = supt∈[0,1] |f(t)| , and

‖f‖1 =
∫ 1

0
|f(t)| dt.

Then ‖ · ‖∞ and ‖ · ‖1 are norms. Note, that ‖f‖1 ≤ ‖f‖∞ for all f ∈ C [0, 1].
Assume there exists C0 > 0 such that ‖f‖∞ ≤ C0‖f‖1. Take

f(t) =
{

1− C0t t ∈ [0, 1
C0

]
0 t ∈ [ 1

C0
, 1]

Then ‖f‖∞ = 1 and ‖f‖1 = 1
2C0

. So 1 ≤ 1
2 — a contradiction. So these two norms

are not equivalent. Note, that (C [0, 1], ‖ · ‖∞) is Banach but (C [0, 1], ‖ · ‖1) is not.

Proposition 2.12. Let X,Y be normed spaces, with norms ‖ · ‖X and ‖ · ‖Y .
1. ‖(x, y)‖p := (‖x‖pX + ‖y‖pY )1/p defines a norm on X ⊕ Y for 1 ≤ p < ∞. We

denote this normed space X ⊕p Y . (Also ‖(x, y)‖∞ = max{‖x‖X , ‖y‖Y })
2. Any ‖(·, ·)‖p, ‖(·, ·)‖q are equivalent norms on X ⊕ Y .
3. If X and Y are Banach spaces, then X ⊕p Y is Banach.

Definition 2.13. Let M = {A, d} be a metric space and U ⊆ A a subset. The distance
from x ∈ A to U is defined as

d(x, U) := inf
a∈U

d(x, a).

A point a ∈ U such that d(x, a) = d(x, U) is called a best approximation to x in A.
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Remark.
(1) Such a point is not necessarily unique.
(2) If U is compact, then there exists at least one best approximation (for all x) since

the map a 7→ d(x, a) is continuous. We shall see more later on the existence and
uniqueness of best approximations, especially for the case of linear subspaces of
Banach spaces.

Proposition 2.14 (Riesz’ Lemma). Let X be a normed space, U ⊆ X a linear subspace
such that U = U and U 6= X. Let δ ∈ (0, 1). Then there exists xδ ∈ X with ‖xδ‖ = 1
and ‖xδ − u‖ ≥ 1− δ for all u ∈ U .

Proof. Let x ∈ X r U . Since U = U , d(x, U) > 0. Since δ ∈ (0, 1), d(x, U) < d(x,U)
1−δ .

Since d(x, U) = infa∈U d(x, a), there exists uδ ∈ U such that d(x, uδ) < d(x,U)
1−δ . Let

xδ = x−uδ
‖x−uδ‖ . Then ‖xδ‖ = 1, and for all u ∈ U

‖xδ − u‖ =
∥∥∥∥ x− uδ
‖x− uδ‖

− u
∥∥∥∥ =

∥∥∥∥ x

‖x− uδ‖
− uδ
‖x− uδ‖

− u
∥∥∥∥

= 1
‖x− uδ‖

∥∥x− (uδ + ‖x− uδ‖u)
∥∥ ≥ d(x, U)
‖x− uδ‖

≥ 1− δ

Definition 2.15. Let X,Y be two K-vectorspaces. A map T : X → Y is called linear iff
T (αx1+x2) = αT (x1)+T (x2) for all x1, x2 ∈ X and α ∈ K. The kernel N(T ) = T−1({0})
of T is a linear subspace of X. The image (or range) R(T ) = {Tx : x ∈ X} of T is a
linear subspace of Y . We shall often (for linear T ) write Tx instead of T (x). We call T
a linear operator.

Theorem 2.16. For normed spaces X,Y and a linear operator T : X → Y , the following
are equivalent:
(a) There exists C > 0 such that ‖Tx‖Y ≤ C‖x‖X .
(b) T is uniformly continuous on X.
(c) There exists a ∈ X such that T is continuous at a.
(d) ‖T‖ = sup

x∈X
‖x‖≤1

‖Tx‖Y <∞.

Proof.
(a)⇒ (b) For x, y ∈ X, ‖T (x) − T (y)‖Y = ‖T (x − y)‖Y ≤ C‖x − y‖X , so, for ε > 0,

d(u, v) < ε
C implies d

(
T (u), T (v)

)
< ε.

(b)⇒ (c) Trivial.
(c)⇒ (d) For ε = 1, there exists δ > 0 such that ‖x−a‖X ≤ δ implies ‖Tx−Ta‖Y ≤ 1. For all

x ∈ X with ‖x‖ ≤ 1, ‖(a+δx)−a‖X ≤ δ. So ‖T (δx)‖Y = ‖T (a+δx)−T (a)‖Y ≤ 1.
So ‖Tx‖Y ≤ 1

δ <∞ for all x ∈ X with ‖x‖ ≤ 1. So ‖T‖ ≤ 1
δ <∞.

(d)⇒ (a) For x 6= 0,
∥∥∥ x
‖x‖X

∥∥∥
X

= 1, so
∥∥∥T ( x

‖x‖X

)∥∥∥
X
≤ sup‖x‖X≤1 ‖Tx‖Y = ‖T‖. Hence,

1
‖x‖X ‖Tx‖Y ≤ ‖T‖, so ‖Tx‖Y ≤ ‖T‖‖x‖X .

Remark. In this case, the number ‖T‖ in (d) is the smallest number such that (a) holds,
i.e. ‖T‖ = supx 6=0

‖Tx‖Y
‖x‖X . It is called the operator norm of T .
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Definition 2.17. Let X,Y be normed spaces, and T a linear operator such that one
(hence, all) of the conditions in 2.16 holds. Then T is called a bounded linear operator.
The set of all such operators is denoted B(X,Y ). If X = Y , we write B(X).

Remark 2.18.
1. B(X,Y ) is the set of all continuous and linear maps from X to Y . However, if
T ∈ B(X,Y ), then it is not a bounded map as defined in 1.42: The range R(T ) is
not a bounded subset of Y . However, the image T

(
B1(0, ‖ · ‖X)

)
of the unit ball

in X is a bounded subset of Y .
2. Not all linear maps are bounded, i.e. there exist discontinuous linear maps; these

are called unbounded operators. Let X = C 1[0, 2π], Y = C [0, 2π], ‖ · ‖X = ‖ ·
‖Y = ‖ · ‖∞, and let T = d

dx : X → Y . Then T is well-defined and linear. But
T is not bounded: Let fn(t) = eint. Then ‖fn‖∞ = 1 but Tfn = (in)fn, so
‖Tfn‖∞ = n. Hence, there does not exist C > 0 such that ‖Tf‖∞ ≤ C‖f‖∞.
(But try ‖f‖C 1 = ‖f‖∞ + ‖f ′‖∞ on X.)

3. If T : X → Y is bounded and one chooses an equivalent norm onX or Y , or on both,
then T remains bounded. Note, however, that the number ‖T‖ = sup‖x‖X≤1 ‖Tx‖Y
might very well change.

4. If T : X → Y is linear and dimX < ∞, then T is bounded, in particular, any
linear map Rn → Rm is bounded: Choose a basis {e1, . . . , en} of X and define, for
x =

∑n
i=1 xiei, ‖x‖1 =

∑n
i=1 |xi|. Then ‖ · ‖1 is a norm on X. Since T is linear,

Tx =
∑n
i=1 xiT (ei). So ‖Tx‖1 ≤

∑n
i=1 |xi|‖Tei‖Y . Let C = maxi=1,...,n ‖Tei‖Y .

Then ‖Tx‖Y ≤
∑n
i=1 |xi|C = C‖x‖1. So T is (‖ · ‖1, ‖ · ‖Y )-bounded. Since

dimX <∞, ‖ · ‖1 is equivalent to ‖ · ‖X . Hence, T is (‖ · ‖X , ‖ · ‖Y )-bounded.
5. Let X,Y be normed spaces. Then B(X,Y ) is a vectorspace: (αT + S)(x) :=
αT (x) + S(x) for α ∈ K and T, S ∈ B(X,Y ). This defines a linear map αT +
S : X → Y . Also, if x ∈ X, ‖x‖X ≤ 1, then

‖(αT + S)x‖Y ≤ |α|‖Tx‖Y + ‖Sx‖Y ≤ |α|‖T‖+ ‖S‖,

hence ‖αT + S‖ ≤ |α|‖T‖ + ‖S‖ < ∞. Hence, αT + S ∈ B(X,Y ). Also, ‖T‖ =
sup‖x‖X≤1 ‖Tx‖Y defines a norm on B(X,Y ): Clearly, T = 0 ⇐⇒ ‖T‖ = 0.
From above, ‖T + S‖ ≤ ‖T‖ + ‖S‖ and ‖λT‖ = sup‖x‖X≤1 ‖(λT )x‖Y = |λ|‖T‖.
Hence, (B(X,Y ), ‖ · ‖) is a normed vectorspace. Note, that if dimX = m < ∞
and dimY = n <∞, then B(X,Y ) can be identified with Kn×m ∼= Kn·m.

6. Let X,Y, Z be normed vectorspaces, and let T ∈ B(X,Y ) and S ∈ B(Y,Z). Then
ST ∈ B(X,Z) and ‖ST‖ ≤ ‖S‖‖T‖, since for x ∈ X, ‖x‖X ≤ 1:

‖S(Tx)‖Z ≤ ‖S‖‖Tx‖Y ≤ ‖S‖‖T‖‖x‖X ≤ ‖S‖‖T‖.

7. If X is normed an Y = L, then B(X,K) =: X ′ is called the dual space of X. It is a
normed linear space. Note, that L(X,K) is the algebraic dual of X. An element of
B(X,K) is called a bounded linear functional. For example, T : C [0, 1] → K, x 7→
x(0) is in C [0, 1]′, ‖T‖ = 1; T : : C 1[0, 1] → K, x 7→ x(0) + x′(1) is in C 1[0, 1]′,
‖T‖ = 1; T : C [0, 1] → K, x 7→

∫ 1
0 x(t) dt is in C [0, 1]′, ‖T‖ = 1 and, for any

g ∈ C [0, 1], T : C [0, 1]→ K, x 7→
∫ 1
0 x(t)g(t) dt is in C [0, 1]′ with ‖T‖ =

∫ 1
0 |g(t)|dt.
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Proposition 2.19. Let X,Y be normed spaces, and let (B(X,Y ), ‖ · ‖) be the normed
space of bounded linear operators.
(a) If Y is Banach, then so ist B(X,Y ).
(b) X ′ is a Banach space.

Remark. The result is independent of whether or not X is Banach.

Proof. (b) follows immediately from (a), since K is complete. Let {Tn}n∈N ⊆ B(X,Y )
be Cauchy. Since, for all x ∈ X, ‖Tnx − Tmx‖Y = ‖(Tn − Tm)x‖Y ≤ ‖Tn − Tm‖‖x‖X ,
{Tnx}n∈N ⊆ Y is Cauchy for all x ∈ X. Since Y is Banach, {Tnx} is convergent in Y .
Let Tx = limn→∞ Tnx. So T : X → Y is linear, since for x1, x2 ∈ X, x ∈ K,

T (αx1 + x2) = lim
n→∞

Tn(αx1 + x2) 2.2= α lim
n→∞

Tn(x1) + lim
n→∞

Tn(x2) = αT (x1) + T (x2).

Let ε > 0 and choose N ∈ N such that n,m ≥ N implies ‖Tn − Tm‖ < ε. Let x ∈ X,
‖x‖X ≤ 1. Take an m > N such that ‖Tmx− Tx‖Y < ε. Then, for all n ≥ N ,

‖Tx− Tnx‖Y ≤ ‖Tx− Tmx‖Y + ‖Tmx− Tnx‖Y ≤ ε+ ‖Tm − Tn‖‖x‖X .

Hence, ‖Tx− Tmx‖Y ≤ 2ε for all x ∈ X with ‖x‖X ≤ 1. So,

‖T − Tn‖ = sup
‖x‖X≤1

‖Tx− Tnx‖Y ≤ 2ε <∞ ∀n ≥ N

So, T − Tn ∈ B(X,Y ), hence T = (T − Tn) + Tn ∈ B(X,Y ) and Tn → T as n → ∞ in
B(X,Y ).

Remark. 0 ∈ B(X,Y ). IfX = Y , then we denote the identity map by I. Clearly, ‖I‖ = 1
and I ∈ B(X). Since S, T ∈ B(X,Y ) implies ST ∈ B(X), B(X) is a K-algebra.

