Vorlesung aus dem Wintersemester2012/13

Algebraic Topology

Priv.-Doz. Dr. Hartmut Weiß

 $\mathrm{geT}_{\!E\!}\!\mathrm{Xt}$ von Viktor Kleen

Contents

1	Point-Set Topology	2
1.1	Topological Spaces & Continuous Maps	2
	Separation Properties & Compactness	3
1.3	Connectedness & Path–Connectedness	5
1.4	Products, Sums, Quotients	7
2	Fundamental Groups & Covering Spaces	12
2.1	Homotopy	12
2.2	The Fundamental Group of the Circle	16
2.3	The Theorem of Seifert and van Kampen	18
2.4	Covering Spaces	20
2.5	Fundamental Groups and Covering Spaces	23
2.6	Deck Transformations	24
2.7	Classification of Covering Spaces	26
3	Singular Homology Theory	30
3.1	Singular Simplices and the Singular Chain Complex	30
3.2	H_0 and H_1	33
3.3	Homotopy Invariance	34
3.4	Long Exact Homology Sequence & Excision	36
3.5	Classical Theorems of Topology	44

1 Point–Set Topology

1.1 Topological Spaces & Continuous Maps

Definition 1.1. Let X be a set. A *topology* on X is a system $\mathscr{T} \subseteq \mathscr{P}(X)$ closed under arbitrary union and finite intersection. Subsets $U \subseteq X$ which are elements of \mathscr{T} are called *open*. The pair (X, \mathscr{T}) is called a *topological space*.

Examples 1.2.

- (i) For any set X, the system $\mathscr{T} = \mathscr{P}(X)$ is a topology—the *discrete* topology.
- (ii) Similarly, for any set X, the system $\mathscr{T} = \{\emptyset, X\}$ is a topology—the *indiscrete* topology.
- (iii) Let (X, d) be a metric space. Define $\mathscr{T} \subset \mathscr{P}(X)$ such that $U \in \mathscr{T}$ if and only if for any $x \in U$ there exists an $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subset U$. This defines a topology on X—the topology *induced* by the metric *d*.

Definition 1.3. Let (X, \mathscr{T}_X) be a topological space and consider any subset $A \subset X$. The topology on A defined by

$$\mathscr{T}_A = \{ U \cap A \colon U \in \mathscr{T}_X \}$$

is called the *subspace* topology. Subsets of topological spaces will always carry the subspace topology unless indicated otherwise.

Definition 1.4. A map $f: X \longrightarrow Y$ between topological spaces (X, \mathscr{T}_X) and (Y, \mathscr{T}_Y) is called *continuous* if, for any open set $U \subset Y$, the inverse image $f^{-1}(U) \subset X$ is open.

Remark 1.5. Continuity is stable under composition of maps, that is if $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ are continuous, then so is $g \circ f: X \longrightarrow Z$. Hence, we arrive at a *category* **Top** of topological spaces whose morphisms are continuous maps.

Definition 1.6. Let (X, \mathscr{T}) be a topological space and fix $a \in X$. A subset $U \subset X$ is called a *neighbourhood* of a if there exists some open set $V \subset X$ such that $a \in V$ and $V \subset U$.

Note that neighbourhoods need not be open! The concept of neighbourhoods allows us to define convergence of sequences and continuity at a point as follows.

Definition 1.7. Let (X, \mathscr{T}) be a topological space. A sequence $(x_n)_{n \in \mathbb{N}}$ in X is convergent with limit $a \in X$ if (x_n) is eventually contained in every neighbourhood of a, i.e. for every neighbourhood U of a there is an $N \in \mathbb{N}$ such that $x_n \in U$ for all $n \geq N$.

Remark 1.8. If (X, d) is a metric space and \mathscr{T} is the topology induced by d, then convergence in (X, \mathscr{T}) recovers convergence in the metric space (X, d).

Definition 1.9. A map $f: X \longrightarrow Y$ between topological spaces (X, \mathscr{T}_X) and (Y, \mathscr{T}_Y) is called *continuous at* $a \in X$ if for every neighbourhood V of f(a) there is a neighbourhood U of a such that $f(U) \subset V$.

Remark 1.10.

- (i) Again, if (X, d_X) and (Y, d_Y) are metric spaces and \mathscr{T}_X and \mathscr{T}_Y are the induced topologies, then continuity at a point $a \in X$ of a map $f: X \longrightarrow Y$ in this sense recovers the usual definition of continuity at a in metric spaces.
- (ii) Let (X, \mathscr{T}_X) and (Y, \mathscr{T}_Y) be topological spaces. Then a map $f: X \longrightarrow Y$ is continuous if and only if it is continuous at every point $a \in X$.

Definition 1.11. A subset $A \subset X$ in a topological space (X, \mathscr{T}_X) is called *closed* if $X \setminus A$ is open.

Remark 1.12. The family of closed sets in a topological space (X, \mathscr{T}_X) is closed under arbitrary intersection and finite union. This is immediate from the definition of a topology on X by passing to the complement.

Definition 1.13. Let (X, \mathscr{T}) be a topological space and $A \subset X$ a subset. The *closure* \overline{A} of A is defined by

$$\overline{A} = \bigcup \{ B \subset X \colon B \supset A \text{ and } B \text{ is closed} \}.$$

Analogously, the *interior* A° of A is defined by

$$A^{\circ} = \bigcup \{ U \subset X \colon U \subset A \text{ and } U \text{ is open} \}.$$

The boundary ∂A of A is defined as $\partial A = \overline{A} \smallsetminus A^{\circ}$.

It is immediate that, in the situation above, \overline{A} and ∂A are closed subsets of X and A° is an open subset of X.

Definition 1.14. A continuous map $f: X \longrightarrow Y$ between topological spaces (X, \mathscr{T}_X) and (Y, \mathscr{T}_Y) is called a *homeomorphism* if it admits a continuous inverse, i. e. if there exists a continuous map $g: Y \longrightarrow X$ such that $g \circ f = \operatorname{id}_X$ and $f \circ g = \operatorname{id}_Y$. If there exists a homeomorphism $X \longrightarrow Y$, then X and Y are called *homeomorphic*.

Remark 1.15.

- (i) Not every continuous bijection is a homeomorphism!
- (ii) Let (X, \mathscr{T}) be a topological space and $A \subset X$ a subset. Endow A with the subspace topology with respect to X and consider the inclusion $i: A \hookrightarrow X$. Then i induces a homeomorphism $i: A \xrightarrow{\sim} i(A)$, i.e. i is an *embedding*.
- (iii) A map $f: X \longrightarrow Y$ between topological spaces is a homeomorphism if and only if f is bijective, continuous and *open*, that is f(U) is open for all open sets $U \subset X$.

1.2 Separation Properties & Compactness

Definition 1.16. A topological space (X, \mathscr{T}) is called *Hausdorff* if distinct points can be separated by disjoint neighbourhoods. Formally, for all $x, y \in X$ with $x \neq y$ there exist neighbourhoods U and V of x and y respectively such that $U \cap V = \emptyset$.

For example, if (X, d) is a metric space, the topology \mathscr{T} induced by d makes (X, \mathscr{T}) into a Hausdorff space.

Remark 1.17. If (X, \mathscr{T}) is a Hausdorff space, the following properties hold:

- (i) Points are closed: for every $x \in X$ the set $\{x\} \subset X$ is closed.
- (ii) Limits of convergent sequences are unique.

Definition 1.18. A topological space (X, \mathscr{T}) is called *compact* if every open cover has a finite subcover: If $(U_i)_{i \in I}$ is a family of open subsets of X such that $X = \bigcup_{i \in I} U_i$, then there exists a finite set $J \subset I$ such that $X = \bigcup_{i \in J} U_i$.

Recall the Heine–Borel theorem: A subset $A \subset \mathbb{R}^n$ is compact if and only if A is closed and bounded. We will now give some consequences of compactness.

Proposition 1.19. If (X, \mathscr{T}) is a compact topological space and $A \subset X$ is a closed subset, then A, endowed with the subspace topology, is compact.

Proof. Let $(U_i)_{i \in I}$ be an open cover of A. Choose open subsets $U'_i \subset X$ such that $U_i = U'_i \cap A$ and observe that $X \setminus A, (U'_i)_{i \in I}$ is an open cover of X. Because X is compact there exists a finite set $J \subset I$ such that $X = (X \setminus A) \cup \bigcup_{j \in J} U'_j$. But then $A = \bigcup_{j \in J} U_j$, i.e. $(U_j)_{j \in J}$ is a finite subcover of $(U_i)_{i \in I}$.

Proposition 1.20. Let $f: X \longrightarrow Y$ be a continuous map between topological spaces (X, \mathscr{T}_X) and (Y, \mathscr{T}_Y) and assume (X, \mathscr{T}_X) to be compact. Then the image $f(X) \subset Y$ is compact in the subspace topology.

Proof. First observe that the map $f: X \longrightarrow f(X)$ induced by f is continuous. Any open cover $(U_i)_{i \in I}$ of f(X) pulls back to an open cover $(f^{-1}(U_i))_{i \in I}$ of X. Hence, there exists a finite set $J \subset I$ such that $(f^{-1}(U_j))_{j \in J}$ is a cover of X. But then $\bigcup_{j \in J} U_j = f(X)$. \Box

Proposition 1.21. If (X, \mathscr{T}) is a Hausdorff space and $A \subset X$ is compact in the subspace topology, then A is closed in X.

Proof. We will show that $X \\ A$ is open. For any point $x \\ X \\ A$ there exists an open neighbourhood U of x with $U \cap A = \emptyset$: For any $y \\ A$ there exist disjoint open neighbourhoods U_y of x and V_y of y. Then $A = A \cap \bigcup_{y \in A} V_y$, hence by compactness there exists a finite subset $A' \\ C A$ such that $A = A \cap \bigcup_{y \in A'} V_y$. Then $U = \bigcap_{y \in A'} U_y$ is an open neighbourhood of x with $U \cap A = \emptyset$.

Now, choosing an open neighbourhood U_x as above for any point $x \in X \setminus A$, it is immediate that $\bigcup_{x \in X \setminus A} U_x = X \setminus A$ is open.

Definition 1.22. A subset A of a topological space (X, \mathscr{T}) is called *relatively compact* if \overline{A} is compact.

For example, if $A \subseteq \mathbb{R}^n$ is bounded, then by Heine–Borel A is relatively compact. For metric spaces there is a related notion:

Definition 1.23. A metric space (X, d) is called *precompact* or *totally bounded* if for any $\varepsilon > 0$ there exists a finite ε -net in X, that is a finite collection of points $(x_i)_{i \in I}$ in X such that $X = \bigcup_{i \in I} B_{\varepsilon}(x_i)$.

Theorem 1.24. Let (X, d) be a metric space. Then the following are equivalent:

- (i) X is compact.
- (ii) Any sequence (x_n) in X has a convergent subsequence.
- (iii) X is precompact and complete.

Proof. For $(i \rightarrow ii)$ let (x_n) be a sequence in X. Consider the sets

$$X_n = \overline{\{x_n, x_{n+1}, \dots\}}.$$

Clearly $X_n \supset X_{n+1}$ for all n. Since X is compact $X_{\infty} = \bigcap_{n \in \mathbb{N}} X_n$ is not empty: Otherwise we would have $X = \bigcup_{n \in \mathbb{N}} (X \setminus X_n)$. Choosing a finite set $I \subset \mathbb{N}$ with $X = \bigcup_{n \in I} (X \setminus X_n)$ one sees

 $\emptyset = \bigcap_{n \in I} X_n = X_{\max I}$. But this is impossible. Hence, we can choose some $x_{\infty} \in X_{\infty}$. For $k \in \mathbb{N}$ pick $n_k \in \mathbb{N}$ such that $x_{n_k} \in B_{1/k}(x_{\infty})$. Choosing the n_k to be distinct, $(x_{n_k})_k$ is a subsequence converging to x_{∞} .

The completeness part of (ii \rightarrow iii) is clear. To see that X has to be precompact, suppose there exists some $\varepsilon > 0$ such that X admits no finite ε -net. Then for any finite collection x_1, \ldots, x_n of points of X there exists some $x_{n+1} \in X$ with $d(x_{n+1}, x_i) \ge \varepsilon$ for all $1 \le i \le n$. Inductively, one obtains a sequence (x_n) in X that admits no convergent subsequence which contradicts (ii).

Now suppose that X is precompact and complete and consider any open cover $(U_i)_{i \in I}$ of X. For contradiction, suppose that $(U_i)_{i \in I}$ has no finite subcover. Because X is assumed precompact, it admits a finite 1-net, e.g. $X = \bigcup_{j=1}^{N(1)} B_1(y_j)$. Then there exists some $j_0 \in \{1, \ldots, N(1)\}$ such that $B_1(y_{j_0})$ is not covered by finitely many of the U_i . Set $x_0 = y_{j_0}$ and $B_0 = B_1(x_0)$.

Continuing inductively one obtains a sequence of points (x_n) of X such that $B_n = B_{2^{-n}}(x_n)$ cannot be covered by finitely many of the U_i and furthermore this sequence may be chosen such that $B_{n-1} \cap B_n \neq \emptyset$ for all n, for otherwise B_{n-1} could be covered by finitely many of the U_i . Then $d(x_n, x_{n+1}) \leq 2^{-n+1}$ and indeed (x_n) is a Cauchy sequence: For m > n one has

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + \dots + d(x_{m-1}, x_m) \le 2^{-n+1} + \dots + 2^{-m+2} = 2^{-n+1}(1 + \dots + 2^{n-m+1}) \le 2^{-n+2}.$$

Completeness gives the existence of a limit x_{∞} for (x_n) . Take some $i_0 \in I$ such that $x_{\infty} \in U_{i_0}$. Then there exists some $N \in \mathbb{N}$ such that $B_N \subset U_{i_0}$, i.e. B_N can be covered by finitely many of the U_i which is impossible by the construction of (x_n) .

1.3 Connectedness & Path–Connectedness

From now on we will write X for the topological space (X, \mathscr{T}) if the topology is understood.

Definition 1.25. A topological space X is called *connected*, if it admits no partition $X = U \cup V$ with $U, V \subset X$ open, nonempty and disjoint.

Proposition 1.26. Let $f: X \longrightarrow Y$ be a continuous map. If X is connected, then so is f(X).

Proof. Any partition of f(X) pulls back to a partition of X.

Proposition 1.27. Let $(A_j)_{j \in J}$ be a family of connected subsets of X such that $\bigcap_{j \in J} A_j \neq \emptyset$. Then $\bigcup_{i \in J} A_j$ is connected.

Proof. Write $A = \bigcup_{j \in J} A_j$ and suppose there exists a nontrivial partition $A = U \cup V$ with $U, V \subset A$ open. Since the A_j are connected, for any j, either $A_j \cap U = \emptyset$ or $A_j \cap V = \emptyset$. Fix $j_0 \in J$ and suppose without loss of generality that $A_{j_0} \cap V = \emptyset$. Then, because $\bigcap_{j \in J} A_j \neq \emptyset$, for any $j \in J$ one has $A_j \cap U \neq \emptyset$. Hence, $A \subset U$. But this contradicts $V \neq \emptyset$.

Proposition 1.28. Let $A \subset X$ be some subspace. If A is connected, then so is \overline{A} .

Proof. Suppose there exists a nontrivial open partition $\overline{A} = U \cup V$. Write $U = U' \cap \overline{A}$ and $V = V' \cap \overline{A}$ with open subset $U', V' \subset X$. Then $A = (U' \cap A) \cup (V' \cap A)$ and of course $U' \cap V' \cap A = \emptyset$. Because A is connected, it is contained in U' or V', for instance $A \subset U'$. Then $A \subset X \setminus V'$, so $\overline{A} \subset X \setminus V'$. Hence, $\overline{A} \subset U$ in contradiction to $V \neq \emptyset$.

Definition 1.29. Let $x_0 \in X$. The *connected component* of x_0 is defined as

 $X_0 = \bigcup \{ A \subset X \colon x_0 \in A \text{ and } A \text{ is connected} \}.$

Remark 1.30.

- (i) Of course, X is the disjoint union of its connected components.
- (ii) The connected components are connected and closed.

Definition 1.31. Denote by I = [0, 1] the unit interval. A *path* in X is a continuous map $\gamma: I \longrightarrow X$. A path γ is called *closed* if $\gamma(0) = \gamma(1)$. In this case, we say that γ is based at $\gamma(0) = \gamma(1)$.

For any point $x \in X$, we denote by c_x the constant path at x; given any path $\gamma: I \longrightarrow X$, we define its *inverse path* via $\gamma^-(t) = \gamma(1-t)$. The concatenation of paths $\gamma_1, \gamma_2: I \longrightarrow X$ is defined by

$$\gamma_1 * \gamma_2(t) = \begin{cases} \gamma_1(2t) & t \in [0, 1/2] \\ \gamma_2(2t-1) & t \in [1/2, 1]. \end{cases}$$

Define an equivalence relation on X such that $x \sim y$ if and only if there exists a path $\gamma: I \longrightarrow X$ with $\gamma(0) = x$ and $\gamma(1) = y$. The *path components* of X are the equivalence classes of \sim . A space X is called *path-connected* if it has precisely one path component.

Remark 1.32.

- (i) Again, X is the disjoint union of its path components.
- (ii) A space X is path connected if and only any two points of X can be joined by a path.
- (iii) If X is path connected, then it is connected. Indeed, if there were a nontrivial partition $X = U \cup V$, choose $x \in U$ and $y \in V$ and a path $\gamma: I \longrightarrow X$ joining x and y. Then $\gamma(I)$ is connected, but the partition $X = U \cup V$ would restrict to a nontrivial partition of $\gamma(I)$.
- (iv) The condition of path–connectedness is strictly stronger than connectedness: There exist connected spaces which are not path–connected.

Definition 1.33. A topological space X is called *locally (path-)connected* if any point $x \in X$ admits a neighbourhood basis of (path-)connected subsets of X, i. e. for any neighbourhood U of x there exists a (path-)connected neighbourhood $V \subseteq U$ of x.

For example, euclidean space \mathbb{R}^n is locally path–connected, because balls are path–connected and give a neighbourhood base for any point.

Remark 1.34. There do exist path–connected spaces which are not even locally connected! An example can be constructed by considering the set $N = \{0\} \cup \{(1/n, 0) : n \in \mathbb{N}\} \subset \mathbb{R}^2$ and taking lines from (0, 1) to all points of N. In the resulting space, the point (0, 0) admits no small connected neighbourhood.

Proposition 1.35. If X is locally (path-)connected, then its connected components (path-components respectively) are open.

Proof. Pick $x_0 \in X$ and denote by X_0 its connected component (or path-component). If $y \in X_0$ and U is a (path-)connected neighbourhood of y, then $U \subset X_0$. This implies the claim. \Box

Proposition 1.36. Let X be locally path-connected. Then an open subset $U \subset X$ is path-connected if and only if U is connected.