Definition 2.20. Let X,Y be normed spaces.
(a) A linear map T : X → Y is called an isomorphism iff T is bijective and both T and

T−1 are bounded, i.e. an isomorphism is a linear homeomorphism.
(b) A surjective linear map T : X → Y is called an isometry from X on Y iff ‖Tx‖Y =
‖x‖X for all x ∈ X, in particular, T is an isomorphism.

(c) A linear map T : X → Y is called an isometry from X in Y iff T : X → R(T ) is an
isometry of X on R(T ).

(d) X and Y are called isomorphic (written X ' Y ) iff there exists an isomorphism
X → Y . They are called isometric (or isometrically isomorphic) iff there exists an
isometry from X on Y (written X ∼= Y ).

(e) If a linear map T : X → Y is injective, it is called an embedding of X in Y (and if
T ∈ B(X,Y ), then T is called a continuous/bounded embedding).

(f) If a linear map P : X → Y satisfies P 2 = P , it is called a projection.
(g) If T ∈ B(X,Y ) is bijective then T−1 ∈ B(Y,X) (i.e. the inverse is automatically

bounded). The proof of this is nontrivial, and we shall do this later. We call T
invertible.
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Remark.
1. Both “'” and “∼=” are equivalence relations.
2. Normed spaces of the same finite dimension are always isomorphic. However
{R2, ‖ · ‖2} and {R2, ‖ · ‖1} are not isometrically isomorphic.

3. The question which (“known”) Banach spaces are isomorphic or isometrically iso-
morphic to which other spaces is/was an important one.

4. If T : X → Y , and dimX = dimY =∞, then it is (in general) not enough that T
is injective or surjective to conclude that T is a bijection.

Proposition 2.21. Let X be a normed space, Y a Banach space, V ⊆ X a linear
subspace, and T : V → Y a continuous linear map (i.e. T ∈ B(V, Y )). Then there exists
a unique extension T : V → Y (i.e. T |V = T ), with T ∈ B(V , Y ) and ‖T‖ = ‖T‖.

Proof. Assume x ∈ V ; then there exists {vn} ⊆ V such that ‖x−vn‖ → 0 as n→∞. So,
if T exists, then Tx = limn→∞ Tvn = limn→∞ Tvn. This proves uniqueness. Let x ∈ V
and take {vn} ⊆ V such that vn → x as n→∞. Then ‖Tvn − Tvm‖ = ‖T (vn − vm)‖ ≤
‖T‖‖vn − vm‖. Since {vn} is convergent, it is Cauchy, so this proves that {Tvn} ⊆ Y is
Cauchy, hence, since Y is Banach, it is convergent. If also {un} ⊆ V with un → x as
n→∞, then

‖Tun − Tvn‖ = ‖T (un − vn)‖ ≤ ‖T‖‖un − vn‖ ≤ ‖T‖
(
‖un − x‖+ ‖x− vn‖

) n→∞−−−→ 0,

hence, limn→∞ Tun − Tvn = 0. Hence, limn→∞ Tun = limn→∞ Tvn by 2.2. So, Tx =
limn→∞ Tvn is well-defined (x ∈ V , vn → x as n → ∞). Clearly, T is an extension of
T . Also, T : V → Y is linear (take x, y ∈ V , λ ∈ K, take {vn}, {wn} ⊆ V s.t. vn → x as
n→∞, wn → y as n→∞ and use the definition of T , linearity of T , and 2.2). Since T
is bounded (on V ), we have ‖Tvn‖ ≤ ‖T‖‖vn‖. Taking n→∞, by 2.2 ‖Tx‖ ≤ ‖T‖‖x‖,
hence ‖T‖ ≤ ‖T‖. So T ∈ B(V , Y ), and since ‖T‖ ≤ ‖T‖, we get ‖T‖ = ‖T‖.

Remark.
1. In particular, if V ⊆ X (V 6= X), V = X, T ∈ B(V, Y ), Y Banach, then there

exists a unique T ∈ B(X,Y ) extending T with ‖T‖ = ‖T‖.
2. If T : V → Y is an isometry, then also T is an isometry. However, if T is injective,

one cannot be sure that also T is injective.
3. Note, that the special case Y = K, gives extensions of certain linear bounded

functionals.

We shall now study a special class of normed spaces, namely those where the norm
comes from a scalar product.

Definition 2.22. Let H be a K-vectorspace. A map 〈·, ·〉 : H ×H → K is called scalar
product (or inner product) iff for all x, y1, y2, y ∈ H and λ ∈ K

(a) 〈x, λy1 + y2〉 = λ〈x, y1〉+ 〈x, y2〉.

(b) 〈x, y〉 = 〈y, x〉.

(c) 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 iff x = 0.
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Note that 〈λx1 + x2, y〉 = λ〈x1, y〉 + 〈x2, y〉. If K = R, 〈·, ·〉 is called bilinear, if K = C,
〈·, ·〉 is called a sesquilinear form. Property (c) is called positive definiteness. Property
(b) is called symmetry. Hence, 〈x, x〉 = 〈x, x〉 ∈ R. The space (H, 〈·, ·〉) is called a
pre-Hilbert space.

Proposition 2.23. Let (H, 〈·, ·〉) be a pre-Hilbert space, and let ‖x‖ =
√
〈x, x〉 for x ∈ H.

Then
1. ‖ · ‖ is a norm on H.
2. |〈x, y〉| ≤ ‖x‖‖y‖ with equality if x = λy for λ ∈ K (Cauchy-Schwarz inequality).
3. ‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) (parallelogramme rule).

Proof.
1. ‖ · ‖ is positive definite by definition. Also, for x ∈ H, α ∈ K, ‖αx‖2 = 〈αx, αx〉 =
αα〈x, x〉 = |α|2‖x‖2. The triangle inequality follows from 2:

‖x+ y‖2 = 〈x+ y, x+ y〉 = ‖x‖2 + ‖y‖2 + 2 Re 〈x, y〉 ≤
≤ ‖x‖2 + ‖y‖2 + 2‖x‖‖y‖ = (‖x‖+ ‖y‖)2.

2. Let λ ∈ K be arbitrary, x, y ∈ H, then

0 ≤ 〈x+ λy, x+ λy〉 = ‖x‖2 + λ〈y, x〉+ λ〈x, y〉+ |λ|2‖y‖2

Taking λ = −〈x, y〉/‖y‖2, Cauchy-Schwarz follows.
3. Follows from the first 2 lines in the computation in 1.

Definition. Hence, a pre-Hilbert space (H, 〈·, ·〉) gives rise to a normed space (H, ‖ · ‖),
‖x‖ =

√
〈x, x〉. If this space is complete, (H, 〈·, ·〉) is called a Hilbert space.

Remark. For K = R
〈x, y〉 = 1

4
(
‖x+ y‖2 − ‖x− y‖2

)
and for K = C

〈x, y〉 = 1
4
(
‖x+ y‖2 − ‖x− y‖2 + i‖x+ iy‖2 − i‖x− iy‖2

)
.

This is called polarization identity. So, the scalar product defines the norm, on the other
hand, the scalar product is uniquely determined by the norm.

Proposition 2.24. A normed space X is a pre-Hilbert space iff

‖x+ y‖2 + ‖x− y‖2 = 2
(
‖x‖2 + ‖y‖2

)
∀x, y ∈ X (∗)

Proof. If X is a pre-Hilbert space, then (∗) holds. So assume (∗) holds, and set (K = R)

〈x, y〉 := 1
4
(
‖x+ y‖2 − ‖x− y‖2

)
.

Then (!) one proves that this does define a scalar product on X. (For K = C, use the
polarization identity).

24



In the proof of the above proposition one needs the following lemma.

Lemma 2.25. The scalar product on a pre-Hilbert space is a continuous map H×H →
K.

Proof. Form the Cauchy-Schwarz inequality, it follows that

|〈x1, y1〉 − 〈x2, y2〉| = |〈x1 − x2, y1〉+ 〈x2, y1 − y2〉| ≤ ‖x1 − x2‖‖y1‖+ ‖x2‖‖y1 − y2‖.

This proves continuity.

Example 2.26.
1. Cn with 〈x, y〉 =

∑n
i=1 xiyi.

2. `2 with 〈x, y〉 =
∑∞
i=1 xiyi, since for x, y ∈ `2(N), N ∈ N,∣∣∣∣∣

N∑
i=1

xiyi

∣∣∣∣∣ ≤
(

N∑
i=1
|xi|2

)1/2( N∑
i=1
|yi|2

)1/2

≤ ‖x‖2‖y‖2

and 〈x, x〉 = ‖x‖2.
3. Let H = C ([0, 1],C) and define

〈f, g〉 =
∫ 1

0
f(t)g(t) dt

This is a scalar product, so (H, 〈·, ·〉) is a pre-Hilbert space. However, this is not a
Hilbert space. We shall “repair” this later, when studying Lebesgue-integration.

4. Let H = C k([0, 1],C), and let

〈f, g〉C k =
k∑
j=0

〈
f (j), g(j)

〉
with 〈·, ·〉 the scalar product in 3. This gives a pre-Hilbert space.

Definition 2.27. Let H be a pre-Hilbert space.
(a) If 〈x, y〉 = 0 then we say that x and y are orthogonal and write x ⊥ y. In this case

it follows that ‖x‖2 + ‖y‖2 = ‖x+ y‖2.
(b) Let Y,Z ⊆ H be two subsets of H. Then we call Y and Z orthogonal iff 〈z, y〉 = 0

for all z ∈ Z and y ∈ Y . If Y,Z are linear subspaces, then Y ∩ Z = {0} if Y and Z
are orthogonal.

(c) For a subset Y ⊆ H we define the orthogonal complement of Y by

Y ⊥ = {x ∈ H : ∀y ∈ Y. x ⊥ y}

Then Y ∩ Y ⊥ = {0} if Y is a linear subspace.

Remark.
1. A⊥ is always a linear closed subspace of H.
2.
(
A
)⊥ = A⊥.
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3. A ⊆
(
A⊥
)⊥.

Proposition 2.28. Let (H, 〈·, ·〉) be a Hilbert space, and let K ⊆ H be a closed and
convex subset and let x0 ∈ H. Then there exists a unique x ∈ K such that ‖x0 − x‖ =
d(x0,K), i.e. there exists a unique best approximation to x0 in K.

Proof. This is trivial if x0 ∈ K. So assume x0 6∈ K. Also, assume x0 = 0 (otherwise,
subtract x0 everywhere). Since d := d(x0,K) = infy∈K ‖y‖, there exists a sequence
{yn} ⊆ K such that ‖yn‖ → d as n → ∞. We aim to prove that {yn} is Cauchy. Use
the parallelogramme rule to get∥∥∥∥yn + ym

2

∥∥∥∥2
+
∥∥∥∥yn − ym2

∥∥∥∥2
= 1

2
(
‖yn‖2 + ‖ym‖2

)
Note that yn+ym

2 ∈ K since K is convex. So,
∥∥∥yn+ym

2

∥∥∥2
≥ d2. Also, 1

2
(
‖yn‖2 + ‖ym‖2

)
→

d2 as n,m → ∞. Hence, ‖yn − ym‖2 → 0 as n,m → ∞, hence {yn} is Cauchy. So, let
x = limn→∞ yn ∈ H. Then x ∈ K. Also (by 2.2), ‖x‖ = limn→∞ ‖yn‖ = d. So x is a
best approximation of x0.
Assume x, x̃ ∈ K, ‖x‖ = ‖x̃‖ = infy∈K ‖y‖ = d, x 6= x̃. Then, by the parallelogramme

rule ∥∥∥∥x+ x̃

2

∥∥∥∥2
<

∥∥∥∥x+ x̃

2

∥∥∥∥2
+
∥∥∥∥x− x̃2

∥∥∥∥2
= 1

2
(
‖x‖2 + ‖x̃‖2

)
= d2

Hence,
∥∥∥x+x̃

2

∥∥∥ < d and x+x̃
2 ∈ K — a contradiction.

Remark. This gives a map P : H → H with ‖x − P (x)‖ = infy∈K ‖x − y‖ = d(x,K).
Clearly, P (x) ∈ K for x ∈ H, so P (H) ⊆ K. So P (P (x)) = P (x) for all x ∈ H, i.e.
P 2 = P , so P is a projection (not necessarily linear). This typically is used when K is
a closed linear subspace of H.