Figure 1: The space of Remark 1.34.

Proof. For the nontrivial direction let $U \subset X$ be a connected open subset. Because U is open, it is locally path–connected. Hence, its path–components are open and closed and, if there were more than one, this would yield a nontrivial partition of U.

Remark 1.37. The previous proposition implies that the connected components of a locally path–connected space are open and coincide with the path–components.

1.4 Products, Sums, Quotients

We already know one construction on topological spaces: To any topological space (X, \mathscr{T}_X) with a subset $A \subset X$ we can associate the topological space (A, \mathscr{T}_A) , that is A with the subspace topology. This construction comes with a natural continuous map $i: A \hookrightarrow X$.

Definition 1.38. Let X be a set and consider topologies \mathscr{T} and \mathscr{T}' on X. The topology \mathscr{T} is called *finer* than \mathscr{T}' (or equivalently \mathscr{T}' is *coarser* than \mathscr{T}), if $\mathscr{T}' \subset \mathscr{T}$. That is, any open set with respect to \mathscr{T}' is also open with respect to \mathscr{T} .

Remark 1.39. Every topology is coarser than the discrete topology and finer than the indiscrete topology. This corresponds to the trivial fact that $\{\emptyset, X\} \subset \mathscr{T} \subset \mathscr{P}(X)$.

Now we can formulate an alternative characterisation of the subspace topology. Namely, \mathscr{T}_A is the coarsest topology on A such that $i: A \hookrightarrow X$ is continuous. Furthermore, the subspace topology is characterised by the following *universal property*: For any topological space Y, a map $f: Y \longrightarrow A$ is continuous if and only if $i \circ f: Y \longrightarrow X$ is continuous:

$$\begin{array}{c|c} A & \stackrel{i}{\underbrace{\qquad}} X \\ f \\ f \\ Y \end{array}$$

The following is immediate.

Proposition 1.40. Let X be a set and $\mathscr{S} \subset \mathscr{P}(X)$ an arbitrary subset. Then there exists a unique coarsest topology $\mathscr{T}(\mathscr{S})$ containing \mathscr{S} .

Definition 1.41. For a set X and an arbitrary subset $\mathscr{S} \subset \mathscr{P}(X)$, the topology $\mathscr{T}(\mathscr{S})$ of Proposition 1.40 is called the topology *generated* by \mathscr{S} .

Definition 1.42. Let (X, \mathscr{T}) be a topological space. A subsystem (i) $\mathscr{B} \subset \mathscr{T}$ is called *basis* of \mathscr{T} if any $U \subset \mathscr{T}$ can be written as a union of set in \mathscr{B} . (ii) $\mathscr{S} \subset \mathscr{T}$ is called *subbasis* if the system of finite intersection of sets in \mathscr{S} is a basis for \mathscr{T} .

Remark 1.43.

- (i) If \mathscr{T} is a topology on X and $\mathscr{S} \subset \mathscr{T}$ is some subsystem, then \mathscr{S} is a subbasis if and only if $\mathscr{T}(\mathscr{S}) = \mathscr{T}$.
- (ii) A map $f: (X, \mathscr{T}_X) \longrightarrow (Y, \mathscr{T}_Y)$ is continuous if and only if $f^{-1}(S) \in \mathscr{T}_X$ for all $S \in \mathscr{S}_Y$, where \mathscr{S}_Y is a subbasis for \mathscr{T}_Y .

Let (X_i, \mathscr{T}_i) be a family of topological spaces indexed by an arbitrary set I. Consider the cartesian product $X = \prod_{i \in I} X_i$ together with the projections $\pi_i \colon X \longrightarrow X_i$.

Definition 1.44. The product topology \mathscr{T} on X is the topology generated by the cylinders $\pi_i^{-1}(U_i)$ for $U_i \in \mathscr{T}_i$.

Proposition 1.45.

- (i) The topology \mathscr{T} of Definition 1.44 is the coarsest topology on X such that all projections $\pi_i \colon X \longrightarrow X_i$ are continuous.
- (ii) A map $f: Y \longrightarrow X$ from a topological space Y is continuous if and only if all $\pi_i \circ f$ are continuous:

Proof. The continuity of π_i requires $\pi_i^{-1}(U_i)$ to be open for every open subset $U_i \subset X_i$, which proves (i). Furthermore, $f^{-1}(\pi_i^{-1}(U_i)) = (\pi_i \circ f)^{-1}(U_i)$ is open for every open set $U_i \subset X$. This proves continuity of f.

Remark 1.46. If X and Y are Hausdorff, then so is $X \times Y$.

Proposition 1.47. If X and Y are compact, then so is $X \times Y$.

Proof. Let $(U_i)_{i \in I}$ be an open cover of $X \times Y$. Without loss of generality we may assume that $U_i = V_i \times W_i$ for open subsets $V_i \subset X$ and $W_i \subset Y$. Fix some $x \in X$. Then $Y \cong \{x\} \times Y$ is compact, so there is a finite subset $J(x) \subset I$ such that $\{x\} \times Y \subset \bigcup_{j \in J(x)} V_j \times W_j$. Now, the set $V_x = \bigcap_{j \in J(x)} V_j$ is open in X and the family $(V_x)_{x \in X}$ is an open cover of X. Because X is compact, there is some finite subset $X' \subset X$ such that $X = \bigcup_{x \in X'} V_x$. Then, writing $J' = \bigcup_{x \in X'} J(x)$, the family $(V_j \times W_j)_{j \in J'}$ is a finite subcover of $(U_i)_{i \in I}$.

Remark 1.48. More generally, one has *Tychonoff's theorem*: If $(X_i)_{i \in I}$ is an arbitrary collection of compact spaces, then $\prod_{i \in I} X_i$ is compact.

Let (X_i, \mathscr{T}_i) be topological spaces indexed by some set I. Let $X = \coprod_{i \in I}$ be the disjoint union and denote by $\iota_i \colon X_i \longrightarrow X$ the inclusions.

Definition 1.49. The sum topology \mathscr{T} on X is defined such that $U \in \mathscr{T}$ if and only if $U \cap X_i \in \mathscr{T}_i$ for all $i \in I$.

The proof of the following is immediate.

Proposition 1.50.

- (i) The topology \mathscr{T} of Definition 1.49 is the finest topology on X such that all inclusions $\iota_i: X_i \longrightarrow X$ are continuous.
- (ii) A map $f: X \longrightarrow Y$ to another topological space Y is continuous if and only if all maps $f \circ \iota_i \colon X_i \longrightarrow Y$ are continuous:

Remark 1.51.

- (i) The subspace topology of $X_i \subset X$ is the original topology \mathscr{T}_i .
- (ii) Let X be the disjoint union of subsets X_i for $i \in I$. Then X is the sum of the X_i if and only if all $X_i \subset X$ are open.

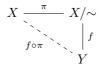
Let X be a topological space and ~ some equivalence relation on X. We denote by X/\sim the set of equivalence classes and by $\pi: X \longrightarrow X/\sim$ the projection.

Definition 1.52. The topology on X/\sim such that $U \subset X/\sim$ is open if and only if $\pi^{-1}(U) \subset X$ is open is called the *quotient topology* on X/\sim .

Again, the proof of the following proposition is straightforward.

Proposition 1.53.

- (i) The quotient topology is the finest topology on X/\sim such that $\pi: X \longrightarrow X/\sim$ is continuous.
- (ii) A map $f: X/\sim \longrightarrow Y$ to any other space Y is continuous if and only if $f \circ \pi: X \longrightarrow Y$ is continuous:



Remark 1.54.

- (i) If X is compact, then so is X/\sim .
- (ii) In general, X/\sim may fail to be Hausdorff even if X is. For example, consider the relation \sim on $X = \mathbb{R}$ such that $x \sim y$ if and only if $x y \in \mathbb{Q}$.

Examples 1.55.

(i) Let $A \subset X$ and define an equivalence relation \sim on X such that

$$x \sim y \iff \begin{cases} x, y \in A & \text{or} \\ x = y. \end{cases}$$

Then one may picture X/\sim as X with the subspace A collapsed to a point. We usually write X/A instead of X/\sim . For example, consider the closed n-disk $D^n \subset \mathbb{R}^n$ and its

boundary, the (n-1)-sphere $S^{n-1} = \partial D^n$. Then $D^n/S^{n-1} \cong S^n$, the homeomorphism being induced by the map $f: D^n \longrightarrow S^n \subset \mathbb{R}^{n+1}$ such that

$$f(x) = \left(\cos \pi \|x\|, \frac{x \sin \pi \|x\|}{\|x\|}\right).$$

(ii) Let $I^2 \subset \mathbb{R}^2$ be the unit square. Define an equivalence relation \sim on X such that

$$(s_1, s_2) \sim (t_1, t_2) \iff \begin{cases} s_1 = t_1 \text{ and } s_2 = t_2 & \text{or} \\ s_1 = t_1 \text{ and } s_2, t_2 \in \{0, 1\} & \text{or} \\ s_2 = t_2 \text{ and } s_1, t_1 \in \{0, 1\}. \end{cases}$$

The quotient space $T^2 = I^2 / \sim$ is called the 2-torus. It can be shown that $T^2 \cong S^1 \times S^1$. Specifically, a homemorphism is induced by

$$\mathbb{R}^2 \longrightarrow S^1 \times S^1$$
$$(\theta, \varphi) \longmapsto (e^{2\pi i \theta}, e^{2\pi i \varphi})$$

Some further quotients of I^2 are pictured in (picture). More generally, one can construct closed, orientable surfaces Σ_q of any genus $g \ge 0$ as a quotient of a 4g-gon in \mathbb{R}^2 .

Group actions provide further examples of quotient spaces.

Definition 1.56. Let G be a group and X a topological space. A *(left) action* of G on X is a continuous map

$$\begin{array}{cccc} G \times X & - - X \\ (g, x) & - - gx, \end{array}$$

where G is given the discrete topology, satisfying g(hx) = (gh)x and ex = x.

Equivalently, a group action is a group homomorphism $G \longrightarrow \operatorname{Aut}(X)$ from G to the group $\operatorname{Aut}(X)$ of homeomorphisms $X \longrightarrow X$. In this description g maps to the homeomorphism $\ell_g \colon X \longrightarrow X$ with $\ell_g(x) = gx$ —the *left translation* by g.

Definition 1.57. For $x \in X$ the set $Gx = \{gx : g \in G\}$ is called the *orbit* of x. The subgroup $G_x = \{g \in G : gx = x\}$ is called the *stabiliser* or *isotropy subgroup* of x. The *orbit space* X/G is the quotient space X/\sim for the equivalence relation \sim such that $x \sim y$ if and only if gx = y for some $g \in G$.

The action of G on X is called *transitive* if X/G = *. It is called *free* if $G_x = 1$ for all $x \in X$.

Examples 1.58. Real projective space \mathbb{RP}^n is the space of 1-dimensional subspaces of \mathbb{R}^{n+1} . More formally, $\mathbb{RP}^n = (\mathbb{R}^{n+1} \setminus \{0\})/\sim$ where \sim is given by

$$v \sim w \iff w = \lambda v \text{ for some } \lambda \in \mathbb{R}^{\times}.$$

The equivalence class of $(x_0, \ldots, x_n) = x \in \mathbb{R}^{n+1} \setminus \{0\}$, i.e. the line spanned by x, is denoted by $[x_0 : \ldots : x_n]$. The x_i are called the *homogeneous coordinates* of $[x] \in \mathbb{RP}^n$. They are only determined up to multiplication by $\lambda \in \mathbb{R}^{\times}$. An alternative characterisation may be obtained from group actions. The multiplicative group \mathbb{Z}^{\times} acts on S^n by scalar multiplication. The left translation $\ell_{-1} \colon S^n \longrightarrow S^n$ is called the *antipodal* map and of course $\ell_{-1}(x) = -x$. It is a nice exercise that the inclusion $S^n \longrightarrow \mathbb{R}^{n+1} \setminus \{0\}$ induces a homeomorphism $S^n / \mathbb{Z}^{\times} \longrightarrow \mathbb{RP}^n$. In particular, this implies that \mathbb{RP}^n is compact. Furthermore, it may be shown that \mathbb{RP}^n is Hausdorff.

2 Fundamental Groups & Covering Spaces

2.1 Homotopy

In the sequel I = [0, 1] will denote the unit interval.

Definition 2.1. Let X and Y be topological spaces with continuous maps $f, g: X \longrightarrow Y$. A homotopy H from f to g is a continuous map $H: X \times I \longrightarrow Y$ such that $H(_, 0) = f$ and $H(_, 1) = g$. The maps f and g are called homotopic if there exists a homotopy from f to g. The maps f and g are called homotopic relative A, where A is a subspace of X, if there exists a homotopy H from f to g that fixes A, i.e. such that H(a,t) = f(a) = g(a) for all $t \in I$ and $a \in A$. We will write $f \simeq g$ if f and g are homotopic and $f \simeq_A g$ if f and g are homotopic relative A.

Remark 2.2.

- (i) If $f, g: X \longrightarrow Y$ are homotopic maps and $h: Y \longrightarrow Z$ is continuous, then $h \circ f \simeq h \circ g$.
- (ii) Homotopy (relative A) is an equivalence relation. We will write [f] for the homotopy class (relative A) of a map $f: X \longrightarrow Y$.

Definition 2.3. A map $f: X \longrightarrow Y$ is called a *homotopy equivalence* if there exists a map $g: Y \longrightarrow X$ such that $g \circ f \simeq id_X$ and $f \circ g \simeq id_Y$. In this case, g is called a *homotopy inverse* to f. The spaces X and Y are called *homotopy equivalent* if there exists a homotopy equivalence $X \longrightarrow Y$; we write $X \simeq Y$.

Remark 2.4. If spaces X and Y are homeomorphic then they are homotopy equivalent.

Write $c_{y_0}: X \longrightarrow Y$ for the constant map with value $y_0 \in Y$. If $f \simeq c_{y_0}$ for some $y_0 \in Y$ then we say that f is *null-homotopic*. A space X is called *contractible* if $X \simeq *$, i.e. X is homotopy equivalent to a point. This is the case if and only if id_X is null-homotopic. A null-homotopy of id_X is called a *contraction*.

Examples 2.5. A subset $A \subset \mathbb{R}^n$ is called *star-shaped* with respect to a point $a_0 \in A$ if for all $a \in A$ the line segment $[a_0, a] = \{a_0 + t(a - a_0) : t \in [0, 1]\}$ is contained in A. Such subsets are contractible; a contraction is given by $H(a, t) = a_0 + t(a - a_0)$.

Definition 2.6. Two paths $\gamma_0, \gamma_1 \colon I \longrightarrow X$ with common endpoints are called *homotopic (as paths)* if $\gamma_0 \simeq_{\partial I} \gamma_1$.

Proposition 2.7.

- (i) If $\gamma: I \longrightarrow X$ is a path in X and $\alpha: I \longrightarrow I$ is a continuous map fixing the boundary ∂I , then $\gamma \simeq_{\partial I} \gamma \circ \alpha$. The path $\gamma \circ \alpha$ is called a reparametrisation of γ .
- (ii) If γ₁, γ₂, γ₃: I → X are paths in X with γ₁(1) = γ₂(0) and γ₂(1) = γ₃(0), then concatenation is homotopy associative, i. e. γ₁ * (γ₂ * γ₃) ≃_{∂I} (γ₁ * γ₂) * γ₃.
- (iii) Let $\gamma_1, \gamma_2: I \longrightarrow X$ and $\gamma'_1, \gamma'_2: I \longrightarrow X$ be paths in X such that γ_i and γ'_i have the same endpoints for i = 1, 2 (separately) and $\gamma_1(1) = \gamma_2(0)$ and such that $\gamma'_1 \simeq_{\partial I} \gamma_1$ and $\gamma'_2 \simeq_{\partial I} \gamma_2$. Then $\gamma_1 * \gamma_2 \simeq_{\partial I} \gamma'_1 * \gamma'_2$.
- (iv) One has $c_{\gamma(0)} * \gamma \simeq_{\partial I} \gamma \simeq_{\partial I} \gamma * c_{\gamma(1)}$ for any path $\gamma \colon I \longrightarrow X$.
- (v) One has $\gamma * \gamma^- \simeq_{\partial I} c_{\gamma(0)}$.

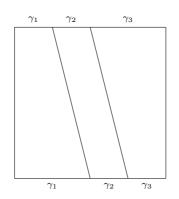


Figure 2: Associativity up to homotopy

Proof.

(i) To show $\gamma \circ \alpha \simeq_{\partial I} \gamma$ it is enough to show that $\alpha \simeq_{\partial I} \operatorname{id}_{I}$. A homotopy is given by linear interpolation:

$$\begin{array}{c} H \colon I \times I & \longrightarrow I \\ (s,t) \longmapsto t \alpha(s) + (1-t)s. \end{array}$$

(ii) One has $\gamma_1 * (\gamma_2 * \gamma_3) = (\gamma_1 * \gamma_2) * \gamma_3 \circ \alpha$ for

$$\alpha(s) = \begin{cases} 1/2 \cdot s, & s \in [0, 1/2] \\ s - 1/4, & s \in [1/2, 3/4] \\ 2s - 1, & s \in [3/4, 1]. \end{cases}$$

(iii) Let H_i be the homotopy from γ_i to γ'_i . Then

$$H(s,t) = \begin{cases} H_1(2s,t), & s \in [0,1/2] \\ H_2(2s-1,t), & s \in [1/2,1] \end{cases}$$

yields a homotopy from $\gamma_1 * \gamma_2$ to $\gamma'_1 * \gamma'_2$. (iv) One has $c_{\gamma(0)} * \gamma = \gamma \circ \alpha$ for

$$\alpha(s) = \begin{cases} 0, & s \in [0, 1/2] \\ 2s - 1, & s \in [1/2, 1] \end{cases}$$

The result follows from (i). An analogous construction works for $\gamma * c_{\gamma(1)}$. (v) The map $H: I \times I \longrightarrow X$ given by

,

$$H(s,t) = \begin{cases} \gamma(2s(1-t)), & 0 \le s \le 1/2\\ \gamma(2(1-s)(1-t)), & 1/2 \le s \le 1 \end{cases}$$

is a homotopy from $\gamma * \gamma^-$ to $c_{\gamma(0)}$.

Definition 2.8. Let X be a topological space with a fixed base point $x_0 \in X$. Then the set of homotopy classes relative ∂I of closed paths $\gamma: I \longrightarrow X$ at x_0 , i.e. of *loops* at x_0 ,

$$\pi_1(X, x_0) = \{ [\gamma] : \gamma \colon I \longrightarrow X \text{ a loop at } x_0 \}$$

together with the multiplication $[\gamma_1] \cdot [\gamma_2] = [\gamma_1 * \gamma_2]$ is called the *fundamental group* of X at x_0 . This product is well-defined by Proposition 2.7.