Proposition 2.29. Let H be a Hilbert space, K ⊆ H be convex and closed and x0 ∈ H.
Then the following are equivalent for x ∈ K:
(i) ‖x0 − x‖ = d(x0,K).
(ii) Re 〈x0 − x, y − x〉 ≤ 0 for all y ∈ K.

Proof.
(ii) ⇒ (i) This follows from

‖x0 − y‖2 = ‖(x0 − x) + (x− y)‖2 = ‖x0 − x‖2 + 2 Re 〈x0 − x, x− y〉+ ‖x− y‖2

≥ ‖x0 − x‖2

for all y ∈ K. So ‖x0 − x‖ = d(x0,K).
(i) ⇒ (ii) Let y ∈ K, and for λ ∈ [0, 1] let yλ = (1− λ)x+ λy ∈ K. So

‖x0 − x‖2 ≤ ‖x0 − yλ‖2 = 〈x0 − x+ λ(x− y), x0 − x+ λ(x− y)〉 =
= ‖x0 − x‖2 + 2 Re 〈x0 − x, λ(x− y)〉+ λ2‖x− y‖2

Hence, Re 〈x0 − x, y − x〉 ≤ λ
2‖x− y‖

2 for λ ∈ (0, 1], so Re 〈x0 − x, y − x〉 ≤ 0.
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Theorem 2.30 (Orthogonal projections). Let U 6= {0} be a closed linear subspace of a
Hilbert space H. Then there exists a linear projection PU : H → H with PU (H) = U ,
‖PU‖ = 1, and N(PU ) = U⊥. Also, I − PU is a projection on U⊥ with ‖I − PU‖ = 1
(except if U = H), and H = U ⊕2 U

⊥. PU is called the orthogonal projection on U .

Proof. Note that U is closed and convex, so PU : H → H is defined (see above), with
PU (x) the best approximation to x in U . We have seen above that P 2

U = PU and
PU (H) = U . By 2.29 Re 〈x0 − PU (x0), y − PU (x0)〉 ≤ 0 for all y ∈ U . Since U is a
linear subspace, y − PU (x0) ∈ U for all y ∈ U . Hence, (put y = ỹ + PU (x0), ỹ ∈ U)
Re 〈x0 − PU (x0), ỹ〉 ≤ 0 for all ỹ ∈ U . Now do the same for −ỹ ∈ U and iỹ ∈ U (K = C).
Then

〈x0 − PU (x0), ỹ〉 = 0 ∀ỹ ∈ U (∗)

Hence, PU (x0) is the unique element in U such that

x0 − PU (x0) ∈ U⊥ (∗∗)

Since U⊥ is a linear subspace ofH it follows that, if x1, x2 ∈ H, λ ∈ K, x1−PU (x1) ∈ U⊥,
x2 − PU (x2) ∈ U⊥, so (x1 + λx2)−

(
PU (x1) + λPU (x2)

)
∈ U⊥. But PU (x1 + λx2) is the

unique w such that (x1 +λx2)−w ∈ U⊥. Hence, PU (x1 +λx2) = PU (x1) +λPU (x2), i.e.
PU is linear. By construction, R(PU ) = U and from (∗∗) it follows that PU (x0) = 0 iff
x0 ∈ U⊥. So N(PU ) = U⊥. Then also I − PU is a projection:

(I−PU )2(x) = (I−PU )
(
x−PU (x)

)
= x−PU (x)−PU (x)+P 2

U (x) = x−PU (x) = (I−PU )(x).

Also R(I − PU ) = U⊥ and N(I − PU ) = U . From Pythagoras it follows that ‖x‖2 =
‖(x − PU (x)) + PU (x)‖2 = ‖x − PU (x)‖2 + ‖PU (x)‖2, hence ‖PU (x)‖ ≤ ‖x‖ for all x,
so ‖PU‖ ≤ 1. On the other hand (for any projection) ‖PU‖ = ‖P 2

U‖ =≤ ‖PU‖2, hence
‖PU‖ = 0 or ‖PU‖ ≥ 1. So ‖PU‖ = 1 and similarly ‖I − PU‖ = 1. By Pythagoras’
theorem it is clear that H = U ⊕2 U

⊥.

Corollary 2.31. Let U be a linear subspace of a Hilbert space H. Then U =
(
U⊥)⊥.

Proof. U⊥ =
(
U
)⊥ is a closed subspace, and by 2.30 P(U⊥)⊥ = I−PU⊥ = I− (I−PU ) =

PU . So U = R(PU ) = R(P(U⊥)⊥) =
(
U⊥
)⊥.

Theorem 2.32 ((Fréchet-)Riesz representation theorem). For any Hilbert space H the
map Φ: H → H ′ = B(H,K), y 7→ 〈y, ·〉 is bijective, isometric, and conjugate linear, i.e.
Φ(λy1 + y2) = λΦ(y1) + Φ(y2). In other words, for every x′ ∈ H ′ there exists a unique
y ∈ H such that x′(x) = 〈y, x〉 for all x ∈ H.

Proof. Take any y ∈ H. Then Φ(y) ∈ B(H,K), because H 3 x 7→ 〈y, x〉 is linear
and bounded, since, for all x ∈ H, |Φ(y)x| = |〈y, x〉| ≤ ‖y‖‖x‖. So ‖Φ(y)‖H′ ≤ ‖y‖.
Furthermore, Φ is isometric, since for any y ∈ H r {0}

‖y‖ =
〈
y,

y

‖y‖

〉
≤ sup
‖x‖≤1

|〈y, x〉| = ‖Φ(y)‖H′ ,
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hence ‖Φ(y)‖H′ = ‖y‖.
To see that Φ is surjective, take x′ ∈ H ′, x′ 6= 0. Then U := N(x′) = (x′)−1({0})

is a closed subspace of H. Hence, H = U ⊕2 U
⊥, where U⊥ 6= {0} since x′ 6= 0.Take

any y ∈ U⊥, ‖y‖ = 1, and set a = x′(y) ∈ K. Then, for all x ∈ H, x′(x)y − x′(y)x ∈
N(x′) ⊥ y. Hence, 0 = 〈y, x′(x)y − x′(y)x〉 = x′(x)〈y, y〉 − x′(y)〈y, x〉 for all x ∈ H.
Hence, x′(x) = 〈ay, x〉 for all x ∈ H, i.e. x′ = Φ(ay). Additionally, Φ(0) = 0.

Definition 2.33. Let X be a K-vector space. B ⊆ X is called algebraic basis, or
Hamel basis, iff B is linearly independent and span(B) = X. |B| is called the algebraic
dimension of X.

Theorem 2.34. Every vector space has an algebraic basis.

Lemma 2.35 (Zorn). If (M,≤) is a nonempty, partially ordered set in which every
nonempty totally ordered subset C ⊆ M has an upper bound in M , then M contains a
maximal element.

For purposes of functional analysis algebraic bases are de facto useless, because:

Proposition 2.36. Let X be a Banach space and B ⊆ X an algebraic basis. If |B| =∞,
then B is uncountable.

Definition 2.37. Let X be a Banach space and I be any index set.

(a) A map x : I → X is called family, written {x(i)}i∈I . We denote by F (I) the set of
all finite subsets of I.

(b) A family {xi}i∈I ⊆ X is called absolutely summable, iff

‖x‖1 =
∑
i∈I
‖xi‖X := sup

{∑
i∈Ĩ

‖xi‖X : Ĩ ∈ F (I)
}
<∞.

We write
`1(I,X) = {x : I → X : ‖x‖1 <∞}.

(c) For x ∈ `1(I,X) define the support of x by supp(x) = {i ∈ I : x(i) 6= 0}.

(d) For x ∈ `1(I,X), x = {xi}i∈I , we can find a bijection ϕ : N → J ⊇ supp(x) (if
necessary, take a countable J ⊇ I and define x(j) = 0 for j ∈ J r I). Then

∑
i∈I

xi :=
∞∑
k=1

xϕ(k)

Here,
∑∞
k=1 xϕ(k) = limK→∞

∑K
k=1 xϕ(k) converges absolutely, hence this is indepen-

dent of the choice of ϕ.
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(e) A family {xi}i∈I ⊆ K, is called square summable iff

‖x‖2 :=
∑
i∈I
|xi|2 = sup

{∑
i∈Ĩ

|xi|2 : Ĩ ∈ F (I)
}
<∞.

Again supp(x) is countable if x ∈ `2(I) = {x : I → K : ‖x‖2 < ∞}. Define a scalar
product by

〈x, y〉 =
∑
i∈I

xiyi :=
∞∑
k=1

xϕ(k)yϕ(k)

for x = {xi}i∈I , y = {yi}i∈I ∈ `2(I) and some bijection ϕ : N → J ⊇ supp(x) ∩
supp(y). Completeness of `2(I) follows from the completeness of `2(N), hence `2(I)
is a Hilbert space.

Remark. If x ∈ `1(I,X), then supp(x) is countable. In fact, for all n ∈ N, Sn = {i ∈
I : ‖xi‖X ≥ 1

n} is finite. So, supp(x) =
⋃
n∈N Sn is countable.

Definition 2.38. A set {ei : i ∈ I} ⊆ H in a pre-Hilbert space H is called orthonormal
system iff for all i, j ∈ I, 〈ei, ej〉 = δij . An orthonormal system E is called maximal iff
E⊥ = {0}. For x ∈ H, the numbers x̂(i) = 〈ei, x〉, i ∈ I, are called Fourier coefficients
of x.

Example.
1. In `2(I) the canonical unit vectors ek : I → X, i 7→ δik, k ∈ I, form a maximal

orthonormal system.
2. [0, 2π] → C, t 7→ (2π)−1/2eikt, k ∈ Z, form an orthonormal system in the pre-

Hilbert space C [0, 2π] with the scalar product

〈f, g〉 =
∫ 2π

0
f(t)g(t) dt.

Lemma 2.39. Let {ei : i ∈ I} be an orthonormal system in a pre-Hilbert space H. For
every finite subset J ⊆ I we have, for any family {xi}i∈J ⊆ K, Pythagoras’ identity∥∥∥∑

i∈J
xiei

∥∥∥2
=
∑
i∈J
|xi|2

and, for any x ∈ H,

0 ≤
∥∥∥x−∑

i∈J
x̂(i)ei

∥∥∥2
= ‖x‖2 −

∑
i∈J
|x̂(i)|2 (∗)

Proof. Clearly, ∥∥∥∑
i∈J

xiei
∥∥∥2

=
∑
i,j∈J

xixj〈ei, ej〉 =
∑
i∈J
|xi|2.

Using this and 〈x+ y, x+ y〉 = ‖x‖2 + ‖y‖2 + 2 Re 〈x, y〉 for any x, y ∈ H, we get∥∥∥x−∑
i∈J

x̂(i)ei
∥∥∥2

= ‖x‖2 +
∑
i∈J
|x̂(i)|2 − 2 Re

∑
i∈J

x̂(i)〈x, ei〉 = ‖x‖2 −
∑
i∈J
|x̂(i)|2.
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Corollary 2.40 (Bessel’s inequality). Let {ei : i ∈ I} be an orthonormal system in a
pre-Hilbert space H. Then, for any x ∈ H, only countably many Fourier coefficients x̂(i)
are nonzero and ∑

i∈I
|x̂(i)|2 ≤ ‖x‖2.

In particular, {x̂(i)}i∈I ∈ `2(I).

Proof. By the lemma, for any J ∈ F (I),∑
i∈J
|x̂(i)|2 ≤ ‖x‖2.

Hence, ∑
i∈I
|x̂(i)|2 = sup

J∈F (I)

∑
i∈J
|x̂(i)|2 ≤ ‖x‖2.

Remark 2.41.
(a) Given some x = {xi}i∈I ∈ `2(I) and some orthonormal system {ei : i ∈ I} in a

Hilbert space H, one can construct
∑
i∈I xiei. In fact, pick some bijection ϕ : N →

J ⊇ supp(x) as in definition 2.37 and observe, using Pythagoras, that

∥∥∥ n∑
k=m

xϕ(k)eϕ(k)

∥∥∥2
=

n∑
k=m
|xϕ(k)|2

m,n→∞−−−−−→ 0.

So
{∑n

k=1 xϕ(k)eϕ(k)
}
n∈N

is Cauchy in the Hilbert space H, hence is convergent. We
define ∑

i∈I
xiei := lim

n→∞

n∑
k=1

xϕ(k)eϕ(k).

This is independent of the choice of ϕ, because y =
∑
i∈I xiei satisfies

∀ε > 0 ∃Iε ∈ F (I) ∀J ∈ F (I). J ⊇ Iε =⇒
∥∥∥∑
i∈J

xiei − y
∥∥∥ < ε.