Remark 2.9. Observe that $\pi_1(X, x_0)$ is in fact a group with neutral element $[c_{x_0}]$.

We will now discuss in which manner $\pi_1(X, x_0)$ depends on the base point $x_0 \in X$. Fix some other point $x_1 \in X$ and let $\tau: I \longrightarrow X$ be a path from x_0 to x_1 . This path induces a map $c(\tau): \pi_1(X, x_1) \longrightarrow \pi_1(X, x_0)$ which maps a homotopy class $[\gamma] \in \pi_1(X, x_1)$ to $[\tau * \gamma * \tau^-]$. This map is in fact a group homomorphism, because

$$c(\tau)([\gamma_1] \cdot [\gamma_2]) = [\tau * \gamma_1 * \gamma_2 * \tau^-] = [\tau * \gamma_1 * \tau^-] \cdot [\tau * \gamma_2 * \tau^-].$$

The morphism $c(\tau)$ is even isomorphism with inverse $c(\tau^-)$. This shows that the isomorphism class of $\pi_1(X, x_0)$ only depends on the path component of $x_0 \in X$. In particular, if X is path– connected, the isomorphism class of its fundamental group does not depend on the basepoint. The concrete isomorphism $\pi_1(X, x_1) \longrightarrow \pi_1(X, x_0)$ depends only on the homotopy class of a choice of path from x_0 to x_1 . For this reason, we will simply write $\pi_1(X)$ for the fundamental group of a path–connected space if there is no danger of confusion.

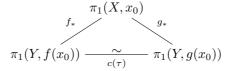
Definition 2.10. A path–connected space X is called *simply connected* if $\pi_1(X) = 1$.

Remark 2.11. A space X is simply connected if and only if for any $x_0, x_1 \in X$ there is a unique homotopy class of paths from x_0 to x_1 .

The fundamental group is a *functorial* construction in the following sense. Any continuous map $f: X \longrightarrow Y$ between topological spaces X and Y induces a map $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, f(x_0))$ such that $f_*([\gamma]) = [f \circ \gamma]$. Because of $f \circ (\gamma_1 * \gamma_2) = (f \circ \gamma_1) * (f \circ \gamma_2)$, this map is a group homomorphism. Given another continuous map $g: Y \longrightarrow Z$ to a third space Z, it is immediate that $g_* \circ f_* = (g \circ f)_*$; and of course $(\mathrm{id}_X)_* = \mathrm{id}_{\pi_1(X,x_0)}$.

Additionally, the fundamental group enjoys a kind of homotopy invariance. Let $f, g: X \longrightarrow Y$ be continuous maps admitting a homotopy $H: X \times I \longrightarrow Y$ from f to g. Fix a base point $x_0 \in X$ and write $\tau = H(x_0, _)$. Then τ is a path from $f(x_0)$ to $g(x_0)$ in Y.

Lemma 2.12. In this situation, the diagram



commutes.

Proof. Take some $[\gamma] \in \pi_1(X, x_0)$. Then $(c(\tau) \circ g_*)([\gamma]) = [\tau * (g \circ \gamma) * \tau^-]$ and $f_*([\gamma]) = [f \circ \gamma]$. We construct a homotopy relative ∂I between these two paths as follows. Write $H_t = H(_, t)$ and set $K(_, t) = \tau_t * (H_t \circ \gamma) * \tau_t^-$ where $\tau_t(s) = \tau(ts)$. This defines a homotopy $K : I \times I \longrightarrow Y$ relative ∂I from $f \circ \gamma$ to $\tau * (g \circ \gamma) * \tau^-$. \Box

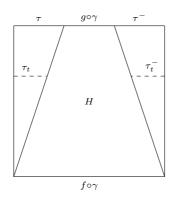


Figure 3: The homotopy K in the proof of Lemma 2.12

Proposition 2.13. If a continuous map $f: X \longrightarrow Y$ is a homotopy equivalence, then the induced map $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, f(x_0))$ is an isomorphism.

Proof. Let $g: Y \longrightarrow X$ be a homotopy inverse for f. Lemma 2.12 implies the existence of a commutative diagram

i.e. that $g_*\circ f_*$ is a group isomorphism. Hence, f_* is injective. Similarly, there is a commutative square

which implies that $f_*: \pi_1(X, g(f(x_0))) \longrightarrow \pi_1(Y, f(g(f(x_0))))$ is surjective. To fix the apparent issue with base points, observe that there is a commutative diagram

which implies that the homomorphism $f_*: \pi_1(X, x_0) \longrightarrow \pi_1(Y, f(x_0))$ is surjective, too.

The fundamental group interacts very nicely with products of topological space. Let (X, x_0) and (Y, y_0) be topological space with base points. Then it is easy to check that the map

$$\pi_1(X \times Y, (x_0, y_0)) \longrightarrow \pi_1(X, x_0) \times \pi_1(Y, y_0)$$

induced by the projections $\pi_X \colon X \times Y \longrightarrow X$ and $\pi_Y \colon X \times Y \longrightarrow Y$ is an isomorphism.

Examples 2.14.

- (i) If X is contractible, then $\pi_1(X) = 1$.
- (ii) If $A \subset \mathbb{R}^n$ is star-shaped, then $\pi(A) = 1$.
- (iii) $\pi_1(S^n) = 1$ for all $n \ge 2$.

Proof.

- (i) Let X be contractible, so there exists a continuous $H: I \times X \longrightarrow X$ such that $H_0 = \operatorname{id}_X$ and $H_1 = c_{x_0}$. Let $\gamma I \longrightarrow X$ be a loop. Then $\widetilde{H}: I \times I \longrightarrow X$ with $\widetilde{H}(s,t) = H(s,\gamma(t))$ is a homotopy between γ and c_{x_0} .
- (ii) Follows from (1).
- (iii) Let $\gamma: I \longrightarrow X$ be a loop based at some point $x_0 \in S^n$ and assume there is a $x \in X$ such that $x \notin \gamma(I)$. Then $\gamma: I \longrightarrow X \setminus \{x\} \cong \mathbb{R}^n$ via the stereographic projection. Since \mathbb{R}^n is contractible, we have $\gamma \simeq_{\partial I} c_{x_0}$. What remains to show is that for any loop γ based on x_0 , we can find a homotopy to a loop γ' such that $\gamma'(I) \subset X \setminus \{x\}$ for some point $x \in X$. Let $B \cong B^n = \{x \in \mathbb{R}^n : \|x\| < 1\}$ be an open neighbourhood of x such that $x_0 \notin B$. Then $\gamma^{-1}(B) \subset (0,1)$ is a disjoint union of open intervals $(a_i, b_i) \subset (0,1)$. Because $\gamma^{-1}(\{x\})$ is compact there exists a finite subset $J \subset I$ such that $\gamma^{-1}(\{x\})$ is covered by $((a_i, b_i))_{i \in J}$. For every $i \in J$, connect $\gamma(a_i)$ and $\gamma(b_i)$ with a path η_i which is fully contained in ∂B . Because $\overline{B} \cong D^n$ is simply connected, the path η_i will be homotopic to $\gamma|_{[a_i, b_i]}$. Now, let γ' be the loop γ but with the sections on (a_i, b_i) replaced by η_i . Then γ' will not meet x and is homotopic to γ .

2.2 The Fundamental Group of the Circle

Consider the circle $S^1 = \{z \in \mathbb{C} : |z| = 1\}$. As a matter of convention, we choose $1 \in S^1$ as a base point. We will consider the exponential map $\pi : \mathbb{R} \longrightarrow S^1$ with $\pi(\xi) = e^{2\pi i\xi}$. This map is an example of a *covering map*, a notion that we will defined later. For now, we will prove some characteristic properties of covering maps for π .

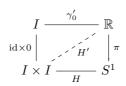
Theorem 2.15. Let $\pi \colon \mathbb{R} \longrightarrow S^1$ be as above.

(i) The map π has the path lifting property: Given $z_0 \in S^1$, $z'_0 \in \pi^{-1}(z_0) \subset \mathbb{R}$ and any path $\gamma: I \longrightarrow S^1$ with start point z_0 there exists a unique path $\gamma': I \longrightarrow \mathbb{R}$ starting at z'_0 such that $\pi \circ \gamma' = \gamma$, i.e. such that

commutes. We will usually call γ' a lift of γ with base point z'_0 .

(ii) The map π has the homotopy lifting property: Given paths $\gamma_0, \gamma_1: I \longrightarrow S^1$ from z_0 to z_1 , a homotopy H from γ_0 to γ_1 and any lift γ'_0 of γ_0 , there exists a unique homotopy

 $H': I \times I \longrightarrow \mathbb{R}$ such that $H'(_, 0) = \gamma'_0$ and $\pi \circ H' = H$, i.e. such that



commutes. Again, H' will be called a lift of H.

Proof.

- (i) First, suppose that $\gamma', \gamma'': I \longrightarrow \mathbb{R}$ are two lifts of γ starting at z'_0 . Then $\gamma'(t) \gamma''(t) \in \mathbb{Z}$ for all t and because of continuity, $\gamma' \gamma''$ will be constant. But $\gamma'(0) = \gamma''(0)$, hence $\gamma' = \gamma''$. To prove existence the existence of a lift γ' , observe that for every $\xi \in \mathbb{R}$ the map $\pi_{\xi} = \pi|_{(\xi,\xi+1)}: (\xi,\xi+1) \longrightarrow S^1 \smallsetminus \pi(\xi)$ is homeomorphism. Denote its inverse by s_{ξ} . Since I is compact, there is a partition $0 = t_0 < t_1 < \cdots < t_n = 1$ such that $\gamma|_{[t_i,t_{i+1}]} \subset S^1 \smallsetminus \{z_i\}$ for all i and some $z_i \in S^1$. Inductively assume $\gamma'|_{[0,t_i]}$ is already constructed. Choose $\xi_i \in \pi^{-1}(z_i)$ such that $\gamma'(t_i) \in (\xi_i, \xi_i + 1)$. Now, set $\gamma'|_{[t_i, t_{i+1}]} = s_{\xi_i} \circ \gamma|_{[t_i, t_{i+1}]}$ and we have defined γ' on $[0, t_{i+1}]$.
- (ii) If H' is as required, then $H'(s, _)$ is the lift of the path H_s starting at $\gamma'_0(s)$. This proves uniqueness. We are left to check is that this defines a continuous map $H: I \times I \longrightarrow \mathbb{R}$. Take $s_0 \in I$. Since I is compact, there is a partition $0 = t_0 < t_1 < \cdots < t_n = 1$ and a connected neighbourhood U of s_0 such that $H(U \times [t_i, t_{i+1}]) \subset S^1 \setminus \{z_i\}$ for some z_i and all i. Inductively, assume H' is continuous on $U \times [0, t_i]$. Then $H'(U \times \{t_i\}) \subset (\xi_i, \xi_i+1)$ for some $\xi_i \in \pi^{-1}(z_i)$ and $H' = s_{\xi_i} \circ H$ on $U \times [t_i, t_{i+1}]$, hence H' is continuous on $U \times [0, t_{i+1}]$. \Box

Remark 2.16. Lifts of homotopic paths with the same start point are homotopic and have the same end point. Hence, the map $\varphi \colon \pi_1(S^1) \longrightarrow \mathbb{Z}$ such that $\varphi([\gamma]) = \gamma'(1)$ for some lift γ' of γ starting at 0 is well defined.

Theorem 2.17. The map $\varphi \colon \pi_1(S^1) \longrightarrow \mathbb{Z}$ of Remark 2.16 is an isomorphism.

Proof. To prove that φ is a homomorphism, note that a lift of $\gamma_1 * \gamma_2$ is given by $\gamma'_1 * \gamma'_2$ where γ'_1 is a lift γ_1 starting at 0 and γ'_2 is a lift of γ_2 starting at $\gamma'_1(1)$. By continuity, the difference between γ'_2 and a lift of γ_2 starting at 0 is constant. This implies $\varphi([\gamma_1][\gamma_2]) = \varphi([\gamma_1]) + \varphi([\gamma_2])$.

The map φ is surjective, because for $n \in \mathbb{Z}$ consider the path $\gamma' \colon I \longrightarrow \mathbb{R}$ with $\gamma'(t) = nt$. Then $\varphi([\pi \circ \gamma']) = n$. It is also injective: Let $\gamma \colon I \longrightarrow S^1$ be a loop such that $\varphi([\gamma]) = 0$. Choose a lift γ' of γ starting at 0. Then γ' is homotopic to c_0 via some homotopy H' in \mathbb{R} and $H = \pi \circ H'$ will be a homotopy from γ to c_1 .

Remark 2.18.

- (i) From the description of $\pi_1(S^1)$ one immediately deduces $\pi_1(T^2) \cong \pi_1(S^1 \times S^1) \cong \mathbb{Z}^2$.
- (ii) Given spaces X and Y, denote the set of homotopy classes of continuous maps $X \longrightarrow Y$ by [X, Y]. The circle S^1 becomes a topological group when given the multiplication induced from \mathbb{C} . Hence, any set $[X, S^1]$ inherits a canonical group structure; in particular, $[S^1, S^1]$ is a group.
- (iii) Consider the restriction $\pi_0: I \longrightarrow S^1$ of the exponential map $\mathbb{R} \longrightarrow S^1$. Given a continuous map $f: S^1 \longrightarrow S^1$ consider the loop $g = f \circ \pi_0: I \longrightarrow S^1$ and take some lift $g': I \longrightarrow \mathbb{R}$ along the exponential map. Then $g'(1) g'(0) \in \mathbb{Z}$ will be independent of the choice of lift g'

and we define $\deg(f) = g'(1) - g'(0)$. One can show that, if $f_0 \simeq f_1$, then $\deg(f_0) = \deg(f_1)$ and that deg descends to an isomorphism $[S^1, S^1] \longrightarrow \mathbb{Z}$.

2.3 The Theorem of Seifert and van Kampen

We will investigate how to calculate the fundamental group of a topological space X admitting an open cover $X = U \cup V$ where U, V and $U \cap V$ are path-connected and nonempty. It turns out that $\pi_1(X, x_0)$, with $x_0 \in U \cap V$, is completely determined by $\pi_1(U, x_0)$, $\pi_1(V, x_0)$ and $\pi_1(U \cap V, x_0)$. To give the explicit connection, we will first need to introduce some constructions on groups.

For groups G_1 and G_2 we define their *free product* $G_1 * G_2$ as the set of reduced words $\omega = \omega_1 \cdots \omega_n$ such that any ω_i is an element of $G_1 \setminus \{e_1\}$ or $G_2 \setminus \{e_2\}$ and neighbouring letters come from different groups. Note that the empty word is allowed. Define an operation on $G_1 * G_2$ by

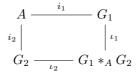
 $\omega\omega' = \begin{cases} \omega_1 \cdots \omega_n \omega'_1 \cdots \omega'_n & \text{if } \omega_n \text{ and } \omega'_1 \text{ are in different groups,} \\ \omega_1 \cdots \omega_{n-1} (\omega_n \cdot \omega'_1) \omega'_2 \cdots \omega'_n & \text{otherwise.} \end{cases}$

It is straightforward to check that this defines a group structure on $G_1 * G_2$ with neutral element the empty word. There are obvious maps $\iota_1 \colon G_1 \longrightarrow G_1 * G_2$ and $\iota_2 \colon G_2 \longrightarrow G_1 * G_2$ which induce an isomorphism

$$(\iota_1^*, \iota_2^*)$$
: Hom $(G_1 * G_2, H) \longrightarrow$ Hom $(G_1, H) \times$ Hom (G_2, H)

for any group H. More explicitly, for homomorphisms $\varphi_1: G_1 \longrightarrow H$ and $\varphi_2: G_2 \longrightarrow H$ there exists precisely one homomorphism $\varphi: G_1 * G_2 \longrightarrow H$ such that $\varphi \circ \iota_i = \varphi_i$. As usual, this universal property determines $G_1 * G_2$ up to unique isomorphism.

More generally, let G_1 , G_2 and A be groups together with homomorphisms $i_i: A \longrightarrow G_i$. Denote by N the normal subgroup of $G_1 * G_2$ generated by the elements $i_1(a)i_2(a)^{-1}$ for $a \in A$. We define the *amalgamated free product* $G_1 *_A G_2$ as $(G_1 * G_2)/N$. Again, there are obvious maps $\iota_1: G_1 \longrightarrow G_1 *_A G_2$ and $\iota_2: G_2 \longrightarrow G_1 *_A G_2$ which make



commute and these maps induce an isomorphism

$$(\iota_1^*, \iota_2^*)$$
: Hom $(G_1 *_A G_2, H) \xrightarrow{\sim}$ Hom $(G_1, H) \times_{Hom(A, H)}$ Hom (G_2, H)

for any group H. In other words, for any commutative square

there exists a unique homomorphism $\varphi \colon G_1 *_A G_2 \longrightarrow H$ such that $\varphi \circ \iota_i = \varphi_i$. We are now ready to state the Seifert–van Kampen theorem.

Theorem 2.19 (Seifert-van Kampen). Let X be a topological space admitting an open cover $X = U \cup V$ such that U, V and $U \cap V$ are path-connected and nonempty. Then the inclusions $U \hookrightarrow X$ and $V \hookrightarrow X$ induce an isomorphism

$$\varphi \colon \pi_1(U, x_0) \ast_{\pi_1(U \cap V, x_0)} \pi_1(V, x_0) \longrightarrow \pi_1(X, x_0)$$

for any point $x_0 \in U \cap V$.

Proof. We will suppress the base point x_0 for ease of notation. The relevant homomorphism $\varphi \colon \pi_1(U) \ast_{\pi_1(U \cap V)} \pi_1(V) \longrightarrow \pi_1(X)$ is given by the universal property of $\pi_1(U) \ast_{\pi_1(U \cap V)} \pi_1(V)$.

To show that φ is surjective consider any loop γ in X based at x_0 . We will show that γ is homotopic to a product $\gamma_1 * \cdots * \gamma_n$ of loops lying fully in U or fully in V. Since I is compact, there is a partition $0 = t_0 < \cdots < t_n = 1$ such that $\gamma|_{[t_i, t_{i+1}]}$ is fully in U or fully in V, but not the same for neighbouring intervals. For every $\gamma(t_i)$ choose a path τ_i from $\gamma(t_i)$ to x_0 lying fully in $U \cap V$ —this is possible because $U \cap V$ was assumed to be path–connected. Then $\gamma \simeq \gamma'_1 * \tau_1 * \tau_1^{-1} * \cdots * \tau_n \tau_n^{-1} * \gamma'_n$ where γ'_i is the path $\gamma|_{[t_{i-1}, t_i]}$ reparametrised to be a path $\gamma'_i: I \longrightarrow X$. This is a representation of γ as a product of loops lying fully in U or fully in V.