(b) Let {ei : i ∈ I} be an orthonormal system in a Hilbert space H. By Bessel’s inequal-
ity

F : H → `2(I), x 7→ {x̂(i) = 〈ei, x〉}i∈I
is linear and bounded, since

‖F (x)‖2 =
∑
i∈I
|x̂(i)|2 ≤ ‖x‖2

hence ‖F‖ ≤ 1. F : H → `2(I) is always surjective: given x = {xi}i∈I ∈ `2(I),
define

y =
∑
i∈I

xiei.
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Then F (y) = x, since for any j ∈ I, (with notation as in (a))

〈ej , y〉 = lim
n→∞

n∑
k=1

〈
ej , xϕ(k)

〉
eϕ(k) = xj .

F is injective iff {ei : i ∈ I} is maximal.

Theorem 2.42. Let {ei : i ∈ I} be an orthonormal system in a Hilbert space H. Then
the following are equivalent

(a) For all x ∈ H, x =
∑
i∈I x̂(i)ei.

(b) For all x ∈ H, ‖x‖2 =
∑
i∈I |x̂(i)|2 (Parseval’s identity)

(c) F : H → `2(I) is isometric.

(d) span{ei : i ∈ I} is dense in H.

(e) F : H → `2(I) is injective.

(f) {ei : i ∈ I} is maximal.

Proof.
(a)⇔(b) Follows from (∗).

(b)⇔(c) Follows from the definition of “isometry”.

(a)⇒(d) Clear.

(d)⇒(f) {ei : i ∈ I}⊥ = span{ei : i ∈ I}
⊥ = {0}.

(f)⇒(e) F (x) = 0 is equivalent to 〈ei, x〉 = 0 for all i ∈ I., i.e x ∈ {ei : i ∈ I}⊥ = {0}.

(e)⇒(a) Note F (x) = {x̂(i)}i∈I and

F
(∑
i∈I

x̂(i)ei
)

= {x̂(i)}i∈I .

Hence, by injectivity of F , x =
∑
i∈I x̂(i)ei.

Remark 2.43. A maximal orthonormal system is also called complete or orthonormal
basis. If dimH =∞, then an orthonormal basis in general is not an algebraic basis, i.e.
the expansion x =

∑
i∈I x̂(i)ei in general has infinitely many summands.

Theorem 2.44.
(a) Every Hilbert space H has an orthonormal basis {ei : i ∈ I}. In particular, H is

isometrically isomorphic to `2(I).
(b) H has a countable orthonormal basis iff H is separable. In this case H ∼= `2(N), if

H is infinite dimensional.
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Proof.
(a) Write M for the set of all orthonormal systems in H. Then M is partially ordered

by ⊆. Let C ⊆ M be a totally ordered subset. Then B̂ =
⋃
C is an orthonormal

system and an upper bound of C in M. Indeed B̂ ∈M, since take e1, e2 ∈ B̂, e1 6= e2.
Then ei ∈ Bi ∈ C, i = 1, 2. Since C is totally ordered by ⊆, we have B1 ⊆ B2 or
B2 ⊆ B1, say B1 ⊆ B2. Then e1, e2 ∈ B2, hence e1 ⊥ e2. So by Zorn’s lemma, there
is a maximal element M ∈ M. M is an orthonormal basis, since if spanM 6= H,
there would exist some e ∈ H, ‖e‖ = 1 such that e ⊥ M and M ∪ {e} ) M — a
contradiction.

(b) If H has a countably infinite orthonormal basis {ei : i ∈ N} then F : H → `2(N) is an
isometric isomorphism. Since `2(N) is separable, H must be separable. Conversely,
every orthonormal system {ei : i ∈ I} is discrete, since for all i, j ∈ I, i 6= j, ‖ei −
ej‖2 = 2. Hence, if the orthonormal system {ei : i ∈ I} is uncountable, H cannot be
separable.

Remark. All orthonormal bases of a Hilbert space H have the same cardinality. This
cardinality is then called the Hilbert space dimension of H.

3 Lebesgue integration
In Lebesgue integration the concept of measure is essential. But to make this concept
useful one has to consider σ-algebras different from the power set. In fact Vitali proved
in 1905 that there can be no measure µ : 2Rd → [0,∞] such that µ([0, 1]d) = 1 and
µ ◦ β = µ for every rigid motion β. Even worse, Banach and Tarski proved in 1924
that for any two bounded sets A,B ⊆ Rd such that A◦ 6= ∅ 6= B◦ there exist disjoint
C1, . . . , Cn ⊆ Rd and rigid motions β1, . . . , βn : Rd → Rd such that β1(C1), . . . , βn(Cn)
are disjoint and

A =
n⋃
`=1

C`, B =
n⋃
`=1

β`(C`).

This shows that there have to exist sets for which the notion of volume does not make
sense. Instead one has to consider σ-algebras:

Definition 3.1. Let X be a set. A system of sets A ⊆ 2X is called σ-algebra iff

(i) ∅ ∈ A.
(ii) For any A ∈ A, Ac = X rA ∈ A.
(iii) For any countable family {Ai}i∈N ⊆ A,

⋃
i∈NAi ∈ A.

Example.
(a) 2X is a σ-Algebra.
(b) For any index set I and σ-algebras Ai, i ∈ I,

⋂
i∈I Ai is again a σ-algebra.

(c) Take any E ⊆ 2X . Then

σ(E ) :=
⋂
{A ⊆ 2X : E ⊆ A and A is a σ-algebra}

is a σ-algebra. σ(E ) is called the σ-algebra generated by E .
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(d) Let {X,T } be a topological space. Then B(X) := σ(T ) is called Borel σ-algebra.
We have B(Rd) ( 2Rd .

Definition 3.2. Let A be a σ-algebra. Then a map µ : A→ [0,∞] is called measure iff
µ(∅) = 0 and it is σ-additive, i.e. for any countable disjoint family {An}n∈N ⊆ A,

µ
( ⋃
n∈N

An
)

=
∞∑
n=1

µ(An).

Example.
(a) Let X be a set and define ζ : 2X → [0,∞] by

ζ(A) =
{
n if |A| = n ∈ N
∞ if A is infinite

ζ is called counting measure on X.
(b) For any a ∈ X, the measure δA defined on 2X by

δa(A) :=
{

1 a ∈ A
0 a 6∈ A

is called Dirac measure at a.

Definition 3.3. A system h ⊆ 2X is called semi-ring iff

(i) ∅ ∈ h.

(ii) For all A,B ∈ h, A ∩B ∈ h.

(iii) For all A,B ∈ h there exist disjoint C1, . . . , Cn ∈ h such that ArB = C1∪· · ·∪Cn.

Example. For a = (a1, . . . , ad), b = (b1, . . . , bd) ∈ Rd we write a ≤ b iff aj ≤ bj for all
1 ≤ j ≤ n, and (a, b] = (a1, b1]× · · · × (ad, bd]. Then

Jd = {(a, b] : a, b ∈ Rd, a ≤ b}

and
JdQ = {(a, b] : a, b ∈ Qd, a ≤ b}

are semi-rings and σ(JdQ) = σ(Jd) = B(Rd).

Definition 3.4. Let h be a semi-ring. A map µ : h→ [0,∞] is called content if µ(∅) = 0
and µ is finitely additive, i.e. for all disjoint A1, . . . , An ∈ h such that

⋃n
i=1Ai ∈ h,

µ(
⋃n
i=1Ai) =

∑n
i=1 µ(Ai). A content is called premeasure if it is σ-additive, i.e. for all

disjoint A1, A2, · · · ∈ h such that
⋃∞
i=1Ai ∈ h, µ(

⋃∞
i=1Ai) =

∑∞
i=1 µ(Ai).
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Example.
(a) Define λd : Jd → [0,∞) by

λd
(
(a, b]

)
=

n∏
i=1

(bi − ai)

for all a, b ∈ Rd, a ≤ b. λd is called Lebesgue-content. It can be shown that λd is a
premeasure.

(b) Let F : R → R be a monotonically increasing function. Then µF
(
(a, b]

)
= F (b) −

F (a), a ≤ b, defines the Lebesgue-Stieltjes content associated with F . µF is a
premeasure iff F is upper semicontinuous.

Definition 3.5. An exterior measure is a map η : 2X → [0,∞] such that
(i) η(∅) = 0.

(ii) A ⊆ B implies η(A) ≤ η(B).

(iii) For any countable family {An}n∈N ⊆ 2X ,

η
( ⋃
n∈N

An
)
≤
∞∑
n=1

η(An).

Then A ⊆ X is called η-measurable if for all Q ⊆ X, η(Q) = η(Q ∩A) + η(Q ∩Ac).
Theorem 3.6 (Carathéodory). Let µ : h→ [0,∞] be a content on the semi-ring h ⊆ 2X
and define for all A ⊆ X:

η(A) := inf
{ ∞∑
n=1

µ(An) : An ∈ h, A ⊆
∞⋃
n=1

An
}

(∗)

Then η : 2X → [0,∞] is an exterior measure and every A ∈ h is η-measurable. Addition-
ally, Aη = {A ⊆ X : A η-measurable} is a σ-algebra and η|Aη is a measure. If µ is a
premeasure then η|h = µ.
Example. The exterior Lebesgue measure is

λd∗(A) = inf
{ ∞∑
n=1

λd(An) : An ∈ Jd, A ⊆
∞⋃
n=1

An
}

Aλd∗ is the σ-algebra of Lebesgue-measurable sets. We have B(Rd) ( Aλd∗ . λ
d := λd∗|Aλd∗

is called Lebesgue-measure on Rd and λd|B(Rd) is called Lebesgue-Borel-measure.
Definition 3.7. A content µ : h→ [0,∞] is called σ-finite if there exist countably many
A1, A2, . . . ∈ h such that µ(An) <∞, n ∈ N, and

⋃
n∈NAn = X.

Theorem 3.8. A σ-finite premeasure µ : h → [0,∞] can be uniquely extended to a
measure on σ(h)/on Aη with η as in (∗).
Example. The Lebesgue and Lebesgue-Stieltjes premeasures λd : Jd → [0,∞] and
µF : J1 → [0,∞] are σ-finite. E.g.

Rd =
⋃
n∈N

(−n, n]d.
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3.1 Measurable Functions
Definition 3.9. Let A be a σ-algebra on X. f : X → R = R ∪ {−∞,∞} is called
A-measurable if for all a ∈ R, f−1((a,∞]) ∈ A.

Remark 3.10.
(a) If f, g, f1, f2, . . . are measurable functions, f+g, fg, max1≤i≤n{f1, . . . , fn}, supn∈N fn,

infn∈N fn, lim supn→∞ fn and lim infn→∞ fn are all measurable.

(b) f : X → [0,∞] is measurable iff there exists a sequence of measurable step functions
{un}, i.e. un : X → [0,∞], |un(X)| < ∞ such that un ↗ f pointwise, i.e u1 ≤
u2 ≤ · · · ≤ f and un(t) → f(t) as n → ∞. Indeed for a measurable function
f : X → [0,∞], define

un =
n2n−1∑
j=0

j

2nχ{j/2
n≤f<(j+1)/2n} + nχ{f≥n}

Example. Any f ∈ C (Rn,R) is measurable, if we take B(Rn) as a σ-algebra on Rn.

To define the Lebesgue integral we first define the integral of measurable step functions
u =

∑n
i=1 αiχAi , Ai = u−1({αi}) ∈ A, αi ≥ 0, with respect to the measure µ by∫

X
udµ :=

n∑
i=1

αiµ(Ai) ∈ [0,∞].

Now, taking a measurable function f : X → [0,∞], pick measurable step functions {un}
with uN ↗ f pointwise and define∫

X
f dµ = lim

n→∞

∫
X
un dµ.

This is independent of the choice of {un} which we will not prove here. It may happen
that

∫
X f dµ = ∞. We call f µ-integrable if

∫
X f dµ < ∞. Finally, let f : X → R be

measurable. Split f = f+− f− with f± ≥ 0. If at least one of the integrals
∫
X f± dµ are

finite, we define ∫
X
f dµ =

∫
X
f+ dµ−

∫
X
f− dµ.

f is called µ-integrable if
∫
X f dµ ∈ R. Analogously, for f : X → C ∪ {∞} define∫

X
f dµ =

∫
X

(Re f)+ dµ+ i

∫
X

(Im f)+ dµ−
∫
X

(Re f)− dµ− i
∫
X

(Im f)− dµ

assuming all integrals are finite and defined. Note, that f : X → C ∪ {∞} is integrable
iff |f | is integrable.
Remark. If f : [0, 1] → R is Riemann-integrable then f is Lebesgue-integrable (with
respect to λ1) and ∫ 1

0
f(t) dt =

∫
[0,1]

f dλ1.
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Convention. A statement P (x) is said to hold µ-almost everywhere if µ({x : ¬P (x)}) =
0, e.g. “f = g µ-almost everywhere” if µ({x : f(x) 6= g(x)}) = 0.

Remark.
(a) For all measurable f : X → [0,∞],

∫
X f dµ = 0 implies f = 0 µ-almost everywhere.

(b) For all integrable f, g : X → C ∪ {0}, f = g µ-almost everywhere implies∫
X
f dµ =

∫
X
g dµ.

3.2 p-integrable functions, p ≥ 1
Definition 3.11. For a measure space (X,A, µ) we define

L p(X,µ) =
{
f : X → C ∪ {∞} : f is measurable and

∫
X
|f |p dµ <∞

}
and, for f ∈ L p(X,µ), we set

‖f‖p =
(∫

X
|f |p dµ

)1/p

Remark. ‖ · ‖p is only a semi-norm on L p(X,µ), since ‖f‖p = 0 only implies f = 0
µ-almost everywhere. Because of this we consider equivalence classes with respect to the
equivalence relation

f ∼ g ⇐⇒ f = g µ-almost everywhere.

Then f = 0 µ-almost everywhere is equivalent to [f ] = 0.

Definition 3.12. For a measure space (X,A, µ) we define

Lp(X,µ) = L p(X,µ)/∼ = {[f ] : f ∈ L p(X,µ)}

and ‖[f ]‖p = ‖f‖p. Then ‖ · ‖p is non-degenerate on Lp(X,µ).

Convention. One always writes f instead of [f ] for elements in Lp(X,µ). It should be
clear from context when f is a function and when f is an equivalence class.

Our goal is to prove the following theorem:

Theorem 3.13 (Riesz-Fischer). {Lp(X,µ), ‖ · ‖p} is a Banach space.

For this we will prove that Lp(X,µ) is a vectorspace (1), ‖ · ‖p is a norm on Lp(X,µ)
(2) and that any Cauchy sequence in Lp(X,µ) converges to an element in Lp(X,µ).

Proof of (1). Assume f, g ∈ Lp(X,µ). Note that for any α ∈ C, α : X → C∪{∞}, x 7→ α
is measurable. Hence αf + g is measurable. Also,∫
X
|αf + g|p dµ ≤

∫
X

(
|αf |+ |g|

)p dµ ≤
∫
X

(
2 max{|αf |, |g|}

)p dµ ≤

≤ 2p
∫

max{|α|p|f |p, |g|p d}µ ≤ 2p
(
|α|p

∫
X
|f |p dµ+

∫
X
|g|p dµ

)
<∞

Hence, αf + g ∈ Lp(X,µ), i.e. Lp(X,µ) is a vectorspace.
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Proposition 3.14 (Hölder’s inequality). Let 1 < p <∞, and 1
p+ 1

q = 1. If f ∈ Lp(X,µ),
g ∈ Lq(X,µ), then fg ∈ L1(X,µ) and∫

X
|fg|dµ = ‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. Recall that if a, b ≥ 0, then

ab = inf
ε>0

εp
ap

p
+ ε−q

bq

q

So for all ε > 0 and t ∈ X

|f(t)g(t)| = |f(t)||g(t)| ≤ εp |f(t)|p

p
+ ε−q

|g(t)|q

q

Hence, for all ε > 0, ∫
X
|fg| dµ ≤ εp

‖f‖pp
p

+ ε−q
‖g‖qq
q

and
‖fg‖1 =

∫
X
|fg| dµ ≤ inf

ε>0
εp
‖f‖pp
p

+ ε−q
‖g‖qq
q

= ‖f‖p‖g‖q.

Corollary 3.15 (Minkowski’s inequality). For p ≥ 1, and f, g ∈ Lp(X,µ), we have

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof. We have for 1
p + 1

q = 1 and p > 1∫
X
|f + g|p dµ =

∫
X
|f + g||f + g|p−1 dµ ≤

∫
X
|f ||f + g|p−1 dµ+

∫
X
|g||f + g|p−1 dµ ≤

≤ ‖f‖p
∥∥∥|f + g|p−1

∥∥∥
q

+ ‖g‖p
∥∥∥|f + g|p−1

∥∥∥
q

= (‖f‖p + ‖g‖p)‖f + g‖p−1
p

since
∥∥|f + g|p−1∥∥

q = ‖f + g‖p−1
p . Dividing by ‖f + g‖p−1

p yields Minkowski’s inequality
for p > 1. The cases ‖f + g‖p = 0 and p = 1 are trivial.

For the proof of (3) recall proposition 2.5:

Lemma 3.16. Let X be a normed space. The following are equivalent:
(i) X is a Banach space.
(ii) Any absolutely convergent series is convergent.

Additionally we will need the following two important convergence results for Lebesgue
integration (they “solve” the question: if fn(t) → f(t) as n → ∞ “for all t”, is it true
that

∫
fn →

∫
f as n→∞?)

Theorem 3.17 (Beppo-Levi’s theorem/Lebesgue’s theorem on monotone convergence).
Let (X,A, µ) be a measure space, and let f1, f2, . . . : X → [0,∞] be measurable, with
f1 ≤ f2 ≤ . . . . Let f(t) = limn→∞ fn(t) ∈ [0,∞]. Then f is measurable and

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.
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Theorem 3.18 (Lebesgue’s theorem on dominated convergence). Let f1, f2, . . . : X →
C be integrable and assume f(t) = limn→∞ fn(t) for µ-almost every t, and that f is
measurable. Furthermore, assume there exists an integrable g : X → [0,∞] such that
|fn| ≤ g for all n ∈ N. Then

lim
n→∞

∫
X
fn dµ =

∫
X
f dµ.

Now we can prove the completeness of Lp(X,µ).

Proof of (3). Take f1, f2, · · · ∈ Lp(X,µ) such that a =
∑∞
n=1 ‖fn‖p < ∞. Let ĝ(t) =∑∞

i=1 |fi(t)|, t ∈ X. Then ĝ : X → [0,∞]. Note that

ĝ(t) = sup
n∈N

n∑
i=1
|fi(t)| = lim

n→∞
ĝn(t)

Where ĝn(t) =
∑n
i=1 |fi(t)|. Hence, ĝn and ĝ are measurable. Also, ĝn ∈ Lp(X,µ), and

‖ĝn‖p ≤
n∑
i=1
‖fi‖p ≤

∞∑
i=1
‖fi‖p = a <∞

for all n ∈ N. By construction, ĝn ↗ ĝ as n→∞. Hence, ĝpn ↗ ĝp. Hence,∫
X
ĝp dµ = lim

n→∞

∫
X
ĝpn dµ = lim

n→∞
‖ĝn‖pp ≤ ap <∞.

Hence, ĝ ∈ Lp(X,µ). Since ĝ : X → [0,∞], this implies ĝ ist finite µ-almost everywhere,
i.e., by possibly changing ĝ on a set of measure 0, we get a finite-valued function g : X →
[0,∞) with g(t) =

∑∞
i=1 |fi(t)| µ-almost everywhere. By Lemma 3.16 (for the Banach

space K), it follows that f(t) :=
∑∞
i=1 fi(t) is welldefined/finite for all t ∈ X r N ,

µ(N) = 0. Setting f(t) = 0 for all t ∈ N makes f measurable, f : X → K. It remains to
show that f ∈ Lp(X,µ) and that f =

∑∞
i=1 fi in Lp(X,µ), i.e.

∥∥∥∑n−1
i=1 fi − f

∥∥∥
p
→ 0 as

n→∞, i.e. ∫
X

∣∣∣ ∞∑
i=n

fi
∣∣∣p dµ→ 0, n→∞.

By construction, |f | ≤
∑∞
i=1 |fi| = ĝ and∫

X
|f |p dµ ≤

∫
X
ĝp dµ ≤ ap <∞.

So, f ∈ Lp(X,µ). Finally, let

hn =
∣∣∣ ∞∑
i=n

fi
∣∣∣p.

Then hn → 0 µ-almost everywhere as n→∞ and 0 ≤ hn ≤ (
∑∞
i=n |fi|)

p ≤ ĝp ∈ L1(X,µ).
Now, by Lebesgue’s theorem of dominated convergence,∫

X
hn dµ→

∫
X

0 dµ = 0, n→∞.
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Remark. In the case X = N, A = 2N and µ the counting measure on N, we have
Lp(X,µ) = `p(N). So, in fact, the proof of completeness of `p is contained in the above.

For p =∞, the definition of L∞(X,µ) is slightly different (here, (B(X,C), d∞) is not
the good concept).

Definition 3.19. Define

L∞(X,µ) = {f : X → C : f is measurable and ∃N ∈ A, µ(N) = 0. f |XrN is bounded}.

and L∞(X,µ) = L∞(X,µ)/∼ where again f ∼ g iff f = g µ-almost everywhere. We
set

‖[f ]‖∞ = inf
N∈A
µ(N)=0

sup
t∈XrN

|f(t)| = inf
N∈A
µ(N)=0

‖f |XrN‖∞.

‖[f ]‖∞ is called the essential supremum of f . It is “easy” to see that L∞(X,µ) is a
vectorspace and ‖ · ‖∞ is a norm on L∞(X,µ), and that (L∞(X,µ), ‖ · ‖∞) is a Banach
space.

Remark. Hölder’s inequality holds for p, q ∈ [1,∞], 1
p + 1

q = 1 (with the convention
1
∞ = 0).

4 Cornerstones of functional analysis
We return to the general abstract theory, to prove some of the most important results in
functional analysis. Recall, for X a normed K-vectorspace, X ′ = B(X,K) is called the
dual of X. There are two important questions about this space. Firstly, is X ′ = {0}?
Secondly, what “is” X ′ for concrete examples of Banach spaces X?

Definition 4.1. Let E be an R-vector space. A map p : E → R is called a sublinear
functional iff for x, y ∈ E

(i) p(x+ y) ≤ p(x) + p(y)

(ii) p(tx) = tp(x) for all t ≥ 0.

Example. Any semi-norm and any norm is a sublinear functional

Theorem 4.2 (Hahn-Banach). Let E be an R-vector space, V0 ⊆ E a linear subspace.
Let p : E → R be a sublinear functional, and f0 : V0 → R a linear form, such that
f0(x) ≤ p(x) for all x ∈ V0. Then there exists a linear form f : E → R such that
f |V0 = f0 and f(x) ≤ p(x) for all x ∈ E.

Proof. Idea: 1) Extend f0 to “one dimension more” (preserving the bound) and 2) “keep
going until done”.
For step 1), let x1 ∈ E r V0 (this is nonempty, otherwise we are done) and define

V1 = V0 ⊕ span x1 = {x + λx1 : x ∈ V0, λ ∈ R} ⊆ E (linear subspace). For x, y ∈ V0:
f0(x) + f0(y) = f0(x + y) ≤ p(x + y) = p(x − x1 + x1 + y) ≤ p(x − x1) + p(x1 + y).
Hence, f0(x)− p(x− x1) ≤ p(x1 + y)− f0(y). Let α = supx∈V0(f0(x)− p(x− x1)). Then
f0(x)− p(x− x1) ≤ α for all x ∈ E, hence
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(1) f0(x)− α ≤ p(x− x1) for all x ∈ V0

(2) f0(y) + α ≤ p(x1 + y) for all y ∈ V0.