To see that φ is injective we show that if $\omega = [\gamma_1] \cdots [\gamma_n]$ is a word in $\pi_1(U) * \pi_1(V)$ such that $\gamma_1 * \cdots * \gamma_n \simeq c_{x_0}$, then ω is of the form $\omega_1 i_1(a_1) i_2(a_1)^{-1} \omega_1^{-1} \cdots \omega_k i_1(a_k) i_2(a_k)^{-1} \omega_k^{-1}$ with $a_i \in \pi_1(U \cap V)$. Let $H: I \times I \longrightarrow X$ be a homotopy from $\gamma_1 * \cdots * \gamma_n$ to c_{x_0} . Because $I \times I$ is compact there exist finite partitions $0 = t_0 < \cdots < t_n = 1$ and $0 = s_0 < \cdots < s_\ell = 1$ such that $H([s_i, s_{i+1}] \times [t_j, t_{j+1}])$ lies fully in U or V. Without loss of generality we may assume that the γ_i are reparametrisations of $H_0|_{[s_k, s_{k'}]}$ for some k < k'. Choose paths τ_{ij} from $H(s_i, t_j)$ to x_0 lying fully in U or V respectively. Let f_{ij} be a reparametrisation of $H(_, t_j)|_{[s_{i-1}, s_i]}$ and $g_{ij} = \tau_{i,j-1} * g_{ij} * \tau_{ij}$. We show that

$$[f'_{1j}] \cdots [f'_{n,j}] \equiv [f'_{1,j+1}] \cdots [f'_{n,j+1}] \pmod{N}.$$

Then we will find inductively that $\omega = e$. But

$$\begin{split} [f'_{1j}]\cdots [f'_{ij}]\cdots [f'_{n,j+1}] &= [f'_{1,j+1}*(g'_{2j})^{-}]\cdots [g'_{i+1,j}*f'_{i,j+1}*(g'_{i,j+1})^{-}]\cdots \\ &= [f'_{1,j+1}][g'_{2j}]^{-1}[g'_{2j}]\cdots [g'_{nj}]^{-1}[g'_{nj}][f'_{n,j+1}] \end{split}$$

and a factor $[g'_{ij}]^{-1}[g'_{ij}]$ is either trivial or an element of N. This proves injectivity of φ . **Definition 2.20.** Let X_i , $i \in I$, be based topological spaces, with base points $x_i \in X_i$. The wedge sum or one-point union of the X_i is

$$\bigvee_{i \in I} X_i = \coprod_{i \in I} X_i / \coprod_{i \in I} \{x_i\}.$$

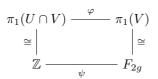
Examples 2.21. Let $X = S^1 \vee \cdots \vee S^1$ be a bouquet of *n* circles. Then $\pi_1(X) = F_n$, the free group on *n* generators $F_n = \mathbb{Z}^{*n}$.

If G is a finitely generated group, e.g. $G = \langle s_1, \ldots, s_n \rangle$, then s_1, \ldots, s_n define a surjective group homomorphism $\varphi \colon F_n \longrightarrow G$. Hence, $G \cong F_n/N$ for the normal subgroup $N = \ker \varphi \subset F_n$. If N is generated (as a normal subgroup) by elements r_i for $i \in I$, then we write

$$G = \langle s_1, \ldots, s_n \mid (r_i)_{i \in I} \rangle.$$

Figure 4: A bouquet of 3 circles

This is called a *presentation* of G. If N is finitely generated as a normal subgroup, then G is called *finitely presented*. For example, if Σ_g is the orientable surface of genus g, it is possible to use the Seifert-van Kampen theorem to compute the fundamental group $\pi_1(\Sigma_q)$. One decompose the 4g-gon from which Σ_q is obtained into a disk U around the origin and the complement V of a disk strictly contained in U. Then U is contractible and V is homotopy equivalent to $\partial P_{4q}/\sim$, the boundary ∂P_{4q} with the identifications made in P_{4q} to obtain Σ_q . Hence, V is homotopy equivalent to a bouquet of 2g circles. Seifert-van Kampen implies that $\pi_1(\Sigma_q) \cong 1 *_{\mathbb{Z}} F_{2q}$ where the relevant map $\varphi \colon \pi_1(U \cap V) \longrightarrow \pi_1(V)$ is given by the commutative diagram



and $\psi(1) = a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1}$. This implies that we have the presentation

$$\pi_1(\Sigma_g) = \langle a_1, b_1, \dots, a_g, b_g \mid a_1 b_1 a_1^{-1} b_1^{-1} \cdots a_g b_g a_g^{-1} b_g^{-1} \rangle.$$

2.4 Covering Spaces

Definition 2.22. A continuous map $\pi: E \longrightarrow B$ is called *locally trivial with typical fiber* F, if for all $b \in B$ there exists an open neighbourhood U of b and a homeomorphism $\varphi \colon U \times F \longrightarrow \pi^{-1}(U)$ such that

commutes. The homeomorphism $\varphi^{-1} \colon \pi^{-1}(U) \longrightarrow U \times F$ is called a *local trivialisation* of $\pi: E \longrightarrow B$. For any $b \in B$, the subset $\pi^{-1}(\{b\}) \subset E$ is called the *fibre* over b. Observe that every fibre $\pi^{-1}(\{b\})$ is homeomorphic to F.

A locally trivially map $\pi: E \longrightarrow B$ with discrete typical fibre F is called a *covering space*. In this case E is called the *total space* and B is called the *base*.

Remark 2.23.

- (i) If F is discrete, then $U \times F \cong \coprod_{f \in F} U \times \{f\}$. (ii) The projection $\operatorname{proj}_U : U \times F \longrightarrow U$ restricts to homeomorphisms $U \times \{f\} \longrightarrow U$. Hence, the covering space $\pi: E \longrightarrow B$ is a local homeomorphism.

(iii) If |F| = n is finite, then a covering space $\pi: E \longrightarrow B$ with typical fibre F is called *n*-sheeted.

Examples 2.24.

- (i) We have already encountered a covering space, namely the exponential map $\mathbb{R} \longrightarrow S^1$. Its typical fibre is \mathbb{Z} .
- (ii) For every $n \ge 1$ there is an *n*-sheeted covering space $\pi: S^1 \longrightarrow S^1$ such that $\pi(z) = z^n$. Here, S^1 is considered to be a subset of \mathbb{C} .

Further examples of covering spaces may be obtained by certain "good" group actions.

Definition 2.25. A group action $G \times X \longrightarrow X$ of a group G on a space X is called *covering* space action or properly discontinuous, if for all points $x \in X$ there exists an open neighbourhood U of x such that $gU \cap U = \emptyset$ for all $g \in G \setminus \{e\}$.

Remark 2.26.

- (i) Any covering space action is *free*, i. e. for all $x \in X$ and $g \neq e \in G$ one has $gx \neq x$.
- (ii) The converse to (i) is false. For $z_0 = \exp(2\pi i \xi_0) \in S^1$ with $\xi_0 \in \mathbb{R} \setminus \mathbb{Q}$ the action of \mathbb{Z} on S^1 given by $n.z = z_0^n z$ is free but not a covering space action. In fact, every orbit is dense.
- (iii) Any free action of a finite group on a $\mathit{Hausdorff}$ space is a covering space action.

Proposition 2.27. If $G \times X \longrightarrow X$ is a covering space action, then the canonical projection $\pi: X \longrightarrow X/G$ is a covering space with typical fibre G.

Proof. The projection $\pi: X \longrightarrow X/G$ is an open map, since for an open subset $U \subset X$ the image $\pi(U)$ satisfies $\pi^{-1}(\pi(U)) = \bigcup_{g \in G} gU$ and $gU \subset X$ is open for any $g \in G$. Take any $x \in X$ and choose some open neighbourhood U of x such that $gU \cap U = \emptyset$ for all $g \neq e$. For such a U the restriction $\pi|_U: U \longrightarrow V = \pi(U)$ is a homeomorphism because it is continuous, open and bijective. Denote the inverse by $s: V \longrightarrow U$. Then a local trivialisation over U is given by the map $\varphi: V \times G \longrightarrow \pi^{-1}(V)$ with $\varphi(y,g) = g \cdot s(y)$.

Examples 2.28.

- (i) The group \mathbb{Z}^{\times} acts freely on S^n . Hence, $\pi \colon S^n \longrightarrow S^n/\mathbb{Z}^{\times} \cong \mathbb{RP}^n$ is a 2-sheeted covering space. We will see soon, that this implies that $\pi_1(\mathbb{RP}^n) \cong \mathbb{Z}^{\times} \cong \mathbb{Z}/2$.
- (ii) The additive group \mathbb{Z}^2 acts on \mathbb{R}^2 by translation. This is a covering space action and $\mathbb{R}^2/\mathbb{Z}^2 \cong T^2$.

Definition 2.29. Let $\pi: E \longrightarrow B$ be a covering space and consider any continuous map $f: X \longrightarrow B$. A continuous map $f': X \longrightarrow E$ such that

commutes is called a *lift* of f to E.

Proposition 2.30. Let $\pi: E \longrightarrow B$ be a covering space and $f: X \longrightarrow B$ a continuous map. Let $x_0 \in X$. and consider lifts $f', f'': X \longrightarrow E$ of f with $f'(x_0) = f''(x_0)$. If X is connected, then f' = f''.

Proof. We show that the set $A = \{x \in X : f'(x) = f''(x)\} \subset X$ is open and closed. To see that A is open, consider any point $x \in A$ and choose a local trivialisation $\varphi : \pi^{-1}(V) \longrightarrow V \times F$ over some neighbourhood V of f(x). Then $\varphi(f'(x)) = \varphi(f''(x)) \in V \times \{a\}$ for some $a \in F$. Because f' and f'' are continuous, there exists some open neighbourhood U of x such that $\varphi(f'(U)) \subset V \times \{a\}$ and $\varphi(f''(U)) \subset V \times \{a\}$. Because π restricts to a homeomorphism $\varphi^{-1}(V \times \{a\}) \longrightarrow V$, this implies that $f'|_U = f''|_U$.

To see that A is closed, take some $x \in X \setminus A$. Let $\varphi: \pi^{-1}(V) \longrightarrow V \times F$ be as above. Then $\varphi(f'(x)) \in V \times \{a\}$ and $\varphi(f''(x)) \in V \times \{b\}$ for $a \neq b$. Because f' and f'' are continuous, there exists an open neighbourhood U of x such that $\varphi(f'(U)) \subset V \times \{a\}$ and $\varphi(f''(U)) \subset V \times \{b\}$. This implies that $U \subset X \setminus A$.

Proposition 2.31. A covering space $\pi: E \longrightarrow B$ satisfies the homotopy lifting property, *i. e.* for any homotopy $H: X \times I \longrightarrow B$ from f to g and any chosen lift $f': X \longrightarrow E$ of f there exists a unique lift $H': X \times I \longrightarrow E$ such that

$$\begin{array}{c|c} X & \xrightarrow{f'} E \\ \downarrow & \downarrow & \downarrow \\ id \times 0 \\ X \times I & \xrightarrow{H'} H \end{array} \\ X \times I & \xrightarrow{H'} H \end{array}$$

commutes. In particular $H' \circ (id \times 1) =: g'$ is a lift of g.

Proof. We will call an open subset U ⊂ B admissible if there exists a local trivialisation over U. Fix x ∈ X. Then there exists an open neighbourhood V_x of x and a subdivision $0 = t_0 < \cdots < t_n = 1$ such that $H(V_x × [t_{i-1}, t_i]) ⊂ U_i$ for some admissible U_i . Inductively assume that H' is already constructed on $V_x × [0, t_i]$. By assumption $H(V_x × [t_i, t_{i+1}]) ⊂ U$ for some admissible U and in particular $H'(V_x × \{t_i\}) ⊂ π^{-1}(U)$. For a ∈ F write $V_{x,a} = H'(_, t_i)^{-1}(U × \{a\}) ∩ V_x$, where we identify $U × \{a\}$ with $φ^{-1}(U × \{a\})$. Observe that π restricts to a homeomorphism $U × \{a\} \longrightarrow U$ and define $H' : V_{x,a} × [t_i, t_{i-1}] \longrightarrow U × \{a\}$ by $H'(y, t) = π^{-1}(H(y, t))$. Inductively, one obtains a lift $H' : V_x × I \longrightarrow E$. Proposition 2.30 implies that such lifts are unique and in particular the constructed lifts coincide on $(V_x × I) ∩ (V_{x'} × I)$ for x, x' ∈ X. Hence, we arrive at a lift $H' : X × I \longrightarrow E$.

As special cases of the previous proposition we obtain:

Proposition 2.32. Let $\pi: E \longrightarrow B$ be a covering map.

(i) For $b_0 \in B$, $e_0 \in \pi^{-1}(\{b_0\})$ and a path $\gamma \colon I \longrightarrow B$ with $\gamma(0) = b_0$ there is a unique lift γ' in

(ii) Consider paths γ₀, γ₁: I → B and a homotopy H relative ∂I from γ₀ to γ₁. For any lift γ'₀: I → E of γ₀ there exists a unique lift H': I × I → E of H to E which yields a homotopy relative ∂I from γ'₀ to a lift of γ₁.

2.5 Fundamental Groups and Covering Spaces

Let $\pi: E \longrightarrow B$ be a covering map of pointed spaces, i.e. a covering space together with fixed base points $b_0 \in B$ and $e_0 \in \pi^{-1}(\{b_0\})$.

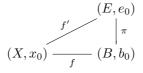
Proposition 2.33. The homomorphism $\pi_*: \pi_1(E, e_0) \longrightarrow \pi_1(B, b_0)$ induced by π is injective.

Proof. Take a loop γ in B such that $\pi_*([\gamma]) = e \in \pi_1(B, b_0)$, i.e. $\pi \circ \gamma \simeq_{\partial I} c_{b_0}$ via a homotopy H. Lifting this homotopy to B gives a homotopy $\gamma \simeq_{\partial I} c_{e_0}$.

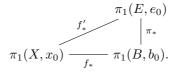
Definition 2.34. The subgroup $\pi_*(\pi_1(E, e_0)) \subset \pi_1(B, b_0)$ is called the *characteristic subgroup* of $\pi: E \longrightarrow B$.

Consider the *lifting problem* for a map $f: X \longrightarrow B$, that is the problem of finding a map $f': X \longrightarrow E$ such that $\pi \circ f = f'$. We have already proven that such a lift is unique up to a choice of basepoint if X is connected. Moreover, the existence of a lift only depends on the homotopy class of f: if $f \simeq g$ and there exists a lift of f then there also exists a lift of g.

We have a necessary condition for the existence of a lift f'. If



is a commutative diagram of pointed spaces, then passing to fundamental groups we get a commutative diagram



Hence, the image of f_* must lie in the characteristic subgroup of $\pi: E \longrightarrow B$. Perhaps surprisingly, this condition is also sufficient for nice enough spaces.

Proposition 2.35. If X is path-connected and locally path-connected, then there exists a lift $f': X \longrightarrow E$ of f if and only if $\inf f_* \subset \inf \pi_*$.

Proof. For every point $x \in X$ choose a path $\tau_x \colon I \longrightarrow X$ from x_0 to x and consider the unique lift $\gamma_x \colon I \longrightarrow E$ of $f \circ \tau_x$ to E starting at e_0 . Now set $f'(x) = \gamma_x(1)$. In fact, this definition is independent of the choice of τ_x : For any other path τ'_x from x_0 to x, consider the loop $\tau'_x * \tau_x^-$ at x_0 . Then on fundamental groups $[(f \circ \tau'_x) * (f \circ \tau_x^-)] = f_*([\tau'_x * \tau_x^-]) \in \pi_*(\pi_1(E, e_0))$. Hence, $(f \circ \tau'_x) * (f \circ \tau'_x)$ lifts to a loop in E at e_0 ; this implies that f'(x) was in fact independent of the choice of τ_x .

The only thing left to check is that f' is continuous. Let $V \subseteq B$ be an open neighbourhood of f(x) such that $\pi: E \longrightarrow B$ is trivial over V and let $U \subseteq E$ be an open neighbourhood of f'(x) such that $\pi(U) = V$. Fix any open, path-connected neighbourhood $W \subset X$ of x such that $f(W) \subset V$. For $y \in W$ choose a path η_y from x to y. Then $\tau_x * \eta_y$ is a path from x_0 to y, hence $f'(y) = \eta'(1)$ for a lift η' of $f \circ (\tau_x \circ \eta_y)$ to E starting at f'(x). On the other hand $\gamma_x * (\pi|_U^{-1} \circ f \circ \eta_y)$ is a lift of $f \circ (\tau_x * \eta_y)$. This implies that $f'(y) \in U$ which proves continuity of f'. **Remark 2.36.** One cannot get rid of the assumption that X be locally path-connected.

There is a general notion of fibre transport. Given a covering space $\pi: E \longrightarrow B$, fix points $b_0, b_1 \in B$. Let B be path-connected and choose a path $\gamma: I \longrightarrow B$ from b_0 to b_1 . Define a map $T_{\gamma}: \pi^{-1}(\{b_0\}) \longrightarrow \pi^{-1}(\{b_1\})$ via $T_{\gamma}(e) = \gamma'_e(1)$ where γ'_e is the lift of γ to E starting at e. This map only depends on the homotopy class of γ relative ∂I . This construction satisfies $T_{c_b} = \mathrm{id}_{\pi^{-1}(\{b\})}$ for any $b \in B$ and $T_{\gamma_1 * \gamma_2} = T_{\gamma_2} \circ T_{\gamma_1}$. This latter property immediately implies that T_{γ} is a bijection for any path γ in B. If $b_1 = b_0$ we obtain a right action of $\pi_1(B, b_0)$ on $\pi^{-1}(\{b_0\})$.

Remark 2.37.

- (i) The stabiliser of $e_0 \in \pi^{-1}(\{b_0\})$ under this action is just the characteristic subgroup im π_* .
- (ii) The action is transitive if E is path–connected.

2.6 Deck Transformations

Let $\pi: E \longrightarrow B$ be a covering space. We will investigate what the "symmetries" of such an object are.

Definition 2.38. A homeomorphism $\phi: E \longrightarrow E$ such that

commutes is called a *deck transformation*. In other words, a deck transformation is a fibre–preserving homeomorphism.

The deck transformation forms a group. We will denote it by $\text{Deck}(\pi)$ or $\text{Deck}_B(E)$.

Remark 2.39. If *E* is connected and $\phi, \phi' \colon E \longrightarrow E$ are deck transformations which satisfy $\phi(e) = \phi'(e)$ for some point $e \in E$, then $\phi = \phi'$.

Proof. This follows from the uniqueness of lifts because ϕ and ϕ' are both lifts of $\pi: E \longrightarrow B$ to E.

Examples 2.40.

- (i) Consider the exponential map $\pi \colon \mathbb{R} \longrightarrow S^1$. All deck transformations are of the form $\phi_n(\xi) = \xi + n$ with $n \in \mathbb{Z}$, since given $k, l \in \mathbb{Z} = \pi^{-1}(\{1\})$ there exists a ϕ_n such that $\phi_n(k) = l$. The uniqueness statement of the previous remark allows us to conclude. We obtain an isomorphism $\mathbb{Z} \xrightarrow{\sim} \text{Deck}(\pi)$.
- (ii) For $n \in \mathbb{N}$ consider the covering *n*-sheeted covering $\pi: S^1 \longrightarrow S^1$ such that $\pi(z) = z^n$. All deck transformations are given by $\phi_k(z) = e^{2\pi i k/n}$ with $k \in \mathbb{Z}/n$. We obtain an isomorphism $\mathbb{Z}/n \xrightarrow{\sim} \text{Deck}(\pi)$.

Definition 2.41. A covering space $\pi: E \longrightarrow B$ is called *regular* (or *normal* or *Galois*) if Deck (π) acts transitively on every fibre $\pi^{-1}(\{b_0\})$.

Fix $b_0 \in B$ and $e_0, e'_0 \in \pi^{-1}(\{b_0\})$. When is there a deck transformation $\phi: E \longrightarrow E$ with $\phi(e_0) = e'_0$? Assume that E is connected and locally path-connected. Then Proposition 2.35 implies that such a deck transformation ϕ exists if and only if $\pi_*(\pi_1(E, e_0)) = \pi_*(\pi_1(E, e'_0))$.

Proposition 2.42. Let π : $(E, e_0) \longrightarrow (B, b_0)$ be a pointed covering space with E path-connected and locally path-connected. Then there is an isomorphism

$$\mathbb{N}(\pi_*\pi_1(E,e_0))/_{\pi_*\pi_1(E,e_0)} \xrightarrow{\sim} \mathrm{Deck}(\pi)$$

where $N(\pi_*\pi_1(E, e_0))$ denotes the normaliser of $\pi_*\pi_1(E, e_0)$ in $\pi_1(B, b_0)$

Remark 2.43. We have already seen that under the assumptions of Proposition 2.42 the covering space $\pi: E \longrightarrow B$ is regular if and only if $\pi_*\pi_1(E, e_0)$ is a normal subgroup in $\pi_1(B, b_0)$.

Corollary 2.44. If under the assumptions of Proposition 2.42 the covering space $\pi: E \longrightarrow B$ is regular, then

$$\operatorname{Deck}(\pi) \cong \pi_1(B, b_0) / \pi_* \pi_1(E, e_0)$$

Proof of Proposition 2.42. Define a map $\varphi \colon N(\pi_*\pi_1(E, e_0)) \longrightarrow \text{Deck}(\pi) \text{ via } \varphi([\gamma]) = \phi$ where ϕ denotes the unique deck transformation with $\phi(e_0) = \gamma'(1) = e'_0$ for a lift γ' of γ to E. Because of

$$\varphi([\gamma_1][\gamma_2])(e_0) = \eta'(1) = (\gamma_1' * (\varphi([\gamma_1]) \circ \gamma_2'))(1) = \varphi([\gamma_1])(\gamma_2'(1)) = (\varphi([\gamma_1]) \circ \varphi([\gamma_2]))(e_0)$$

for some lift η' of $\gamma_1 * \gamma_2$ starting at e_0 , the map φ is a group homomorphism.

Furthermore, φ is surjective because, for $\psi \in \text{Deck}(\pi)$, choose a path τ from e_0 to $e'_0 = \psi(e_0)$. Then $\gamma = \pi \circ \tau$ satisfies $[\gamma] \in N(\pi_*\pi_1(E, e_0))$ and $\varphi([\gamma]) = \psi$.

It remains to compute ker φ . We have $\varphi([\gamma]) = \text{id}$ if and only if $\gamma'(0) = \gamma'(1)$ for some lift γ' of γ , i.e. γ lifts to a loop in E. This is equivalent to $[\gamma] \in \pi_* \pi_1(E, e_0)$.

Proposition 2.45. Let $G \times X \longrightarrow X$ be a covering space action. Then

- (i) the covering space $\pi: X \longrightarrow X/G$ is regular.
- (ii) if X is connected, $\text{Deck}(\pi) \cong G$.
- (iii) if X is path-connected and locally path-connected, there is an isomorphism

$$\pi_1(X/G, Gx_0)/_{\pi_*\pi_1(X, x_0)} \longrightarrow G$$

for any $x_0 \in X$.

Proof.

- (i) Clearly, G may be considered as a subgroup of $\text{Deck}(\pi)$ because $\pi(gx) = \pi(x)$ for all $g \in G$. Because G acts transitively on each orbit, this implies that π is regular.
- (ii) The argument of (i) implies that $G = \text{Deck}(\pi)$ if X is connected.
- (iii) This is just a formal consequence of (i) and (ii) in light of Proposition 2.42. \Box

Examples 2.46. Real projective space is given as $\mathbb{RP}^n \cong S^n/\mathbb{Z}^{\times}$. The action of \mathbb{Z}^{\times} is a covering space action; hence Proposition 2.45 implies that $\pi_1(\mathbb{RP}^n)/\pi_1(S^n) \cong \mathbb{Z}^{\times} \cong \mathbb{Z}/2$. So, $\pi_1(\mathbb{RP}^n) \cong \mathbb{Z}/2$ for n > 1. On the other hand, $\pi_1(\mathbb{RP}^1) \cong \mathbb{Z}$.

We have seen that a covering space action of G on a connected space X is nothing but the action of $\text{Deck}(\pi)$ on the covering space $\pi: X \longrightarrow X/G$. Conversely, we have the following

Proposition 2.47. Let $\pi: E \longrightarrow B$ be a covering space. Consider any subgroup $H \subset \text{Deck}(\pi)$. Then

- (i) if E is connected, the action of H on E is a covering space action and $p: E \longrightarrow E/H$ is a regular covering space.
- (ii) the covering space π factors as

and, if B is connected and locally connected, $q: E/H \longrightarrow B$ is a covering space.

Proof. Take $e \in E$ and $\phi \in \text{Deck}(\pi)$. Let $V \subset B$ be an admissible open neighbourhood of $\pi(e)$ and $U \subset E$ an open neighbourhood of e such that $\pi: U \longrightarrow V$ is a homeomorphism. We will prove that $\phi(U) \cap U \neq \emptyset$ implies $\phi = \text{id.}$ If $e' \in \phi(U) \cap U$, then $e' = \phi(e'')$ for some $e'' \in U$. Hence, $\pi(e') = \pi(\phi(e'')) = \pi(e'')$ and e' = e'' because π is a homeomorphism. The standard uniqueness statement for deck transformations implies $\phi = \text{id.}$ This proves (i).

For (ii), let $V \subset B$ an admissible and connected open subset. Write $\pi^{-1}(V) = \coprod_{i \in I} U_i$ such that $\pi|_{U_i} : U_i \longrightarrow V$ is a homeomorphism and the U_i are connected components of $\pi^{-1}(V)$. The group H permutes the U_i (since these are the connected components); hence, the H-orbits of the components U_i are open in E/H and map bijectively to V. The map q is continuous and open, so $q : E/H \longrightarrow B$ is trivial over V. In summary, q is locally trivial and, because B is connected, the typical fibre is independent of V.

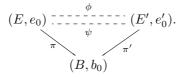
2.7 Classification of Covering Spaces

Let B be a fixed topological space. We want to classify all possible covering spaces $E \longrightarrow B$ up to isomorphism.

Definition 2.48. Let $\pi: E \longrightarrow B$ and $\pi': E' \longrightarrow B$ be covering spaces over B. A homeomorphism $\phi: E \longrightarrow E'$ such that

commutes is called an *isomorphism* of covering spaces.

We will see that under suitable assumptions there is a natural bijective correspondence between isomorphism classes of pointed covering spaces $\pi: (E, e_0) \longrightarrow (B, b_0)$ and subgroups $H \subset \pi_1(B, b_0)$ which maps a covering to its characteristic subgroup. In fact, if $\operatorname{im} \pi_* = \operatorname{im} \pi'_*$ for pointed covering spaces $\pi: (E, e_0) \longrightarrow (B, b_0)$ and $\pi': (E', e'_0) \longrightarrow (B, b_0)$, then (E, e_0) and (E', e'_0) are isomorphic, if we assume that E and E' are path–connected and locally path– connected. The isomorphism may be constructed as follows: Consider the diagram



Because im $\pi_* \subset \operatorname{im} \pi'_*$ there exists a unique map ϕ making this triangle commutative. Analogously, we find a map ψ making the respective triangle commute and the uniqueness of lifts implies that ϕ and ψ are mutually inverse.

To see surjectivity we need to show that for every subgroup $H \subset \pi_1(B, b_0)$ there exists a pointed covering $\pi: (E, e_0) \longrightarrow (B, b_0)$ such that $H = \operatorname{im} \pi_*$. In particular, we need to find a covering π such that $\operatorname{im} \pi_* = 1$.

Definition 2.49. Let *B* be a topological space. A covering space $\pi: E \longrightarrow B$ is called *universal* if *E* is simply connected.

Remark 2.50. If B is locally path–connected, then a universal covering of B is unique up to isomorphism, because in this case any covering of B is locally path–connected and one can apply the argument above.

Definition 2.51. A topological space X is called *semi-locally simply connected* if any point $x \in X$ admits an open neighbourhood U such that any loop $\gamma: I \longrightarrow U$ at x is null-homotopic in X.

Remark 2.52. There exists spaces that are path-connected and locally path-connected but not semi-locally simply connected. The *Hawaiian earrings* $\bigcup_{n \in \mathbb{N}} \partial B_{1/n}(0, 1/n) \subset \mathbb{R}^2$ provide an example.

Proposition 2.53. Every path-connected, locally path-connected and semi-locally simply connected space B admits a universal covering $\pi: E \longrightarrow B$.

Proof. To give some motivation for the construction consider any universal covering $\pi: E \longrightarrow B$ with $b_0 \in B$ and $e_0 \in \pi^{-1}(\{b_0\})$. Then for any $e_1 \in E$ there exists a unique homotopy class of paths $[\gamma]$ from e_0 to e_1 . Hence, the points of E may be identified with homotopy classes of paths in E starting at e_0 . The composition $\pi \circ \gamma$ is a path in B from b_0 to $\pi(e_1) = b_1$. The homotopy lifting property implies that path γ and γ' from e_0 to e_1 are homotopic if and only if the paths $\pi \circ \gamma$ and $\pi \circ \gamma'$ from b_0 to b_1 are homotopic. Hence, points in E can be identified with homotopy classes of paths in B starting at $b_0 \in B$.

To prove the proposition fix $b_0 \in B$. Let E be the set of homotopy classes of paths $\gamma: I \longrightarrow B$ with $\gamma(0) = b_0$. For $[\gamma] \in E$ set $\pi([\gamma]) = \gamma(1)$. This defines a surjective map $\pi: E \longrightarrow B$ since Bis path-connected. The second step is to define a topology on E. For $\gamma: I \longrightarrow B$ with $\gamma(0) = b_0$ and an open neighbourhood U of $\gamma(1)$ set

$$U_{\gamma} = \{ [\gamma * \tau] : \tau : I \longrightarrow U \text{ and } \tau(0) = \gamma(1) \} \subset E.$$

Clearly, U_{γ} depends only on the homotopy class of γ . We claim that the sets $U_{[\gamma]}$ form a basis of a topology on E: If $[\gamma''] \in U_{[\gamma]} \cap U'_{[\gamma']}$ then $U''_{[\gamma'']} \subset U_{[\gamma]} \cap U'_{[\gamma']}$ for an open neighbourhood $U'' \subset U \cap U'$ of $\gamma''(1)$.

It follows that $\pi \colon E \longrightarrow B$ is continuous an open: Let $U \subset B$ be an open neighbourhood of $\pi([\gamma]) = \gamma(1)$ for some $[\gamma] \in E$. Then $U_{[\gamma]} \subset E$ is open and $\pi([\gamma * \tau]) = \tau(1) \in U$ for any homotopy class $[\gamma * \tau] \in U_{[\gamma]}$. To see that π is open, observe that $\pi(U_{[\gamma]})$ is the path-connected component of U containing $\gamma(1)$ which is open because B is locally path-connected. Since the sets $U_{[\gamma]}$ form a basis, this implies that π is an open map.

Let $b \in B$. There exists an open neighbourhood U of b which is path-connected and such that any loop $\gamma \colon I \longrightarrow U$ is null-homotopic in B. Then

$$\pi^{-1}(U) = \coprod_{[\gamma] \text{ s. t. } \gamma(1) \in U} U_{[\gamma]}:$$

We have $U_{[\gamma]} \cap U_{[\gamma']} = \emptyset$ for $[\gamma] \neq [\gamma']$ since if there were some $[\gamma''] \in U_{[\gamma]} \cap U_{[\gamma']}$ then $\gamma'' \simeq \gamma * \tau$ and $\gamma'' \simeq \gamma * \tau'$ for some τ and τ' . But because any loop in U is null-homotopic in B this would imply that $\gamma \simeq \gamma'$. Additionally, for $[\gamma * \tau]$ one clearly has $\pi([\gamma * \tau]) = \tau(1) \in U$ and conversely, if $[\gamma] \in \pi^{-1}(U)$, then $\pi([\gamma]) = \gamma(1) \in U$ and because U is path-connected there exists a path $\begin{aligned} \tau \colon I \longrightarrow U \text{ from } b \text{ to } \gamma(1). \text{ Then } \gamma \simeq (\gamma * \tau^{-}) * \tau, \text{ i. e. } [\gamma] \in U_{[\gamma * \tau^{-}]}. \\ \text{Now, } \pi|_{U_{[\gamma]}} \colon U_{[\gamma]} \longrightarrow U \text{ is injective for suppose } \eta(1) = \eta'(1) \text{ for paths } [\eta], [\eta'] \in U_{[\gamma]}, \text{ e.g.} \end{aligned}$

 $\eta \simeq \gamma * \tau$ and $\eta' \simeq \gamma * \tau'$. Then $\eta \simeq \gamma * \tau' * \tau'^- * \tau \simeq \eta'$ because any loop in U is null-homotopic in B. In summary, we have constructed a local trivialisation of $\pi: E \longrightarrow B$ around b with discrete fibre.

The space E is path-connected: Write $e_0 = [c_{b_0}]$. Take any $[\gamma] \in E$ and for $s \in I$ let $\gamma_s: I \longrightarrow B$ be the path such that $\gamma_s(t) = \gamma(st)$. Then the map $\alpha: I \longrightarrow E$ such that $\alpha(s) = [\gamma_s]$ is a path from e_0 to $[\gamma]$ in E.

To see that E is simply connected let $\gamma' \colon I \longrightarrow E$ be a loop based at e_0 . Write $\gamma = \pi \circ \gamma'$. As above consider $\alpha: I \longrightarrow E$ with $\alpha(s) = [\gamma_s]$. Then $\pi(\alpha(s)) = \gamma(s)$ and $\alpha(0) = e_0$. This implies $\alpha = \gamma'$ because π is a covering. In particular, α is a loop in e_0 , i.e. $[\gamma_0] = [\gamma_s]$. Hence, γ is null-homotopic. The homotopy lifting property allows us to conclude. \square

Examples 2.54.

- (i) The exponential map $\mathbb{R} \longrightarrow S^1$ is a universal covering of S^1 .
- (ii) Similarly, the exponential map $\mathbb{C} \longrightarrow \mathbb{C}^{\times}$ is a universal covering of \mathbb{C} .
- (iii) The quotient map $\mathbb{R}^2 \longrightarrow T^2 = \mathbb{R}^2/\mathbb{Z}^2$ is a universal covering of the torus. (iv) The quotient map $S^n \longrightarrow \mathbb{RP}^n = S^n/\mathbb{Z}^{\times}$ is a universal covering of real projective space.

Let (B, b_0) be a path-connected and locally path-connected pointed space, hence admitting a universal covering $\pi: (E, e_0) \longrightarrow (B, b_0)$. To classify all coverings of B, it remains to show that for any subgroup $H \subset \pi_1(B, b_0)$ there exists a covering $\pi' \colon (E', e'_0) \longrightarrow (B, b_0)$ with characteristic subgroup. But Proposition 2.47 implies that the action of H on E by deck transformations is a covering space action. We obtain a commutative triangle

$$(E, e_0) \xrightarrow{p} (E/H, He_0)$$

$$(B, b_0) \xrightarrow{q} (E/H, He_0)$$

of coverings with p regular. We claim that $q_*\pi_1(E/H, He_0) = H$: By definition $q_*\pi_1(E/H, He_0)$ are the homotopy classes of loops γ based at b_0 which lift to loops based at He_0 in the covering

space E/H. But this is equivalent to γ lifting to a loop in E which is based in the H-orbit in e_0 , i.e. $[\gamma] \in H$.

Furthermore, the constructed covering $\pi' : (E', e'_0) \longrightarrow (B, b_0)$ with characteristic subgroup H is regular if and only if H is a normal subgroup of $\pi_1(B, b_0)$. In summary, we have proven the following proposition.

Proposition 2.55. If B is path-connected, locally path-connected and semi-locally simply connected, then there is a natural bijective correspondence

$$\left\{\begin{array}{c} Pointed \ covering \ spaces\\ \pi\colon (E,e_0) \longrightarrow (B,b_0) \ up \ to \ isomorphism\end{array}\right\} \longrightarrow \{Subgroups \ H \subset \pi_1(B,b_0)\}.$$

Furthermore, $\pi: (E, e_0) \longrightarrow (B, b_0)$ is regular if and only if the corresponding subgroup H is a normal subgroup of $\pi_1(B, b_0)$.

Corollary 2.56. Under the same conditions on B, there is a natural bijective correspondence

$$\left\{\begin{array}{c} Covering \ spaces \ \pi \colon E \longrightarrow B \ up \ to \\ isomorphism \end{array}\right\} - \left\{\begin{array}{c} Subgroups \ H \subset \pi_1(B, b_0) \ up \ to \\ conjugacy \end{array}\right\}.$$

In particular, regular covering spaces correspond to normal subgroups in $\pi_1(B, b_0)$.

Remark 2.57. There is a formal analogy with Galois theory. If L|k is a Galois extension, there is a bijective correspondence between intermediate extensions K|k and subgroups $H \subset \text{Gal}(L|k)$. Here, normal subgroups correspond to Galois extensions. Instead of the quotient by a group action one considers the fixed field of H in L.

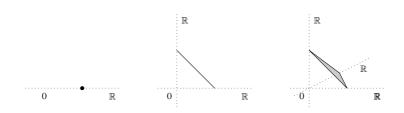


Figure 5: The standard 0-simplex, 1-simplex and 2-simplex

3 Singular Homology Theory

3.1 Singular Simplices and the Singular Chain Complex

Definition 3.1. The standard *n*-simplex $\Delta^n \subset \mathbb{R}^{n+1}$ is the convex hull of the standard basis e_0, \ldots, e_n , i.e.

$$\Delta^{n} = \left\{ \sum_{i=0}^{n} t_{i} e_{i} \colon 0 \le t_{i} \le 1 \text{ and } \sum_{i=0}^{n} t_{i} = 1 \right\}.$$

In this presentation the t_i are called *barycentric coordinates*.