Now, let f1 : V1 → R be given by f1(x+λx1) = f0(x)+λα for x+λx1 ∈ V1 (x ∈ V0, λ ∈ R).
Then f1 is linear and f1|V0 = f0. We still need to prove that f1(x + λx1) ≤ p(x + λx1)
for all x ∈ V0, λ ∈ R. Use (2) for λ > 0, y ∈ V0

f0

(
y

λ

)
+ α ≤ p

(
y

λ
+ x1

)
So

f1(y + λx1) = f0(y) + λα = λ

(
f0

(
y

λ

)
+ α

)
≤ λp

(
y

λ
+ x1

)
= p(y + λx1)

If λ < 0, then −λ > 0. Let x ∈ V0. By (1),

f0

(
x

−λ

)
− α ≤ p

(
x

−λ
− x1

)
Hence

f1(x+ λx1) = f0(x) + λα = −λ
(
f0

(
x

−λ

)
− α

)
≤ −λp

(
x

−λ
− x1

)
= p(x+ λx1)

Hence, f1 : V1 → R is linear, f1|V0 = f0 and f1(x) ≤ p(x) for all x ∈ V1.
For step 2), let S be the family of all pairs (V ′, f ′) with V0 ⊆ V ′ ⊆ E, V ′ linear

subspace, and f ′ : V ′ → R with f ′|V0 = f0 and f ′(x) ≤ p(x) for all x ∈ V ′. We define
a partial ordering ≺ on S by (V ′, f ′) ≺ (V ′′, f ′′) iff V ′ ⊆ V ′′ and f ′′|V ′ = f ′. Let
T ⊆ S be totally ordered (i.e. for any (V ′, f ′), (V ′′, f ′′) ∈ T , either (V ′, f ′) ≺ (V ′′, f ′′) or
(V ′′, f ′′) ≺ (V ′, f ′)). Let V ∗ =

⋃
V ∈T V . V ∗ is a linear subspace of E. Let f∗(x) = f ′(x)

for x ∈ V ′ ∈ T . This is well-defined since T is totally ordered. Now (V ′, f ′) ≺ (V ∗, f∗)
for all (V ′, f ′) ∈ T . Hence, (V ∗, f∗) is an upper bound for T . In other words: Every
totally ordered subfamily T of S has an upper bound. By Zorn’s Lemma, S has a
maximal element, i.e. there exists (V, f) ∈ S such that if (V ′, f ′) ∈ S satisfies (V, f) ≺
(V ′, f ′), then (V, f) = (V ′, f ′). Note (by step 1), V ≡ E, and so f : E → R is linear and
fV0 = f0 and f(x) ≤ p(x) for all x ∈ E.

Remark. Note that −f(x) = f(−x) ≤ p(−x), so −p(−x) ≤ f(x) ≤ p(x) for all x ∈ E.

Theorem 4.3 (Hahn-Banach for semi-norms). Let E be a K-vector space (K = R or
K = C) and V0 ⊆ E a linear subspace. Let p : E → R be a semi-norm, and f0 : V0 → K
be a K-linear form, with |f0(x)| ≤ p(x) for all x ∈ V0. Then there exists a K-linear form
f : E → K such that f |V0 = f0 and |f(x)| ≤ p(x) for all x ∈ E.

Proof. If K = R, then |f(x)| ≤ p(x) is equivalent to −p(−x) ≤ f(x) ≤ p(x), since p
is a seminorm, so the result follows from 4.2. If K = C: Consider the real linear form
u0 = Re f0 : V0 → R (Re f0 ≤ |f0| ≤ p). By 4.2, there exists a real linear form u : E → R
with u(x) ≤ p(x) for all x ∈ E and u|V0 = u0 = Re f0. Let f : E → C be defined by
f(x) := u(x) − iu(ix) ∈ C using that u is real linear, one gets that f is C-linear and,
using z = Re z − iRe(iz), one has that f |V0 = f0. For x ∈ E, choose α ∈ C, |α| = 1,
such that |f(x)| = αf(x) = f(αx) = u(αx) ≤ p(αx) = |α|p(x) = p(x).
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Theorem 4.4 (Hahn-Banach). Let X be a normed K-linear vector space, let V0 ⊆ X,
and f0 : V0 → K, f0 ∈ V ′0 (f0 is a bounded linear form). Then f0 has an extension
f : X → K, f |V0 = f0, f ∈ X ′ and ‖f‖ = ‖f0‖.

Proof. Use Theorem 4.3 with p(x) = ‖f0‖ · ‖x‖.

Corollary 4.5. Let X be a Banach space and x ∈ X, x 6= 0. Then there exists an
f ∈ X ′ such that f(x) 6= 0.

Proof. Define f0(αx) = α‖x‖ for αx ∈ span{x} ≡ V0. Then there exists f : X → K,
f ∈ X ′, such that f |V0 = f0. In particular, f(x) = f0(x) = ‖x‖ 6= 0.

Remark. If x 6= y, x, y ∈ X, then x−y 6= 0, so there exists f ∈ X ′ such that f(x−y) 6= 0,
hence f(x) 6= f(y). Hence, X ′ seperates points in X: If f(x) = f(y) for all f ∈ X ′, then
x = y.

4.1 3 consequences of Baire’s theorem
Recall Baire’s theorem: If M = {A, d} is a complete metric space and {Vn}n∈N is a
countable family of open, dense subsets of A, then

⋂
n∈N Vn is also dense. On problem

sheet 5 it was proven a corollary of Baire’s theorem that a complete metric space is never
the union of a countable number of nowhere dense, closed subsets.

Theorem 4.6 (Banach-Steinhaus/Principle of uniform boundedness). Let X be a Ba-
nach space, Y a normed space, I some index set, and for each i ∈ I a bounded linear
operator Ti : X → Y . If supi∈I ‖Tix‖ <∞ for all x ∈ X, then supi∈I ‖Ti‖ <∞.

Proof. For n ∈ N, let En = {x ∈ X : supi∈I ‖Tix‖ ≤ n}. Then X =
⋃
n∈NEn. Now,

En =
⋂
i∈I ‖Ti(·)‖−1([0, n]), hence all En are closed, since [0, n] is closed and ‖Ti(·)‖ is

continuous because Ti is continuous. So, by Baire, there exists n0 ∈ N such that En0 has
an interior point y ∈ En0 , i.e. there is an ε > 0 such that ‖x − y‖ ≤ ε implies x ∈ En0 .
Note, that En0 is symmetric, i.e. z ∈ En0 implies −z ∈ En0 . Hence, ‖x − (−y)‖ ≤ ε
implies x ∈ En0 . Also, En0 is convex, so ‖u‖ ≤ ε implies u = 1

2
(
(u+ y) + (u− y)

)
∈ En0 .

Hence, ‖u‖ ≤ ε implies u ∈ En0 , that is ‖u‖ ≤ ε implies ‖Tiu‖ ≤ n0 for all i ∈ I. So, if
x ∈ X, ‖x‖ ≤ 1, then ‖εx‖ ≤ ε, so ‖Ti(εx)‖ ≤ n0 for all i ∈ I. Hence, ‖x‖ ≤ 1 implies
‖Tix‖ ≤ n0/ε for all i ∈ I, so ‖Ti‖ ≤ n0/ε <∞ for all i ∈ I.

Remark. There exist more general versions of this theorem, but the one given here is
the most used.

Definition 4.7. A map between two metric spaces is called open iff the image of any
open set is open.

Remark.
(a) Note the difference to “continuity”.
(b) One cannot in general replace with “closed to closed”.
(c) Clearly, a bijective map is open iff its inverse is continuous.
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Lemma 4.8. Let X,Y be normed spaces and T : X → Y linear. Then the following are
equivalent:

(i) T is open.

(ii) For all r > 0 there exists ε > 0 such that Bε(0) ⊆ T (Br(0)).

(iii) There exists ε > 0 such that Bε(0) ⊆ T (B1(0)).

Proof. To see (i) ⇒ (ii) note that T (Br(0)) is open in Y and 0 ∈ T (Br(0)). To prove
(ii) ⇒ (i), let U ⊆ X be open, and x ∈ U . Then Tx ∈ T (U). Since U is open, there
exists r > 0 such that Br(x) ⊆ U . Note that Br(x) = x + Br(0) = x + rB1(0). Hence,
x + Br(0) ⊆ U , so Tx + T (Br(0)) ⊆ T (U). Form (ii) we have ε > 0 such that Bε(0) ⊆
T (Br(0)), hence, Tx+Bε(0) ⊆ Tx+ T (Br(0)) ⊆ T (U). Now, Tx+Bε(0) = Bε(Tx), so
Tx+Bε(0) is open, contains Tx and is contained in T (U). (ii)⇔ (iii) is clear.

Remark. If T : X → Y is linear and open, then T is surjective.

Theorem 4.9 (Open mapping theorem). Let X and Y be Banach spaces, and assume
T ∈ B(X,Y ) is surjective. Then T is open.

Proof. We shall prove that (iii) in Lemma 4.8 holds. This is done in 2 steps: First
we prove that there exists ε0 > 0 such that Bε0 ⊆ T (B1(0)). Since T is a surjection,
Y =

⋃
n∈N T (Bn(0)). Since Y is Banach, Baire’s theorem implies that there exists N ∈ N

such that (T (BN (0)))◦ 6= ∅, i.e. there exists y0 ∈ T (BN (0)) and ε > 0 such that Bε(y0) ⊆
T (BN (0)), in other words ‖z − y0‖ < ε implies z ∈ T (BN (0)) (∗). Now, T (BN (0)) is
symmetric, hence −y0 also satisfies (∗). Let y ∈ Y with ‖y‖ < ε. Then ‖(y0+y)−y0‖ < ε,
hence y0 + y ∈ T (BN (0)). Similarly, ‖y‖ < ε implies −y0 + y ∈ T (BN (0)). Therefore,
since T (BN (0)) is convex, we have y = 1

2
(
(y0 + y + (−y0 + y)

)
∈ T (BN (0)), if ‖y‖ < ε.

Hence, Bε(0) ⊆ T (BN (0)). So, Bε/N (0) ⊆ T (B1(0)). Then ε0 is as claimed.
Now for the second step, let ε0 > 0 be as above. We now prove that Bε0 ⊆ T (B1(0)).

This will complete the proof. Let y ∈ Y with ‖y‖ < ε0. Take ε > 0 such that ‖y‖ <
ε < ε0 and write y = ε0

ε y. Then ‖y‖ < ε0, so y ∈ T (B1(0)). Choose α ∈ (0, 1) such that
0 < ε

ε0
1

1−α < 1 and take y0 ∈ T (B1(0)) such that ‖y − y0‖ < αε0. Since y0 ∈ T (B1(0)),
there is a x0 ∈ B1(0) such that y0 = Tx0. Now let z0 = y−y0

α . Then ‖z0‖ < ε0. So
z0 ∈ Bε0(0) ⊆ T (B1(0)). So there exists y1 ∈ T (B1(0)) such that ‖z0 − y1‖ < αε0, that
is ‖y− (y0 +αy1)‖ ≤ α2ε0. Repeat on z1 = y−(y0+αy1)

α2 , to get y2 = Tx2 ∈ T (B1(0)) with
‖z1 − y2‖ < αε0. Inductively, we get a sequence {xn}n∈N ⊆ B1(0) such that

∥∥∥y − n∑
i=0

αiyi
∥∥∥ =

∥∥∥y − T( n∑
i=0

αixi
)∥∥∥ < αn+1ε0.

Since α ∈ (0, 1), and ‖xi‖ < 1 for all i ∈ N, the series
∑∞
i=0 α

ixi is absolutely convergent.
Since X is Banach, the series

∑∞
i=0 α

ixi is convergent in X. Write x =
∑∞
i=1 α

ixi ∈ X.
Since T is bounded,

T
( n∑
i=0

αixi
)

n→∞−−−→ Tx
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in Y and by construction

T
( n∑
i=0

αixi
)

n→∞−−−→ y.

Finally, let x = ε
ε0
x. Then Tx = y. Also

‖x‖ = ε

ε0
‖x‖ = ε

ε0

∥∥∥ ∞∑
i=0

αixi
∥∥∥ ≤ ε

ε0

∞∑
i=0

αi ≤ ε

ε0

1
1− α < 1.

Corollary 4.10. Let X and Y be Banach spaces, and assume T ∈ B(X,Y ) which is
bijective. Then T is a homeomorphism.

Corollary 4.11. Let ‖ · ‖ and ‖ · ‖′ be two norms on the same vectorspace X, such that
{X, ‖ · ‖} and {X, ‖ · ‖′} are both Banach. Assume there exists a constant M > 0 such
that ‖x‖ ≤M‖x‖′ for all x ∈ X. Then ‖ · ‖ and ‖ · ‖′ are equivalent.

Corollary 4.12. Let X, Y be Banach spaces, and assume T ∈ B(X,Y ) is injective.
Then T−1 : R(T )→ X is bounded iff R(T ) ⊆ Y is closed.

Definition 4.13. Let X, Y be normed spaces, D ⊆ X a linear subspace, and T : D → Y
a linear map (we write D = dom(T ), T : X ⊇ D → Y ). We call T closed (a closed linear
operator) iff for any sequence {xn}n∈N ⊆ D such that xn → x as n→∞ and Txn → y
as n→∞ we have x ∈ D and Tx = y.

Remark. Note the relation to continuity: If dom(T ) = X, look at:

(a) xn → x as n→∞.

(b) {Txn} is convergent.

(c) Tx = y.

Then T is continuous iff (a)⇒ (b) ∧ (c). T is closed iff (a) ∧ (b)⇒ (c).
Remark. A closed operator does not in general map closed sets to closed sets.

Definition 4.14. For linear T : X ⊇ D → Y we define the graph of T by

gr(T ) = {(x, Tx) : x ∈ D} ⊆ X × Y.

Lemma 4.15. Let X,Y,D, T be as in 4.14. Then
(a) gr(T ) is a linear subspace of X × Y .
(b) T is a closed operator iff gr(T ) is closed in X ⊕1 Y (here ‖(x, y)‖1 = ‖x‖X + ‖y‖Y ).

Proof. This is left as an exercise.

Lemma 4.16. Let X,Y be Banach spaces, D ⊆ X a linear subspace, T : X ⊇ D → Y
a closed operator. Then
(a) (D, ‖ · ‖′) with ‖x‖′ = ‖x‖X + ‖Tx‖Y is a Banach space. ‖ · ‖′ is called the graph

norm.
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(b) T : (D, ‖ · ‖′)→ (Y, ‖ · ‖Y ) is bounded.

Proof. Let {xn}n∈N ⊆ D be Cauchy with respect to ‖ · ‖′. Then {xn} is Cauchy with
respect to ‖ · ‖X , and {Txn}n∈N is Cauchy (in Y ) with respect to ‖ · ‖Y . Hence, since
X and Y are Banach, there exist x ∈ X, y ∈ Y such that xn → x as n → ∞ and
Txn → y as n → ∞. Since T is closed, x ∈ D and y = Tx. Then ‖xn − x‖′ =
‖xn − x‖X + ‖Txn − y‖Y → 0 as n → ∞. So, xn → x as n → ∞ with respect to ‖ · ‖′.
(b) is trivial.

Theorem 4.17. Let X, Y be Banach spaces, D ⊆ X a linear subspace, T : X ⊇ D → Y
closed and surjective. Then T is open. If T is also bijective, then T−1 is continuous.

Proof. By Lemma 4.16 and Theorem 4.9, T : (D, ‖ · ‖′) → (Y, ‖ · ‖Y ) is open. Since
‖x‖X ≤ ‖x‖′ for all x ∈ D, we have that any ‖ · ‖X -open set is also ‖ · ‖′-open. So
T is also open as a map (D, ‖ · ‖X) → (Y, ‖ · ‖Y ). If T is also bijective, then T−1 is
(Y, ‖ · ‖Y )-(X, ‖ · ‖X)-continuous.

Theorem 4.18 (Closed graph theorem). Let X, Y be Banach spaces, and assume
T : X → Y is linear and a closed operator. Then T is continuous.

Proof. By Lemma 4.16(b), T : X → Y is continuous, when X is equipped with the graph
norm, ‖x‖′ = ‖x‖X + ‖Tx‖Y . By corollary 4.11, ‖ · ‖X and ‖ · ‖′ are equivalent norms,
since ‖x‖X ≤ ‖x‖′ and (X, ‖ · ‖) is Banach by assumption and (X, ‖ · ‖′) is Banach by
4.16(a). Therefore, T is also continuous with respect to ‖ · ‖X .

Remark. The theorem says a closed operator on all of a Banach space is automatically
continuous. This, and the following consequence of Banach-Steinhaus illustrates why it
is almost impossible to explicitly define a non-continuous linear operator on a Banach
space.

Proposition 4.19. Let X be a Banach space, Y a normed space, and let Tn ∈ B(X,Y ),
n ∈ N. Assume that Tx := limn→∞ Tnx exists for all x ∈ X. Then T is linear and
continuous.

Proof. It is clear that T is linear. Since {Tnx}n∈N ⊆ Y is convergent for all x ∈ X,
{Tnx}n∈N ⊆ Y is bounded, hence supn∈N ‖Tnx‖Y < ∞ for all x ∈ X. Hence, by
Banach-Steinhaus, supn∈N ‖Tn‖ = M < ∞. It follows that ‖Tx‖ = limn→∞ ‖Tnx‖ ≤
limn→∞ ‖Tn‖‖x‖ ≤M‖x‖, hence T ∈ B(X,Y ).

Recall, that for a normed space X, X ′ = B(X,K) is called the dual of X. Let x ∈ X,
then ‖x‖ = sup{|f(x)| : f ∈ X ′, ‖f‖ ≤ 1} = max{|f(x)| : f ∈ X ′, ‖f‖ ≤ 1}.
Remark. Let x ∈ X and define ι(x) : X ′ → K, f 7→ f(x). Then ι is linear: (ι(x))(λf +
g) = (λf + g)(x) = λf(x) + g(x) = λι(x)(f) + ι(x)(g) and

sup{|(ι(x))(f)| : f ∈ X ′, ‖f‖ ≤ 1} = sup{|f(x)| : f ∈ X ′, ‖f‖ ≤ 1} = ‖x‖ <∞.

Hence, ι(x) ∈ B(X ′,K), i.e. ι(x) ∈ X ′′, and ‖ι(x)‖X′′ = ‖x‖X . Hence, ι : X → X ′′ is an
isometrical embedding. ι is called the canonical embedding.
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Definition 4.20. A subsetM ⊆ X (X normed) is called weakly bounded if for all f ∈ X ′,
supx∈M |f(x)| < ∞. By the above, M is weakly bounded iff ι(M) ⊆ X ′′ is pointwise
bounded.

Proposition 4.21. A weakly bounded set in a normed space is also bounded in the norm
topology, i.e. there exists R > 0 such that M ⊆ BR(0).

Proof. Use the principle of uniform boundedness.

Definition 4.22. A normed space X is called reflexive if ι : X → X ′′ is surjective.

Remark. Any Hilbert space is reflexive.
Remark. Any reflexive space is complete.
Remark. If X is reflexive, and if X ∼= Y , then Y is reflexive.
Remark. If X and Y are reflexive, X ⊕1 Y is reflexive.

Example. `p is reflexive for 1 < p < ∞, since (`p)′ = `q, 1
p + 1

q = 1, and hence
(`p)′′ = (`q)′ = `p. However, (`1)′ = `∞ and (`∞)′ 6= `1. Hence, `1 and `∞ are not
reflexive. Furthermore, (Lp)′ = Lq if 1 < p <∞, which we will see later.

Definition 4.23.
(a) A sequence {xn}n∈N ⊆ X is said to converge weakly (xk ⇀ x as k → ∞ in X) if

f(xk)→ f(x) as k →∞ for all f ∈ X ′.
(b) A sequence {fn}n∈N ⊆ X ′ converges weak* to f ∈ X ′ (written fk

∗−⇀ f) if fk(x) →
f(x) as k →∞ for all x ∈ X.

(c) Similarly, one defines the notion of Cauchy sequences (weak, weak*).
(d) A subset M ⊆ X is called weakly sequentially compact if every sequence in M has a

weakly convergent subsequence (with limit in M). Similarly for weak* sequentially
compact.

(e) To avoid confusion with usual convergence, we call convergence with respect to the
norm strong convergence.

Remark. xk → x implies xk ⇀ x since |f(xk)− f(x)| ≤ ‖f‖‖xk − x‖.
Remark. Since X is only canonically embedded in X ′′, weak convergence in X ′ is a priori
stronger than weak* convergence.
Remark. One can, both for weak and weak* convergence, define this convergence by
topologies (“complicated”).
Remark. By the canonical embedding ι : X → X ′′ we have xk ⇀ x as k → ∞ in X iff
ι(xk)

∗−⇀ ι(x) as k →∞ in X ′′.
Remark 4.24.

1. The weak limit of a sequence is unique (use Hahn-Banach). Also the weak* limit
is unique.
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2. Strong convergence implies weak convergence (and it also implies weak* conver-
gence). The opposite is not true: take X = `p, X ′ = `q with 1

p + 1
q = 1 and

en ∈ `q = X ′. Then for all x ∈ `p, en(x) =
∑
i∈N δinxi = xn → 0 as n → ∞. I.e.

{en}n∈N ⊆ X ′ and en(x) → 0 as n → ∞ for all x ∈ X. Hence en
∗−⇀ 0 as n → ∞.

But ‖en‖X′ = 1, so en 6→ 0 as n→∞.
3. xk ⇀ x, k →∞, in X implies ‖x‖ ≤ lim infk→∞ ‖xk‖.
4. fk

∗−⇀ f , k →∞, in X ′ implies ‖f‖ ≤ lim infk→∞ ‖fk‖.
5. The norm ‖ · ‖ : X → R or ‖ · ‖ : X ′ → R is weak/weak* lower semi-continuous.
6. Weak and weak* convergent sequences are bounded (in norm).

Theorem 4.25. Let X be separable. Then the closed unit ball B1(0) ⊆ X ′ is weak*
sequentially compact, i.e. any bounded sequence in X ′ has a weak* convergent subse-
quence.

Proof. Let {xn : n ∈ N} ⊆ X be dense and let {fk}k∈N ⊆ X ′ , with ‖fk‖ ≤ 1, k ∈ N.
Then {fk(xn)}k∈N ⊆ K (n ∈ N fixed) is a bounded sequence in K. By a diagonal
argument (à la Cantor, but different) there exists a subsequence {fkm}m∈N such that,
for all n ∈ N, {fkm(xn)}m∈N is convergent in K, i.e. limm→∞ fkm(xn) exists for all n ∈ N.
Then, for all y ∈ Y = span{xn : n ∈ N} ⊆ X the limit limm→∞ fkm(y) exists. Define
f(y) = limm→∞ fkm(y) for y ∈ Y . Then f is linear and |f(y)| = limm→∞ |fkm(y)| ≤
limm→∞ ‖fkm‖‖y‖ ≤ ‖y‖ for all y ∈ Y . Then f has a unique extension to a bounded
linear functional on X (again called f). So f ∈ X ′, with ‖f‖ ≤ 1 and, for x ∈ X, y ∈ Y ,∣∣(f − fkm)(x)

∣∣ ≤ ∣∣(f − fkm)(x− y)
∣∣+ ∣∣(f − fkm)(y)

∣∣ ≤ 2‖x− y‖+
∣∣(f − fkm)(y)

∣∣.
The first term can be made arbitrarily small since Y = X. The second term goes to 0
as m→∞ by definition of f . Hence fkm

∗−⇀ f as m→∞.

Definition 4.26. For (n, ϕ, ε) with n ∈ N, ϕ = (ϕ1, . . . , ϕn) ∈ (X ′)n and ε > 0 define

Un,ϕ,ε = {x ∈ X : |ϕk(x)| < ε for k = 1, . . . , n}

and
TW = {A ⊆ X : x ∈ A =⇒ x+ Un,ϕ,ε ⊆ A for some Un,ϕ,ε}.

Then TW is a topology on X and it is the weakest topology T on X such that all
f ∈ X ′ are continuous with respect to T as maps f : X → K. {X,TW } is neither a
normed nor a metric space, but (as in Lemma 2.2) the linear structure on X is TW

continuous. Finally, convergence in TW is the same as weak convergence ({X,TW } is a
“locally convex topological vector space”). A similar construction works for the topology
TW ∗ on X ′ giving weak* convergence in X ′.

Remark 4.27.
1. If X is reflexive then weak* and weak convergence in X ′ is the same.
2. If X is reflexive and V ⊆ X is a closed subspace, then V is reflexive.
3. X is reflexive iff X ′ is reflexive.
4. If X ′ is separable, X is separable.
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Theorem 4.28 (Banach-Alaoglu). If X is a reflexive Banach space, then every norm-
bounded sequence has a weakly convergent subsequence, i.e. B1(0) is weakly sequentially
compact.

Proof. Let {xk}k∈N ⊆ B1(0) ⊆ X and Y = span{xk : k ∈ N} ⊆ X. Then Y is reflexive
and separable. Then Y ′′ = ι(Y ) (where ι is the canonical embedding) is separable, so
Y ′ is separable. Therefore, we can use 4.25 on Y ′ on the sequence {ι(xk)}k∈N ⊆ Y ′′, i.e.
there exists y ∈ Y ′′ such that for a subsequence {ι(xkm)}m∈N, ι(xkm)(f) → y(f) for all
f ∈ Y ′. Let x = ι−1(y) ∈ Y . Then this means that ι(xkm)(f) = f(xkm)→ y(f) = f(x)
as m → ∞ for all f ∈ Y ′. Note that for ϕ ∈ X ′, we have ϕ|Y ∈ Y ′. So it follows that
ϕ(xkm)→ ϕ(x) as m→∞ for all ϕ ∈ X ′, i.e. xkm ⇀ x as m→∞ in X.