Remark 3.2. One can show that $\Delta^n \cong D^n$.

Definition 3.3. Let X be a topological space. A continuous map $\sigma: \Delta^n \longrightarrow X$ is called a *singular n-simplex* in X. We write $\Delta_n(X)$ for the set of all singular *n*-simplices in X.

Remark 3.4. A singular simplex $\sigma: \Delta^n \longrightarrow X$ does not need to be an embedding; the image $\sigma(\Delta^n) \subset X$ may be degenerate.

Examples 3.5. Take $v_0, \ldots, v_n \in \mathbb{R}^N$. We denote by $[v_0, \ldots, v_n]$ the affine singular *n*-simplex in \mathbb{R}^n , i.e. $[v_0, \ldots, v_n]: \Delta^n \longrightarrow \mathbb{R}^N$ is the map such that

$$[v_0,\ldots,v_n]\Big(\sum t_i e_i\Big)=\sum t_i v_i.$$

The image of $[v_0, \ldots, v_n]$ is of course just the convex hull of v_0, \ldots, v_n . In particular, for $0 \le i \le n$ we have the affine (n-1)-simplex $[e_0, \ldots, \hat{e_i}, \ldots, e_n]: \Delta^{n-1} \longrightarrow \Delta^n \subset \mathbb{R}^{n+1}$ in \mathbb{R}^{n+1} , the *i*th face F_i^n of Δ^n . Here $\hat{e_i}$ denotes the omission of e_i .

Definition 3.6. Let $C_n(X) = \mathbb{Z}^{(\Delta_n(X))}$ denote the free abelian group generated by $\Delta_n(X)$, i.e. $C_n(X)$ consists of formal linear combinations $\sum_i n_i \sigma_i$ of singular *n*-simplices $\sigma_i \in \Delta_n(X)$ with integral coefficients $n_i \in \mathbb{Z}$. The elements of $C_n(X)$ are called *singular n*-chains in X. The group homomorphism $\partial_n : C_n(X) \longrightarrow C_{n-1}(X)$ defined by

$$\partial_n \sigma = \sum_{i=0}^n (-1)^i \, \sigma \circ F_i^n.$$

for $\sigma \in \Delta_n(X)$ is called the *boundary operator*. The collection of all the $C_n(X)$ together with the ∂_n defines a *chain complex*

$$C_{\bullet}(X) = \cdots - C_2(X) \xrightarrow{\partial_2} C_1(X) \xrightarrow{\partial_1} C_0(X) \xrightarrow{\partial_0} 0 \cdots \cdots$$

called the singular chain complex of X. That $C_{\bullet}(X)$ is called a chain complex just means that $\partial_{n-1} \circ \partial_n = 0$ which we will see shortly.

Lemma 3.7. We have $\partial_{n-1} \circ \partial_n = 0$ for all $n \in \mathbb{Z}$.

Proof. Of course, it is enough to check this on $\Delta_n(X)$. For $\sigma \in \Delta_n(X)$ compute

$$\begin{split} \partial_{n-1}\partial_n\sigma &= \partial_{n-1}\sum_{i=0}^n (-1)^i \,\sigma F_i^n = \sum_{i=0}^n (-1)^i \partial_{n-1} (\sigma F_i^n) = \sum_{i=0}^n (-1)^i \sum_{j=0}^{n-1} (-1)^j \,\sigma F_i^n F_j^{n-1} = \\ &= \sum_{j$$

Here we have used

$$F_k^n \circ F_\ell^{n-1} = \begin{cases} [e_0, \dots, \widehat{e_\ell}, \dots, \widehat{e_k}, \dots, e_n], & \ell < k \\ [e_0, \dots, \widehat{e_k}, \dots, \widehat{e_{\ell+1}}, \dots, e_n], & \ell \ge k \end{cases}$$

which can be checked by direct calculation.

We write $Z_n(X) := \ker \partial_n \subset C_n(X)$ and $B_n(X) := \operatorname{im} \partial_{n+1} \subset C_n(X)$. The elements of $Z_n(X)$ are called *singular n-cycles* and the elements of $B_n(X)$ are called *singular n-boundaries*. Lemma 3.7 implies that $B_n(X) \subset Z_n(X)$. Hence, the following definition makes sense.

Definition 3.8. The n^{th} singular homology group of X is the quotient

$$H_n(X) \coloneqq Z_n(X) / B_n(X).$$

Remark 3.9.

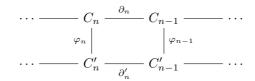
- (i) The quotient $H_n(X)$ is an abelian group for all $n \in \mathbb{Z}$ by construction.
- (ii) Of course, $H_n(X) = 0$ for n < 0.
- (iii) Cycles $c_1, c_2 \in Z_n(X)$ are called *homologous* if and only if $c_2 c_1 \in B_n(X)$, i.e. if $[c_1] = [c_2] \in H_n(X)$.

Definition 3.10. A family of abelian groups $(C_n)_{n \in \mathbb{Z}}$ together with group homomorphisms $\partial_n : C_n \longrightarrow C_{n-1}$ such that $\partial_{n-1} \circ \partial_n = 0$ is called a *chain complex*. We sometimes write

$$C_{\bullet} = \cdots - C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \xrightarrow{\partial_0} C_{-1} \cdots$$

for this collection of data. In general, the groups C_n are called *chain groups* and the maps ∂_n are called *boundary operators*. The quotient $H_n = Z_n/B_n$ where $Z_n = \ker \partial_n$ and $B_n = \operatorname{im} \partial_{n+1}$ is called the n^{th} homology group of C_{\bullet} .

A family $(\varphi_n : C_n \longrightarrow C'_n)_{n \in \mathbb{Z}}$ of homomorphisms between chain complexes $(C_{\bullet}, \partial_{\bullet})$ and $(C'_{\bullet}, \partial'_{\bullet})$ is called a *chain map* if the diagram



is commutative.

Lemma 3.11. Any chain map $\varphi_{\bullet} : (C_{\bullet}, \partial_{\bullet}) \longrightarrow (C'_{\bullet}, \partial'_{\bullet})$ induces natural group homomorphisms $\varphi_n : H_n(C_{\bullet}) \longrightarrow H_n(C'_{\bullet}).$

Proof. Let $c \in Z_n \subset C_n$. Then $\partial'_n \varphi_n(c) = \varphi_{n-1} \partial_n(c) = 0$. Hence, the φ_n restrict to homomorphisms $\varphi_n \colon Z_n \longrightarrow Z'_n$. If two cycles $c_1, c_2 \in Z_n$ differ only by a boundary, i. e. $c_2 - c_1 = \partial_{n+1}b$, then $\varphi_n(c_2) - \varphi_n(c_1) = \partial'_{n+1}\varphi_{n+1}(b)$. Hence, $\varphi_n(c_1) \equiv \varphi_n(c_2) \pmod{B'_n}$ and the φ_n descend to group homomorphisms $\varphi_n \colon H_n(C_{\bullet}) \longrightarrow H_n(C'_{\bullet})$.

Let $f: X \longrightarrow X'$ be a continuous map between topological spaces. Then we obtain natural maps $f_*: \Delta_n(X) \longrightarrow \Delta_n(X')$ via pre-composition, whence natural group homomorphisms $f_*: C_n(X) \longrightarrow C_n(X')$. These assemble to a chain map $f_*: C_{\bullet}(X) \longrightarrow C_{\bullet}(X')$ since

$$f_*\partial_n(\sigma) = \sum_{i=0}^n (-1)^i \ f \circ \sigma \circ F_i^n = \partial'_n f_*(\sigma)$$

for all $\sigma \in \Delta_n(X)$. We obtain natural homomorphisms $f_* \colon H_n(X) \longrightarrow H_n(X')$ on singular homology. It is immediate that $(fg)_* = f_*g_*$ and $\mathrm{id}_* = \mathrm{id}$ and we obtain a family of functors $H_n \colon \mathbf{Top} \longrightarrow \mathbf{Ab}$. Hence, if X and X' are homeomorphic then $H_n(X) \cong H_n(X')$ for all $n \in \mathbb{Z}$. The converse need not hold!

Examples 3.12. We will compute the homology of the one point space *. It has a unique singular simplex $\sigma_n: \Delta_n \longrightarrow *$ for all $n \ge 0$, i.e. $C_n(X) = \mathbb{Z}\sigma_n$ for $n \ge 0$. The boundary of σ_n is

$$\partial_n \sigma = \sum_{i=0}^n (-1)^i \sigma_{n-1} = \begin{cases} 0, & n \text{ odd} \\ \sigma_{n-1}, & n \text{ even} \end{cases}$$

for $n \ge 1$ and $\partial_n = 0$ for n < 1. Hence, $\partial_n : C_n(*) \longrightarrow C_{n-1}(*)$ is an isomorphism if $n \ge 0$ is even and $\partial_n = 0$ otherwise. The chain complex $C_{\bullet}(*)$ looks like

$$\cdots \stackrel{0}{\longrightarrow} \mathbb{Z} \stackrel{\sim}{\longrightarrow} \mathbb{Z} \stackrel{0}{\longrightarrow} \mathbb{Z} \longrightarrow 0.$$

We obtain the singular homology as

$$H_n(*) = \begin{cases} \mathbb{Z}, & n = 0\\ 0, & n \neq 0. \end{cases}$$

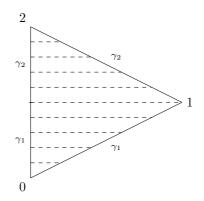


Figure 6: The 2–simplex σ .

Proposition 3.13. If $X = \bigsqcup_{i \in I} X_i$ is the decomposition of X into its path components, then

$$H_n(X) \cong \bigoplus_{i \in I} H_n(X_i)$$

for all $n \in \mathbb{Z}$.

Proof. Because the standard *n*-simplex $\Delta^n \subset \mathbb{R}^{n+1}$ is path-connected, its image $\sigma(\Delta^n)$ under any singular simplex $\sigma \in \Delta_n(X)$ is entirely contained in one of the X_i . This implies that

$$C_n(X) \cong \bigoplus_{i \in I} C_n(X_i)$$

for all $n \in \mathbb{N}$. For $\sigma \in \Delta_n(X_i)$ clearly $\partial_n \sigma \in \Delta_{n-1}(X_i)$. Hence, $\partial_n^X = \sum_i \partial_n^{X_i}$ and the result follows.

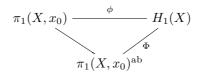
3.2 H_0 and H_1

Consider the *augmentation* homomorphism $\varepsilon \colon C_0(X) \longrightarrow \mathbb{Z}$ satisfying $\varepsilon(x) = 1$ for $x \in X$; here we have identified a 0-simplex $\Delta_0 \longrightarrow X$ with its image. Then $\varepsilon \circ \partial_1 = 0$. Conversely, if X is path-connected and non-empty then $\varepsilon(c) = 0$ implies that $c \in B_0(X)$: If $c = \sum_{i=0}^k n_i x_i$, choose a base point $x \in X$ and paths σ_i from x to x_i for $i = 0, \ldots, k$ and consider the σ_i as 1-simplices in X. Then $\partial \sigma_i = x_i - x$ and

$$\partial \sum_{i=0}^{k} n_i \sigma_i = \sum_{i=0}^{k} n_i x_i - \varepsilon(c) x = c,$$

i.e. $c \in B_0(X)$. In summary, if $X \neq \emptyset$ is path–connected, then ker $\varepsilon = B_0(X)$ and the augmentation factors through $Z_0(X) \longrightarrow H_0(X)$ and yields an isomorphism $H_0(X) \longrightarrow \mathbb{Z}$. Hence, for any space X we have $H_0(X) = \mathbb{Z}^{(\pi_0(X))}$.

Suppose now that (X, x_0) is a path-connected pointed space and take any loop $\gamma: I \longrightarrow X$ in x_0 considered as a 1-chain in X. Observe that $\partial \gamma = 0$, i.e. $\gamma \in Z_1(X)$. If γ' and γ are homotopic loops in x_0 then $\gamma - \gamma' \in B_1(X)$: Given a homotopy $H: I \times I \longrightarrow X$ from γ' to γ fixing the endpoints, collapsing $\{0\} \times I$ to a point gives a singular 2-simplex $\sigma \colon \Delta^2 \longrightarrow X$. Its boundary is given by $\partial \sigma = \gamma + c_{x_0} - \gamma' = \gamma - \gamma' + \partial \sigma'$ where σ' is the constant 2-simplex in x_0 , hence $\gamma - \gamma' \in B_1(X)$. We obtain a homomorphism $\phi \colon \pi_1(X, x_0) \longrightarrow H_1(X)$ because $\gamma_1 * \gamma_2 = \gamma_1 + \gamma_2 - \partial \sigma$ with $\sigma \in \Delta_2(X)$ given by $\sigma \circ [e_0, e_1] = \gamma_1, \sigma \circ [e_1, e_2] = \gamma_2, \sigma \circ [e_0, e_2] = \gamma_1 * \gamma_2$ and extending constantly along lines perpendicular to $[e_0, e_2]$ —see Figure 6. Because $H_1(X)$ is abelian the homomorphism ϕ factors uniquely as



where $\pi_1(X, x_0)^{ab}$ denotes the *abelianisation* of $\pi_1(X, x_0)$, i.e. the biggest abelian quotient of $\pi_1(X, x_0)$. The homomorphism Φ is called the *Hurewicz homomorphism*.

Proposition 3.14 (Hurewicz). For any path–connected pointed space (X, x_0) the Hurewicz homomorphism is an isomorphism.

Proof. We construct an inverse $\Psi: H_1(X) \longrightarrow \pi_1(X, x_0)^{ab}$ as follows. For all $x \in X$ choose a path τ_x from x_0 to x. For $\gamma \in \Delta_1(X)$ set

$$\Psi(\gamma) = [\tau_{\gamma(0)} * \gamma * \tau_{\gamma(1)}^{-}] \in \pi_1(X, x_0)^{\mathrm{ab}}.$$

By linear extension we obtain a homomorphism $\Psi: C_1(X) \longrightarrow \pi_1(X, x_0)^{\text{ab}}$ which satisfies $\Psi(B_1(X)) = 0$: Indeed, for $\sigma \in \Delta_2(X)$ write $\gamma_i = \sigma \circ F_i^n$ and $y_i = \sigma(e_i)$ and observe that

$$\begin{split} \Psi(\partial\sigma) &= \Psi(\gamma_0 - \gamma_1 + \gamma_2) = [\tau_{y_1} * \gamma_0 * \tau_{y_2}^-] - [\tau_{y_0} * \gamma_1 * \tau_{y_2}^-] + [\tau_{y_0} * \gamma_2 * \tau_{y_1}^-] = \\ &= [\tau_{y_1} * \gamma_0 * \tau_{y_2}^- * \tau_{y_2} * \gamma_1^- * \tau_{y_0}^- * \tau_{y_0} * \gamma_2 * \tau_{y_1}^-] = \\ &= [\tau_{y_1} * \gamma_0 * \gamma_1^- * \gamma_2 * \tau_{y_1}^-] = 0 \end{split}$$

because $\gamma_0 * \gamma_1^- * \gamma_2$ is null-homotopic. Hence, the homomorphism Ψ descends to a homomorphism $H_1(X) \longrightarrow \pi_1(X, x_0)^{ab}$.

Now, for a loop γ in x_0 one has $\Psi(\Phi([\gamma])) = [\tau_{x_0} * \gamma * \tau_{x_0}^-] = [\gamma] \in \pi_1(X, x_0)^{\text{ab}}$. Conversely, given any singular 1-simplex γ in X we have

$$\Phi(\Psi([\gamma])) = [\tau_{\gamma(0)} * \gamma * \tau_{\gamma(1)}^{-}].$$

As in the case of loops based at x_0 , we have $\gamma_1 * \gamma_2 = \gamma_1 + \gamma_2 + \partial \sigma$ for arbitrary paths γ_i in X and some 2-simplex σ . Hence, $\Phi(\Psi([\gamma])) = [\tau_{\gamma(0)}] + [\gamma] - [\tau_{\gamma(1)}]$. Now, assume that $C = \sum_i a_i \gamma_i \in Z_1(X)$, i.e. $\partial C = \sum_i a_i (\gamma_i(1) - \gamma_i(0)) = 0$. Then

$$\Phi(\Psi([C])) = \left[\sum_{i} a_i \gamma_i + \sum_{i} a_i (\tau_{\gamma_i(0)} - \tau_{\gamma_i(1)})\right] = [C].$$

3.3 Homotopy Invariance

Let C_{\bullet} and C'_{\bullet} be chain complexes together with chain maps $\Phi, \Psi \colon C_{\bullet} \longrightarrow C'_{\bullet}$.

Definition 3.15. A chain homotopy h from Φ to Ψ is a family of group homomorphisms $h_n: C_n \longrightarrow C'_{n+1}$ such that $h_{n-1}\partial_n + \partial'_{n+1}h_n = \Psi_n - \Phi_n$ for all $n \in \mathbb{Z}$.

Lemma 3.16. Chain maps $\Phi, \Psi \colon C_{\bullet} \longrightarrow C'_{\bullet}$ admitting a chain homotopy h from Φ to Ψ satisfy $H_n(\Phi) = H_n(\Psi)$ for all $n \in \mathbb{Z}$.

Proof. Given any cycle $c \in Z_n(C_{\bullet}) = \ker(\partial_n)$ we have

$$\Psi_n(c) - \Phi_n(c) = h_{n-1}(\partial_n c) + \partial'_{n+1}h_n(c) \equiv 0 \pmod{B_n(C'_{\bullet})}$$

and hence $H_n(\Phi) = H_n(\Psi)$.

Theorem 3.17. Consider continuous maps $f, g: X \longrightarrow X'$ between topological spaces X and Y. Let $H: X \times I \longrightarrow X'$ be a homotopy from f to g. Then H induces a chain homotopy between from f_* and g_* as chain maps $C_{\bullet}(X) \longrightarrow C_{\bullet}(X')$ between the singular complexes. Hence, $f_* = g_*: H_{\bullet}(X) \longrightarrow H_{\bullet}(X')$ on homology.

Proof. Take any $\sigma: \Delta^n \longrightarrow X$. The homotopy H yields a map $H_{\sigma} = H \circ (\sigma \times \operatorname{id}_I) : \Delta^n \times I \longrightarrow X'$. Then $H_{\sigma}(_, 0) = f \circ \sigma = f_*(\sigma)$ and $H_{\sigma}(_, 1) = g_*(\sigma)$. Now, the idea is to turn H_{σ} into a (n+1)-chain of X' by subdividing $\Delta^n \times I$ into simplices. Consider $\Delta^n \times I$ as a subset of $\mathbb{R}^{n+1} \times \mathbb{R} = \mathbb{R}^{n+2}$ identifying $e_i \in \Delta^n$ with $(e_i, 0) \in \mathbb{R}^{n+2}$ and set $f_i = (e_i, 1) \in \mathbb{R}^{n+2}$. The affine (n+1)-simplices $[e_0, \ldots, e_i, f_i, \ldots, f_n]: \Delta^{n+1} \longrightarrow \Delta^n \times I$ form a decomposition of $\Delta^n \times I$, i.e.

$$\Delta^n \times I = \bigcup_{i=0}^n [e_0, \dots, e_i, f_i, \dots, f_n](\Delta^{n+1}),$$

and

$$[e_0, \dots, e_i, f_i, \dots, f_n](\Delta^{n+1}) \cap [e_0, \dots, e_{i+1}, f_{i+1}, \dots, f_n](\Delta^{n+1}) = [e_0, \dots, e_i, f_{i+1}, \dots, f_n](\Delta^n).$$

Define $h_n \colon C_n(X) \longrightarrow C_{n+1}(X')$ by

$$h_n(\sigma) = \sum_{i=0}^n (-1)^i H_\sigma \circ [e_0, \dots, e_i, f_i, \dots, f_n]$$

for $\sigma \in \Delta_n(X)$. Compute:

$$\begin{aligned} \partial' h_n(\sigma) &= \partial' \sum_{i=0}^n (-1)^i \ H_\sigma \circ [e_0, \dots, e_i, f_i, \dots, f_n] = \\ &= \sum_{j \le i} (-1)^{i+j} \ H_\sigma \circ [e_0, \dots, \widehat{e_j}, \dots, e_i, f_i, \dots, f_n] + \\ &+ \sum_{j \ge i} (-1)^{i+j+1} \ H_\sigma \circ [e_0, \dots, e_i, f_i, \dots, \widehat{f_j}, \dots, f_n] = \\ &= H_\sigma \circ [\widehat{e_0}, f_0, \dots, f_n] - H_\sigma \circ [e_0, \dots, e_n, \widehat{f_n}] + \\ &+ \sum_{j < i} (-1)^{i+j} \ H_\sigma \circ [e_0, \dots, \widehat{e_j}, \dots, e_i, f_i, \dots, f_n] + \\ &+ \sum_{i < j} (-1)^{i+j+1} \ H_\sigma \circ [e_0, \dots, e_i, f_i, \dots, \widehat{f_j}, \dots, f_n] \end{aligned}$$

and

$$h_{n-1}(\partial \sigma) = h_{n-1} \sum_{i=0}^{n} (-1)^{i} \sigma \circ [e_{0}, \dots, \widehat{e_{i}}, \dots, e_{n}] =$$

= $\sum_{j < i} (-1)^{i+j} H_{\sigma} \circ [e_{0}, \dots, e_{j}, f_{j}, \dots, \widehat{f_{i}}, \dots, f_{n}] +$
+ $\sum_{i < j} (-1)^{i+j+1} H_{\sigma} \circ [e_{0}, \dots, \widehat{e_{i}}, \dots, e_{j}, f_{j}, \dots, f_{n}].$

Hence, $\partial' h_n(\sigma) + h_{n+1}(\partial \sigma) = g_*(\sigma) - f_*(\sigma)$.

Corollary 3.18. Any homotopy equivalence $f: X \longrightarrow X'$ between topological spaces X and X' induces isomorphisms $f_*: H_n(X) \xrightarrow{\sim} H_n(X')$ for all $n \in \mathbb{Z}$.

3.4 Long Exact Homology Sequence & Excision

Given X and $A \subset X$, can we compute $H_{\bullet}(X)$ from $H_{\bullet}(A)$ and $H_{\bullet}(X/A)$? We will first replace $H_{\bullet}(X/A)$ by the "relative homology" $H_{\bullet}(X, A)$.

Definition 3.19. For a pair (X, A), that is a topological space X with a subspace $A \subset X$, consider $C_n(X, A) = C_n(X)/C_n(A)$ for all $n \in \mathbb{Z}$. There is an induced boundary operator $\partial_n : C_n(X, A) \longrightarrow C_{n-1}(X, A)$ and the homology $H_{\bullet}(X, A)$ of the corresponding complex is called the *relative homology* of the pair (X, A).

Definition 3.20. Given pairs (X, A) and (X', A') of topological spaces, a continuous map $f: X \longrightarrow X'$ is called a *map of pairs* if $f(A) \subset A'$. Any map of pairs $f: (X, A) \longrightarrow (X', A')$ induces a group homomorphism $f_*: H_{\bullet}(X, A) \longrightarrow H_{\bullet}(X', A')$ on relative homology.

Consider the inclusions $i: A \hookrightarrow X$ and $j: (X, \emptyset) \longrightarrow (X, A)$ with induced homomorphisms $i_*: H_{\bullet}(A) \longrightarrow H_{\bullet}(X)$ and $j_*: H_{\bullet}(X) \longrightarrow H_{\bullet}(X, A)$. Now, it is immediate that there is a short exact sequence

$$0 - C_{\bullet}(A) \stackrel{i_{*}}{-} C_{\bullet}(X) \stackrel{j_{*}}{-} C_{\bullet}(X, A) - 0$$

of complexes.

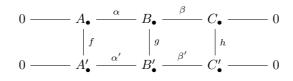
Proposition 3.21. Any short exact sequence

$$0 - A_{\bullet} - B_{\bullet} - C_{\bullet} - 0$$

induces a long exact sequence

$$\cdots - H_{n+1}(C_{\bullet}) \xrightarrow{\delta_{n+1}} H_n(A_{\bullet}) \xrightarrow{H_n(\alpha)} H_n(B_{\bullet}) \xrightarrow{H_n(\beta)} H_n(C_{\bullet}) \xrightarrow{\delta_n} H_{n-1}(A_{\bullet}) - \cdots$$

where δ_n is given by the formula $\delta_n([c]) = [\alpha_{n-1}^{-1}\partial\beta_n^{-1}(c)]$. Furthermore, δ_n is natural in the sense that for any commutative diagram



the induced diagram

$$\cdots \longrightarrow H_{n+1}(C_{\bullet}) \xrightarrow{\delta_{n+1}} H_n(A_{\bullet}) \xrightarrow{H_n(\alpha)} H_n(B_{\bullet}) \xrightarrow{H_n(\beta)} H_n(C_{\bullet}) \xrightarrow{\delta_n} H_{n-1}(A_{\bullet}) \longrightarrow \cdots \\ \left| H_{n+1}(h) \right| H_n(f) \left| H_n(g) \right| H_n(g) \left| H_n(h) \right| H_{n-1}(f) \\ \cdots \longrightarrow H_{n+1}(C'_{\bullet}) \xrightarrow{\delta'_{n+1}} H_n(A'_{\bullet}) \xrightarrow{H_n(\alpha')} H_n(B'_{\bullet}) \xrightarrow{H_n(\beta')} H_n(C'_{\bullet}) \xrightarrow{\delta'_n} H_{n-1}(A'_{\bullet}) \longrightarrow \cdots$$

is also commutative.

Proof. To quote Charles Weibel:

We will not print the proof in these notes, because it is best done visually. In fact, a clear proof is given by Jill Clayburgh at the beginning of the movie It's My Turn (Rastar-Martin Elfand Studios, 1980). As an exercise in "diagram chasing" of elements, the student should find a proof (but privately—keep the proof to yourself!).

We obtain a long exact sequence

$$\cdots - H_{n+1}(X,A) \xrightarrow{\delta_{n+1}} H_n(A) \xrightarrow{i_*} H_n(X) \xrightarrow{j_*} H_n(X,A) \xrightarrow{\delta_n} H_{n-1}(A) - \cdots$$

called the *long exact sequence of the pair* (X, A). There is a geometric description of the connecting homomorphisms δ_n . A homology class $\gamma \in H_n(X, A)$ is represented by a relative cycle, i. e. a chain $b \in C_n(X)$ such that $\partial b \in C_n(A)$. Then $\delta_n(\gamma)$ is just the homology class $[\partial_n(b)] \in H_n(A)$.

Let (X, A) be a pair and $B \subseteq A$ such that $\overline{B} \subseteq A^{\circ}$. We wish to show that the inclusion $i: (X \setminus B, A \setminus B) \hookrightarrow (X, A)$ induces isomorphisms on homology. To this end we will try to invert $i_*: C_{\bullet}(X \setminus B, A \setminus B) \longrightarrow C_{\bullet}(X, A)$ —which of course won't work literally. Consider the open cover $\mathscr{U} = \{A^{\circ}, X \setminus \overline{B}\}$ of X. If for a relative cycle $c = \sum_i n_i \sigma_i \in C_n(X)$ one always has $\sigma_i \in \Delta_n(A^{\circ})$ or $\sigma_i \in \Delta_n(X \setminus \overline{B})$, then by throwing away the summands of c with $\sigma_i \in \Delta_n(A^{\circ})$ one would obtain a chain which is disjoint from \overline{B} and which is equivalent to c modulo $C_n(A)$. But in general this will not be possible.

Instead, we will construct a chain map $\phi: C_{\bullet}(X) \longrightarrow C_{\bullet}(X)$ together with a chain homotopy $h: C_{\bullet}(X) \longrightarrow C_{\bullet+1}(X)$ from ϕ to id such that for an open cover $\mathscr{U} = (U_i)_{i \in I}$ of X and $\sigma \in \Delta_n(X)$ there exists a $k \in \mathbb{N}$ such that any simplex of $\phi^k(\sigma) \in C_n(X)$ lies completely in one of the U_i . There is a systematic way of doing this called *barycentric subdivision*.

Consider $\Delta^n \subset \mathbb{R}^{n+1}$ and the subcomplex $L_{\bullet}(\Delta^n) \subset C_{\bullet}(\Delta^n)$ generated by the affine singular simplices $[v_0, \ldots, v_p]: \Delta^p \longrightarrow \Delta^n$ with $v_i \in \Delta^n$. For $\sigma = [v_0, \ldots, v_p]$ and $v \in \Delta^n$ consider

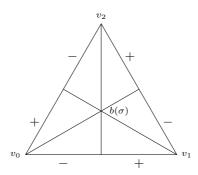


Figure 7: Barycentric subdivision

the cone $c_v(\sigma) = [v, v_0, \dots, v_p]$ on σ with vertex v. This extends linearly to a homomorphism $c_v \colon L_p(\Delta^n) \longrightarrow L_{p+1}(\Delta^n)$. We have

$$\partial c_v([v_0, \dots, v_p]) = [v_0, \dots, v_p] + \sum_{i=0}^{p+1} (-1)^{i+1} [v, v_0, \dots, v_i, \dots, v_p] = \sigma - c_v(\partial \sigma)$$

for p > 0 and

$$\partial c_v(\sigma) = \partial [v, \sigma(e_0)] = \sigma - [v]$$

for p = 0. For a chain $c \in L_p(\Delta^n)$ we have similarly

$$\partial c_v(\sigma) = \begin{cases} c - c_v(\partial \sigma) & p > 0\\ c - \varepsilon(c)[v] & p = 0. \end{cases}$$

Definition 3.22. Define $\phi: L_{\bullet}(\Delta^n) \longrightarrow L_{\bullet}(\Delta^n)$ inductively as follows:

$$\phi(\sigma) = \begin{cases} c_{b(\sigma)}(\phi(\partial\sigma)) & p > 0\\ \sigma & p = 0 \end{cases}$$

where $\sigma = [v_0, \ldots, v_p]$ and

$$b([v_0, \dots, v_p) = \frac{1}{p+1} \sum_{i=0}^p v_i$$

is the *barycenter* of $[v_0, \ldots, v_p]$. This extends linearly to chains.

Examples 3.23. For $\sigma = [v_0, v_1]$ we have $\partial \sigma = [v_1] - [v_0]$ and

$$\phi(\sigma) = [(v_0 + v_1)/2, v_1] - [(v_0 + v_1)/2, v_0].$$

For $\sigma = [v_0, v_1, v_2]$ we have $\partial \sigma = [v_1, v_2] - [v_0, v_2] + [v_0, v_1]$ and

$$\begin{split} \phi(\partial\sigma) &= [(v_1+v_2)/2, v_2] - [(v_1+v_2)/2, v_1] - [(v_0+v_2)/2, v_2] + [(v_0+v_2)/2, v_0] + \\ &+ [(v_0+v_1)/2, v_1] - [(v_0+v_1)/2, v_0]. \end{split}$$

Hence,

$$\begin{split} \phi(\sigma) &= [b, (v_1 + v_2)/2, v_2] - [b, (v_1 + v_2)/2, v_1] - [b, (v_0 + v_2)/2, v_2] + [b, (v_0 + v_2)/2, v_0] + \\ &+ [b, (v_0 + v_1)/2, v_1] - [b, (v_0 + v_1)/2, v_0]. \end{split}$$

where $b = (v_0 + v_1 + v_2)/3$.

Lemma 3.24. The homomorphism $\phi: L_{\bullet}(\Delta^n) \longrightarrow L_{\bullet}(\Delta^n)$ is a chain map.

Proof. Let $\sigma = [v_0, \ldots, v_p]$ be an affine *p*-simplex in Δ^n . For p = 0, we have $\phi(\partial \sigma) = \partial \phi(\sigma)$ trivially. For p > 0 we have

$$\partial \phi(\sigma) = \phi(\partial \sigma) - c_{b(\sigma)}(\partial \phi(\partial \sigma)) =$$

= $\phi(\partial \sigma) - c_{b(\sigma)}(\phi(\partial^2 \sigma)) = \phi(\partial \sigma).$

Define a chain map $h: L_{\bullet}(\Delta^n) \longrightarrow L_{\bullet+1}(\Delta^n)$ inductively by

$$h(\sigma) = \begin{cases} 0 & p = 0\\ c_{b(\sigma)}(\phi(\sigma) - \sigma - h(\partial\sigma)) & p > 0 \end{cases}$$

on *p*–simplices σ and extend linearly to chains.

Lemma 3.25. The map h is a chain homotopy from ϕ to id, i. e. $\partial \circ h + h \circ \partial = \phi - id$. *Proof.* For p = 0 we trivially have $\partial h(\sigma) + h(\partial \sigma) = 0 = \phi(\sigma) - \sigma$. For p > 0 we have

$$\begin{aligned} \partial h(\sigma) &= \partial c_{b(\sigma)}(\phi(\sigma) - \sigma - h(\partial \sigma)) = \\ &= \phi(\sigma) - \sigma - h(\partial \sigma) - c_{b(\sigma)}(\partial \phi(\sigma) - \partial \sigma - \partial h(\partial \sigma)) = \\ &= \phi(\sigma) - \sigma - h(\partial \sigma) - c_{b(\sigma)}(\partial \phi(\sigma) - \partial \sigma - \phi(\partial \sigma) + \partial \sigma) = \\ &= \phi(\sigma) - \sigma - h(\partial \sigma). \end{aligned}$$

Coming back to the general situation, define $\phi: C_{\bullet}(X) \longrightarrow C_{\bullet}(X)$ by $\phi(\sigma) = \sigma_*(\phi(\mathrm{id}_{\Delta^n}))$ for $\sigma \in \Delta^n(X)$ and linear extension. Similarly, define a chain homotopy $h: C_{\bullet}(X) \longrightarrow C_{\bullet+1}(X)$ by $h(\sigma) = \sigma_*(h(\mathrm{id}_{\Delta^n}))$ for $\sigma \in \Delta_n(X)$. It can be checked that this is compatible with the previous definitions for $X = \Delta^n$ on $L_{\bullet}(\Delta^n)$.

Lemma 3.26. Defined this way, we obtain a chain map $\phi: C_{\bullet}(X) \longrightarrow C_{\bullet}(X)$ which is chain homotopic to id via h. Consequently, for any $k \ge 1$ the iterate ϕ^k is chain homotopic to id.

Proof. First note that for $f: X \longrightarrow X'$ we have $\phi \circ f_* = f_* \circ \phi$ and $h \circ f_* = f_* \circ h$. For $\sigma \in \Delta_n(X)$ it follows that

$$\phi(\partial\sigma) = \phi(\partial\sigma_*(\mathrm{id}_{\Delta^n})) = \phi(\sigma_*(\partial \mathrm{id}_{\Delta^n})) = \sigma_*(\phi(\partial \mathrm{id}_{\Delta^n})) = \sigma_*(\partial\phi(\mathrm{id}_{\Delta^n})) = \partial\sigma_*(\phi(\mathrm{id}_{\Delta^n})) = \partial\phi(\sigma)$$

by Lemma 3.24. Additionally,

$$\partial h(\sigma) = \partial \sigma_*(h(\mathrm{id}_{\Delta^n})) = \sigma_*(\partial h(\mathrm{id}_{\Delta^n}))$$

and

$$h(\partial \sigma) = h(\partial \sigma_*(\mathrm{id}_{\Delta^n})) = \sigma_*(h(\partial \mathrm{id}_{\Delta^n}))$$

which implies

$$\partial h(\sigma) + h(\partial \sigma) = \sigma_*(\phi(\mathrm{id}_{\Delta^n}) - \mathrm{id}_{\Delta^n}) = \phi(\sigma) - c$$

because of Lemma 3.25.