Remark. In particular any Hilbert space is reflexive, so the closed unit ball in a Hilbert
space is weakly sequentially compact.

5 Topics on operators
Definition 5.1. The compact (linear) operators from X to Y are defined by

K(X,Y ) = {T ∈ B(X,Y ) : T (B1(0)) is compact}.

Remark.
(i) If Y is Banach, then “T (B1(0)) compact” can be replaced by “T (B1(0)) precom-

pact”.
(ii) That is, T ∈ K(X,Y ) iff T maps bounded sequences (in X) into sequences (in Y )

which have a convergent subsequence.
(iii) For k ∈ C(I2), I = [0, 1],

(Kf)(x) =
∫ 1

0
k(x, y)f(y) dy, x ∈ I, f ∈ C(I)

defines a compact operator K : C(I)→ C(I).

Proposition 5.2. Let T ∈ B(X,Y ) and define, for y′ ∈ Y ′, T ′(y′)(x) = y′(Tx). This
defines a linear map T ′ : Y ′ → X ′ called the adjoint of T . We have T ′ ∈ B(Y ′, X ′) with
‖T ′‖ = ‖T‖ and ·′ : B(X,Y )→ B(Y ′, X ′), T 7→ T ′ is an isometric embedding.

Proof. We have (T ′y′)(λx1+x2) = y′(T (λx1+x2)) = λy′(Tx1)+y′(Tx2) = λ(T ′y′)(x1)+
(T ′y′)(x2). Hence, T ′y′ : X → K is linear. Also |(T ′y′)(x)| = |y′(Tx)| ≤ ‖y′‖‖Tx‖ ≤
‖y′‖‖T‖‖x‖, so T ′y′ ∈ X ′. Hence, T ′ is well-defined. T ′ is linear, since (T ′(λy′1+y′2))(x) =
(λy′1 + y′2)(Tx) + λy′1(Tx) + y′2(Tx) = λT ′y′1(x) + T ′y′2(x) = (λT ′y′1 + T ′y′2)(x), i.e.
T ′(λy′1 + y′2) = λT ′y′1 + T ′y′2.
From the above, one sees ‖T ′y′‖ ≤ ‖T‖‖y′‖, i.e. T ′ is bounded and ‖T ′‖ ≤ ‖T‖. On

the other hand, for ‖y′‖ ≤ 1, y′ ∈ Y ′, ‖x‖ ≤ 1, x ∈ X, then

‖T ′‖ ≥ ‖T ′y′‖ ≥ |(T ′y′)(x)| = |y′(Tx)|.

If Tx 6= 0, then by Hahn-Banach, there is a ỹ′ such that ‖ỹ′‖ = 1 and ỹ′(Tx) = ‖Tx‖.
Hence, ‖T ′‖ ≥ ‖Tx‖. Hence, ‖T ′‖ ≥ sup‖x‖≤1 ‖Tx‖ = ‖T‖, so ‖T ′‖ = ‖T‖.
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Definition 5.3 (Hilbert space adjoint). Let H be a Hilbert space, and let Φ: H →
H ′, y 7→ 〈y,−〉 be the map in Theorem 2.32 (Fréchet-Riesz), and let T ∈ B(H). Then
T ∗ = Φ−1T ′Φ is called the Hilbert space adjoint of T . It satisfies

〈T ∗x, y〉 = 〈x, Ty〉, ∀x, y ∈ H.

T is called selfadjoint if T ∗ = T . Note, that T is assumed to be bounded. For unbounded
operators, the definition of adjoint and therefore of selfadjointness is more complicated
(for example in quantum mechanics).

Lemma 5.4 (algebraic properties). We have
(1) (αT1 + T2)′ = αT ′1 + T ′2 for T1, T2 ∈ B(X,Y ) and α ∈ K.
(1)∗ (αT1 + T2)∗ = αT ∗1 + T ∗2 for T1, T2 ∈ B(H) and α ∈ K.
(2) I ′ = I for I ∈ B(X), I : X → X,x 7→ x.
(3) For T1 ∈ B(X,Y ), T2 ∈ B(Y, Z), (T2T1)′ = T ′1T

′
2.

(4) With ιX : X → X ′′ and ιY : Y → Y ′′ the canonical embeddings and T ∈ B(X,Y ),
we have T ′′ιX = ιY T .

(4)∗ For T ∈ B(H), T ∗∗ = T .

Proposition 5.5. Let X,Y be Banach spaces and T ∈ B(X,Y ). Then T−1 ∈ B(Y,X)
exists if and only if (T ′)−1 ∈ B(X ′, Y ′) exists and, in this case, (T−1)′ = (T ′)−1. (or, if
X = Y = H a Hilbert space, (T ∗)−1 = (T−1)∗).

Definition 5.6. Let T ∈ B(X) with a Banach space X over C. We define the resolvent
set of T by

ρ(T ) = {λ ∈ C : N(T − λI) = 0 and R(T − λI) = X}

and the spectrum of T by
σ(T ) = Cr ρ(T ).

The spectrum can be split in three parts. The point spectrum is

σp(T ) = {λ ∈ C : N(T − λI) 6= 0}.

The continuous spectrum is

σc(T ) = {λ ∈ C : N(T − λI) = 0 and R(T − λI) 6= X, but R(T − λI) = X}.

The rest/residual spectrum is

σr(T ) = {λ ∈ C : λ ∈ C : N(T − λI) = 0 and R(T − λI) 6= X}.

Remark.
(1) Note that λ ∈ ρ(T ) if and only if T − λI : X → X is bijective. This is equivalent to

the existence of Rλ(T ) := (T − λI)−1 ∈ B(X), called the resolvent of T (at λ).
(2) λ ∈ σp(T ) if and only if there exists x 6= 0 such that Tx = λx. In this case, λ is

called an eigenvalue and x is called an eigenvector (x ∈ X). However, in the cases
where X is some space of functions — C (I), Lp(Ω), C α(I), C k,α(I), ... — such an
X is normally called an eigenfunction. N(T − λI) is called the eigenspace belonging
to the eigenvalue λ. It is a T -invariant subspace, i.e. T N(T − λI) ⊆ N(T − λI).
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Remark. If f is an analytic function, i.e. f can be represented by a convergent power
series, f(x) =

∑∞
n=0 anx

n, we can define f(T ) =
∑∞
n=0 anT

n (which is defined since
B(X) is Banach).

Proposition 5.7. Let X be a Banach space, T ∈ B(X) with ‖T‖ < 1. Then (I−T )−1 ∈
B(X) and (I − T )−1 =

∑∞
n=0 T

n (the Neumann series) in B(X).

Proof. Let Sk =
∑k
n=0 T

n. Then, for k < `,

‖S` − Sk‖ =
∥∥∥ ∑
k<n≤`

Tn
∥∥∥ ≤ ∑

k<n≤`
‖Tn‖ ≤

∑
k<n≤`

‖T‖n ≤
∞∑

n=k+1
‖T‖n k→∞−−−→ 0

Hence, {Sk} is Cauchy in B(X), so convergent. Let S = limk→∞ Sk in B(X) and for
k →∞:

(I − T )Skx =
k∑

n=0
(Tn − Tn+1)x = x− T k+1x

k→∞−−−→ x

since ‖T k+1x‖ ≤ ‖T‖k+1‖x‖. On the other hand (I − T )Skx → (I − T )Sx as k → ∞.
Hence, S = (I − T )−1.

Proposition 5.8. Let T ∈ B(X). Then ρ(T ) ⊆ C is an open set, i.e. σ(T ) = Cr ρ(T )
is closed, and the resolvent function ρ(T ) 3 λ 7→ Rλ(T ) ∈ B(X) is a complex analytic
map from ρ(T ) to B(X) with ‖Rλ(T )‖−1 ≤ d(λ, σ(T )), i.e. for all λ0 ∈ ρ(T ), there
exists r > 0 such that

Rλ(T ) =
∞∑
n=0

an(λ− λ0)nTn

for all λ ∈ Br(λ0).

Proof. Use that (I − A)−1 =
∑∞
n=0A

n if ‖A‖ < 1 and T − (λ − µ)I = (T − λI)(I −
µRλ(T )) =: (T−λI)S(µ). Then S(µ) is invertible if |µ|‖Rλ(T )‖ < 1. Hence, Rλ−µ(T ) =
S(µ)−1Rλ(T ) =

∑∞
k=0 µ

kRλ(T )k+1.

Proposition 5.9. Let X,Y be Banach spaces. Then the set of invertible operators in
B(X,Y ) is an open set. If X 6= 0 and Y 6= 0, then for S, T ∈ B(X), T invertible and
‖S − T‖ < ‖T−1‖−1 implies S is invertible.

Proof. Let R = T − S. Then S = T (I − T−1R) = (I −RT−1)T where ‖T−1R‖ < 1 and
‖RT−1‖ < 1. Now use 5.7.

Definition 5.10. An operator A ∈ B(X,Y ) is called a Fredholm operator (“is Fred-
holm”) iff

(i) dim N(A) <∞.

(ii) R(A) ⊆ Y is closed.

(iii) codim R(A) := dim
(
Y/R(A)

)
<∞.
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The index of A is ind(A) = dim N(A)− codim R(A).

Theorem 5.11. Let T ∈ K(X). Then A = I−T is a Fredholm operator with ind(A) = 0.

For compact operators, one has the following spectral theorem for compact operators:

Theorem 5.12 (Riesz-Schauder). For every operator T ∈ K(X) one has

(i) σ(T ) r {0} consists of countably (finite or infinitely) many eigenvalues, with 0 the
only possible accumulation point. If σ(T ) consists of infinitely many elements, then
it follows that σ(T ) = σp(T ) ∪ {0}.

(ii) For λ ∈ σ(T ) r {0} one has 1 ≤ nλ = max{n ∈ N : N
(
(T − λI)n−1) 6= N

(
(T −

λI)n
)
} <∞. nλ is the order (or index) of λ and dim N(T −λI) is the multiplicity

of λ.

(iii) (Riesz decomposition) For λ ∈ σ(T ) r {0} one has X = N
(
(T − λI)nλ

)
⊕R

(
(T −

λI)nλ
)
. Both subspaces are closed, T invariant and N

(
(T − λI)nλ

)
is finite dimen-

sional.

(iv) σ
(
T |R((T−λI)nλ )

)
= σ(T ) r {λ}.

(v) Let, for λ ∈ σ(T ) r {0}, Eλ be the projection on N
(
(T − λI)nλ

)
according to (iii).

Then EλEµ = δµ,λEµ for λ, µ ∈ σ(T ) r {0}.

Corollary 5.13. Let T ∈ K(X) and λ0 ∈ σ(T ) r {0}. Then the resolvent function
λ 7→ Rλ(T ) has an isolated pole of order nλ0 at λ0, i.e. the map λ 7→ (λ− λ0)nλ0Rλ(T )
can be analytically continued at the point λ0, and the value at λ0 is not the zero operator.

The fact that σ(T ) r {0} ⊆ σp(T ) can be formulated as follows:

Proposition 5.14 (Fredholm alternative). For compact T , either the equation Aλx =
Tx − λx = y has a unique solution for all y ∈ X or the equation Tx − λx = 0 has
non-trivial solutions.

Theorem 5.15 (“strong” Fredholm alternative). Let X be Banach, T ∈ K(X), λ 6= 0.
Then the equation Tx − λx = y, y ∈ X, has a solution x ∈ X iff x′(y) = 0 for all
solutions x ∈ X to the homogenous adjoint equation T ′x′ − λx′ = 0. The number of
constraints on y (given by x′(y) = 0) is equal to the number of linearly independent
solutions to the hoogenous equation Tz − λz = 0 (i.e. to the dimension of N(T − λI)).

Theorem 5.16 (Schauder). Let X,Y be Banach spaces and T ∈ B(X,Y ). Then T ∈
K(X,Y ) iff T ′ ∈ K(Y ′, X ′).

Remark. IfX = H a Hilbert space, T ∈ K(X), T = T ∗, then there exists an orthonormal
system {en} in H such that Tek = λkek for all k and Tx =

∑
λk〈ek, x〉ek.
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