Lemma 3.27. For $\sigma = [v_0, \ldots, v_p]$: $\Delta^p \longrightarrow \Delta^n$ the diameter of any simplex appearing in $\phi(\sigma)$ is at most

$$\frac{p}{p+1}\operatorname{diam}(\sigma(\Delta^p)).$$

Consequently, any simplex appearing in $\phi^k(\sigma)$ has diameter at most

$$\left(\frac{p}{p+1}\right)^k \operatorname{diam}(\sigma(\Delta^p)).$$

Proof. Each simplex σ' appearing in $\phi(\sigma)$ has the form

$$\sigma' = \left[\frac{1}{p+1}\sum_{i=0}^{p} v_i, \dots, \frac{1}{3}(v_{i_2} + v_{i_1} + v_{i_0}), \frac{1}{2}(v_{i_1} + v_{i_0}), v_{i_0}\right] \rightleftharpoons [v'_0, \dots, v'_{p-2}, v'_{p-1}, v'_p].$$

Furthermore, diam $\sigma(\Delta^p) = \max \|v_i - v_j\|$ and diam $\sigma'(\Delta^p) = \max \|v'_i - v'_j\|$. The claim then follows from the following general statement: For vectors $w_0, \ldots, w_p \in \mathbb{R}^{n+1}$ and $0 \le \ell < k \le p$ one has the estimate

$$\left\|\frac{1}{k+1}\sum_{i=0}^{k} w_{i} - \frac{1}{\ell+1}\sum_{i=0}^{\ell} w_{i}\right\| \le \frac{p}{p+1}\max_{0\le i,j\le p}\|w_{i} - w_{j}\|$$

This follows from the following computation:

$$\begin{aligned} \left\| \frac{1}{k+1} \sum_{i=0}^{k} w_i - \frac{1}{\ell+1} \sum_{i=0}^{\ell} w_i \right\| &= \left\| \frac{1}{k+1} \sum_{i=0}^{\ell} w_i - \frac{1}{\ell+1} \sum_{i=0}^{\ell} w_i + \frac{1}{k+1} \sum_{i=\ell+1}^{k} w_i \right\| = \\ &= \left\| \frac{\ell-k}{(k+1)(\ell+1)} \sum_{i=0}^{\ell} w_i + \frac{1}{k+1} \sum_{i=\ell+1}^{k} w_i \right\| = \\ &= \frac{k-\ell}{k+1} \left\| \frac{1}{\ell+1} \sum_{i=0}^{\ell} w_i - \frac{1}{k-\ell} \sum_{i=\ell+1}^{k} w_i \right\| \le \\ &\le \frac{k}{k+1} \max_{0 \le i, j \le p} \|w_i - w_j\| \le \frac{p}{p+1} \max_{0 \le i, j \le p} \|w_i - w_j\|. \quad \Box \end{aligned}$$

Definition 3.28. Let $\mathscr{U} = (U_i)_{i \in I}$ be a cover of a topological space X such that $X = \bigcup_i U_i^\circ$. A singular chain $c = \sum_j a_j \sigma_j \in C_p(X)$ is called \mathscr{U} -small if for each j there is some $i \in I$ such that $\sigma_j(\Delta^p) \subset U_i$.

Exercise 3.29 (Lebesgue Lemma). Let X be a compact metric space together with an open cover $\mathscr{U} = (U_i)_{i \in I}$ of X. Then there exists a $\delta > 0$ such that any closed subset $A \subset X$ with diam $(A) < \delta$ is completely contained in some U_i .

Lemma 3.30. Let $\mathscr{U} = (U_i)_{i \in I}$ be a cover of a topological space X such that $X = \bigcup_i U_i^\circ$. For each $\sigma \in \Delta_n(X)$ there exists a $k \ge 0$ such that $\phi^k(\sigma)$ is \mathscr{U} -small.

Proof. Consider the induced open cover $(\sigma^{-1}(U_i^{\circ}))_{i \in I}$ of Δ^n and then apply Lemma 3.27 and Exercise 3.29.

Definition 3.31. Let $C^{\mathscr{U}}_{\bullet}(X)$ be the subcomplex of $C_{\bullet}(X)$ consisting of \mathscr{U} -small chains. Write $H^{\mathscr{U}}_{n}(X) = H_{n}(C^{\mathscr{U}}_{\bullet}(X))$ for $n \in \mathbb{Z}$.

Proposition 3.32. The map $H_n^{\mathscr{U}}(X) \longrightarrow H_n(X)$ induced by the inclusion $C^{\mathscr{U}}_{\bullet}(X) \hookrightarrow C_{\bullet}(X)$ is an isomorphism for all $n \in \mathbb{Z}$.

Proof. To prove surjectivity consider any $[c] \in H_n(X)$. Then there exists some $c' \in C_n^{\mathscr{U}}(X)$ such that $\partial c' = 0$ and $[c'] = [c] \in H_n(X)$: Indeed, Lemma 3.30 implies that $c' = \phi^k(c)$ is \mathscr{U} -small for $k \gg 0$. Furthermore ϕ^k is chain homotopic to id, that is $c' - c = h_k(\partial c) + \partial h_k(c)$ for some chain homotopy h_k . Hence, $\partial c' = 0$ and $c' - c \equiv 0 \pmod{B_n(X)}$, i.e. $[c'] = [c] \in H_n(X)$.

For injectivity consider any $[c] \in H_n^{\mathscr{U}}(X)$ such that $[c] = 0 \in H_n(X)$, i.e. $c = \partial b$ for some $b \in C_{n+1}(X)$. Lemma 3.30 implies that $\phi^k(b)$ is \mathscr{U} -small for $k \gg 0$ and we again have $\phi^k(b) - b = h_k(c) + \partial h_k(b)$ and $\partial \phi^k(b) - c = \partial h_k(c) \equiv 0 \pmod{B_n^{\mathscr{U}}(X)}$ because c and $h_k(c)$ are \mathscr{U} -small. This implies $[c] = 0 \in H_n^{\mathscr{U}}(X)$.

For a pair (X, A) of spaces and a cover $\mathscr{U} = (U_i)_{i \in I}$ of X we write $\mathscr{U} \cap A = (U_i \cap A)_{i \in I}$ for the induced cover of A. Also, define the relative singular complex $C^{\mathscr{U}}_{\bullet}(X, A) \coloneqq C^{\mathscr{U}}_{\bullet}(X)/C^{\mathscr{U}}_{\bullet}(A)$ and the relative homology $H_n^{\mathscr{U}}(X, A) \coloneqq H_n(C^{\mathscr{U}}_{\bullet}(X, A))$. We obtain a commutative diagram

$$0 - C_{\bullet}^{\mathscr{U}}(A) - C_{\bullet}^{\mathscr{U}}(X) - C_{\bullet}^{\mathscr{U}}(X) - C_{\bullet}^{\mathscr{U}}(X,A) - 0$$

$$| \qquad | \qquad | \qquad | \qquad | \qquad | \qquad 0$$

$$0 - C_{\bullet}(A) - C_{\bullet}(X) - C_{\bullet}(X) - C_{\bullet}(X,A) - 0$$

of chain complexes with exact rows and hence a commutative diagram

in homology with exact rows. Hence, the five lemma implies that the inclusion $C^{\mathscr{U}}_{\bullet}(X) \hookrightarrow C_{\bullet}(X)$ also induces isomorphisms $H^{\mathscr{U}}_n(X, A) \xrightarrow{\sim} H_n(X, A)$.

Theorem 3.33 (Excision). Let (X, A) be a pair of spaces and assume $B \subset A$ is a subspace such that $\overline{B} \subset A^{\circ}$. Then the inclusion $i: (X \setminus B, A \setminus B) \hookrightarrow (X, A)$ induces isomorphisms

$$i_* \colon H_n(X \smallsetminus B, A \smallsetminus B) \xrightarrow{\sim} H_n(X, A)$$

for all $n \in \mathbb{Z}$.

Proof. Consider the cover $\mathscr{U} = \{X \setminus B, A\}$ of X. Then $X = (X \setminus B)^{\circ} \cup A^{\circ}$ and in particular there is an isomorphism $H_n^{\mathscr{U}}(X, A) \xrightarrow{\sim} H_n(X, A)$. Now,

$$C^{\mathscr{U}}_{\bullet}(X) = C_{\bullet}(X \smallsetminus B) + C_{\bullet}(A)$$

and

 $C^{\mathscr{U}\cap A}_{\bullet}(A) = C_{\bullet}(A),$

hence

$$C^{\mathscr{U}}_{\bullet}(X,A) = C_{\bullet}(X \smallsetminus B) + C_{\bullet}(A) / C_{\bullet}(A).$$

We factor the inclusion on the chain level,

$$C_{\bullet}(X \smallsetminus B, A \smallsetminus B) \xrightarrow{i_{*}} C_{\bullet}(X, A)$$

$$C_{\bullet}^{\mathscr{U}}(X, A)$$

and pass to homology. We obtain a commutative diagram

$$H_n(X \smallsetminus B, A \smallsetminus B) \xrightarrow{i_*} H_n(X, A).$$
$$\overset{i_*}{\underset{H_n^{\mathscr{U}}(X, A)}{\cong}} H_n^{\mathscr{U}}(X, A)$$

Observe that $C_{\bullet}(A \smallsetminus B) = C_{\bullet}(A) \cap C_{\bullet}(X \smallsetminus B)$. This means we can write

$$C_{\bullet}(X \smallsetminus B, A \smallsetminus B) = \frac{C_{\bullet}(X \smallsetminus B)}{C_{\bullet}(A \smallsetminus B)} = \frac{C_{\bullet}(X \smallsetminus B)}{C_{\bullet}(A) \cap C_{\bullet}(X \smallsetminus B)}$$

and it is immediate that

$$C_{\bullet}(X \smallsetminus B, A \smallsetminus B) \longrightarrow C_{\bullet}^{\mathscr{U}}(X, A) = C_{\bullet}(X \smallsetminus B) + C_{\bullet}(A) / C_{\bullet}(A)$$

is an isomorphism. Combined, this implies that i_* is an isomorphism.

We now return to question how to compute $H_n(X)$ form $H_n(A)$ and $H_n(X/A)$.

Definition 3.34. Let X be a space with a subset $A \subset X$.

- (i) The subspace A is called a *retract* of X if there exists a continuous map $r: X \longrightarrow A$ such that $r|_A = id_A$. Such a map r is called a *retraction*.
- (ii) The subspace A is called a *deformation retract* of X if there exists a retraction $r: X \longrightarrow A$ such that $r \simeq id_X$.
- (iii) The subspace A is called a *strong deformation retract* of X if there exists a retraction $r: X \longrightarrow A$ such that $r \simeq_A \operatorname{id}_X$.

Definition 3.35. A pair (X, A) is called a *good pair* if A is closed and there exists an open subset $U \subset X$ such that $A \subset U$ and A is a strong deformation retract of U.

Proposition 3.36. If (X, A) is a good pair then there exists a long exact sequence

$$\cdots \longrightarrow \widetilde{H}_n(A) \xrightarrow{i_*} \widetilde{H}_n(X) \xrightarrow{g_*} \widetilde{H}_n(X/A) \longrightarrow \widetilde{H}_{n-1}(A) \longrightarrow \cdots$$

in reduced homology where $i: A \hookrightarrow X$ is the inclusion and $g: X \longrightarrow X/A$ is the quotient map. Proof. We have a long exact sequence

$$\cdots \longrightarrow \widetilde{H}_n(A) \xrightarrow{i_*} \widetilde{H}_n(X) \xrightarrow{j_*} H_n(X, A) \longrightarrow \widetilde{H}_{n-1}(A) \longrightarrow \cdots$$

with the inclusion $j: (X, \emptyset) \hookrightarrow (X, A)$. Take an open neighbourhood U of A such that A is a strong deformation retract of U. For the triple (X, U, A) look at the short exact sequence

$$0 - C_{\bullet}(U, A) - C_{\bullet}(X, A) - C_{\bullet}(X, U) - 0$$

of chain complexes. We obtain a long exact sequence

$$\cdots - H_n(U,A) - H_n(X,A) - H_n(X,U) - H_{n-1}(U,A) - \cdots$$

But $H_{\bullet}(U, A) \cong H_{\bullet}(A, A) = 0$, hence the inclusion induces an isomorphism $H_n(X, A) \xrightarrow{\sim} H_n(X, U)$. Observe that the quotient map $q: X \longrightarrow X/A$ induces a homeomorphism

$$(X \smallsetminus A, U \smallsetminus A) \xrightarrow{\sim} ((X/A) \smallsetminus (U/A), (U/A) \smallsetminus (A/A))$$

and that there is a commutative diagram

Hence, we obtain a commutative diagram

$$\widetilde{H}_n(X) \xrightarrow{j_*} H_n(X, A) \\
 q_* \cong |_{q_*} \\
 \widetilde{H}_n(X/A)$$

which gives the result.

This may be applied to compute $H_{\bullet}(S^n)$. For n = 0 we have $H_0(S^0) = \mathbb{Z}^2$, $\widetilde{H}_0(S^0) = \mathbb{Z}$ and $H_n(S^0) = \widetilde{H}_n(S^0) = 0$ for $n \neq 0$. Inductively, (D^n, S^{n-1}) is a good pair and we obtain an exact sequence

$$\cdots \longrightarrow \widetilde{H}_k(D^n) \longrightarrow \widetilde{H}_k(D^n/S^{n-1}) \xrightarrow{\partial_k} \widetilde{H}_{k-1}(S^{n-1}) \longrightarrow \widetilde{H}_{n-1}(D^n) \longrightarrow \cdots$$

where $\widetilde{H}_k(D^n) = 0$ for all k. Hence, $\widetilde{H}_k(S^n) \cong \widetilde{H}_{k-1}(S^{n-1})$ which implies

$$\widetilde{H}_k(S^n) = \begin{cases} \mathbb{Z}, & \text{for } k = n \\ 0, & \text{otherwise.} \end{cases}$$

Corollary 3.37. The sphere S^{n-1} is not a retract of D^n .

Proof. Let $i: S^{n-1} \hookrightarrow D^n$ be the inclusion. Suppose $r: D^n \longrightarrow S^{n-1}$ were a retraction. Taking reduced homology we would get a commutative diagram

$$\mathbb{Z} = \widetilde{H}_{n-1}(S^{n-1}) \underbrace{\qquad}_{\text{id}_{\mathbb{Z}}} \widetilde{H}_{n-1}(D^n) = 0$$

which is impossible.

3.5 Classical Theorems of Topology

Theorem 3.38 (Brouwer fixed-point theorem). Any continuous map $f: D^n \longrightarrow D^n$ has a fixed point.

Proof. Suppose to the contrary that $f(x) \neq x$ for all $x \in D^n$. Consider the ray through x starting at f(x). Let r(x) be the unique point of intersection of this ray with $S^{n-1} = \partial D^n \subset D^n$. This clearly defines a retraction $r: D^n \longrightarrow S^{n-1}$. But this is impossible by Corollary 3.37. \Box

Theorem 3.39 (Invariance of Dimension). Let $U \subset \mathbb{R}^n$ and $V \subset \mathbb{R}^m$ be non-empty open sets. If U and V are homeomorphic as topological spaces then n = m.

Proof. For $x_0 \in U$ excision implies that there is an isomorphism

$$H_k(U, U \smallsetminus \{x_0\}) \xrightarrow{\sim} H_k(\mathbb{R}^n, \mathbb{R}^n \smallsetminus \{x_0\}).$$

There is a long exact sequence

$$\cdots \longrightarrow \widetilde{H}_k(\mathbb{R}^n) \longrightarrow H_k(\mathbb{R}^n, \mathbb{R}^n \setminus \{x_0\}) \longrightarrow \widetilde{H}_{k-1}(\mathbb{R}^n \setminus \{x_0\}) \longrightarrow \widetilde{H}_{k-1}(\mathbb{R}^n) \longrightarrow \cdots$$

which implies that $H_k(\mathbb{R}^n, \mathbb{R}^n \setminus \{x_0\}) \cong \widetilde{H}_{k-1}(\mathbb{R}^n \setminus \{x_0\}) \cong \widetilde{H}_{k-1}(S^{n-1})$ because \mathbb{R}^n is contractible. In summary,

$$H_k(U, U \smallsetminus \{x_0\}) \cong \begin{cases} \mathbb{Z} & k = n \\ 0 & k \neq n. \end{cases}$$

This implies the result.

Let $f: S^n \longrightarrow S^n$ be continuous. We can look at the induced map $f_*: \widetilde{H}_n(S^n) \longrightarrow \widetilde{H}_n(S^n)$ on reduced homology. Because $\widetilde{H}_n(S^n) \cong \mathbb{Z}$ this is an endomorphism $\mathbb{Z} \longrightarrow \mathbb{Z}$ which is given by multiplication by some uniquely determined $n \in \mathbb{Z}$. We call $\deg(f) \coloneqq n$ the *degree* of f. The degree satisfies a number of elementary properties:

- (i) We always have $\deg(\mathrm{id}_{S^n}) = 1$.
- (ii) The degree of f vanishes if f is not surjective, because for $x_0 \in S^n \setminus f(S^n)$ the map f factors as $S^n \longrightarrow S^n \setminus \{x_0\} \hookrightarrow S^n$. But $S^n \setminus \{x_0\}$ is contractible which implies that $f_* = 0$ on reduced homology.
- (iii) The degree is homotopy invariant.
- (iv) The degree is multiplicative with respect to composition, i.e. $\deg(f \circ g) = \deg(f) \deg(g)$. In particular, any homotopy equivalence $f: S^n \longrightarrow S^n$ satisfies $\deg(f) = \pm 1$.

Lemma 3.40. Let $F : \mathbb{R}^{n+1} \longrightarrow \mathbb{R}^{n+1}$ be the reflection at a hyperplane $H \subset \mathbb{R}^{n+1}$. In particular $F \in O(n+1)$ with $\det(F) = -1$ and hence $F(S^n) \subset S^n$. Write $f = F|_{S^n}$. Then $\deg(f) = -1$.

Proof. Without loss of generality assume $H = \{0\} \times \mathbb{R}^n$ and that F is given by the formula $F(x_1, \ldots, x_{n+1}) = (-x_1, x_2, \ldots, x_{n+1})$. In the case n = 0 write $S^0 = \{x\} \cup \{y\} \subset \mathbb{R}$ and observe that f just interchanges x and y. The reduced homology $\widetilde{H}_0(S^0) = \mathbb{Z}$ is generated by [x - y]. Hence, $f_*([x - y]) = [y - x] = -[x - y]$ which implies that $\deg(f) = -1$.

Inductively, consider the upper hemisphere $D_+^n = \{x_{n+1} \ge 0\} \subset S^n$ whose boundary is $\partial D_+^n = \{x_{n+1} = 0\} \cong S^{n-1}$. It is clear that $f(D_+^n) \subset D_+^n$ and $f(\partial D_+^n) = \partial D_+^n$. We have a good pair (D_+^n, S^{n-1}) and hence a long exact sequence

$$\cdots \longrightarrow \widetilde{H}_n(D^n_+) \longrightarrow \widetilde{H}_n(D^n_+/S^{n-1}) \longrightarrow \widetilde{H}_{n-1}(S^{n-1}) \longrightarrow \widetilde{H}_{n-1}(D^n_+) \longrightarrow \cdots$$

By naturality we have a diagram

Now, by induction $f_*: \widetilde{H}_{n-1}(S^{n-1}) \longrightarrow \widetilde{H}_{n-1}(S^{n-1})$ is just multiplication by -1 and the commutativity of this diagram implies the result.

Corollary 3.41.

- (i) For any orthogonal map $A \in O(n)$ we have $\deg(A|_{S^{n-1}}) = \det(A)$.
- (ii) The antipodal map $-id: S^n \longrightarrow S^n$ has degree $deg(-id) = (-1)^{n+1}$.
- (iii) If $f: S^n \longrightarrow S^n$ has no fixed point then $\deg(f) = (-1)^{n+1}$.

Proof. We only prove (iii). If $f(x) \neq x$ for all $x \in S^n$ then

$$H(x,t) = \frac{(1-t)f(x) - tx}{\|(1-t)f(x) - tx\|}$$

defines a homotopy from f to the antipodal map -id.

Theorem 3.42 (Hairy Ball Theorem). The *n*-sphere S^n admits a continuous vector field without zeroes if and only if *n* is odd.