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1 Point–Set Topology

1.1 Topological Spaces & Continuous Maps

Definition 1.1. Let X be a set. A topology on X is a system T ⊂ P(X) closed under arbitrary
union and finite intersection. Subsets U ⊂ X which are elements of T are called open. The pair
(X,T ) is called a topological space.

Examples 1.2.

(i) For any set X, the system T = P(X) is a topology—the discrete topology.
(ii) Similarly, for any set X, the system T = {∅,X} is a topology—the indiscrete topology.
(iii) Let (X, d) be a metric space. Define T ⊂ P(X) such that U ∈ T if and only if for any

x ∈ U there exists an ε > 0 such that Bε(x) ⊂ U . This defines a topology on X—the
topology induced by the metric d.

Definition 1.3. Let (X,TX) be a topological space and consider any subset A ⊂ X. The
topology on A defined by

TA = {U ∩A : U ∈ TX}

is called the subspace topology. Subsets of topological spaces will always carry the subspace
topology unless indicated otherwise.

Definition 1.4. A map f : X Y between topological spaces (X,TX) and (Y,TY ) is called
continuous if, for any open set U ⊂ Y , the inverse image f−1(U) ⊂ X is open.

Remark 1.5. Continuity is stable under composition of maps, that is if f : X Y and
g : Y Z are continuous, then so is g ◦ f : X Z. Hence, we arrive at a category Top of
topological spaces whose morphisms are continuous maps.

Definition 1.6. Let (X,T ) be a topological space and fix a ∈ X. A subset U ⊂ X is called a
neighbourhood of a if there exists some open set V ⊂ X such that a ∈ V and V ⊂ U .

Note that neighbourhoods need not be open! The concept of neighbourhoods allows us to
define convergence of sequences and continuity at a point as follows.

Definition 1.7. Let (X,T ) be a topological space. A sequence (xn)n∈N in X is convergent
with limit a ∈ X if (xn) is eventually contained in every neighbourhood of a, i. e. for every
neighbourhood U of a there is an N ∈ N such that xn ∈ U for all n ≥ N .

Remark 1.8. If (X, d) is a metric space and T is the topology induced by d, then convergence
in (X,T ) recovers convergence in the metric space (X, d).

Definition 1.9. A map f : X Y between topological spaces (X,TX) and (Y,TY ) is called
continuous at a ∈ X if for every neighbourhood V of f(a) there is a neighbourhood U of a such
that f(U) ⊂ V .

Remark 1.10.

(i) Again, if (X, dX) and (Y, dY ) are metric spaces and TX and TY are the induced topologies,
then continuity at a point a ∈ X of a map f : X Y in this sense recovers the usual
definition of continuity at a in metric spaces.

(ii) Let (X,TX) and (Y,TY ) be topological spaces. Then a map f : X Y is continuous if
and only if it is continuous at every point a ∈ X.
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Definition 1.11. A subset A ⊂ X in a topological space (X,TX) is called closed if X r A is
open.

Remark 1.12. The family of closed sets in a topological space (X,TX) is closed under arbitrary
intersection and finite union. This is immediate from the definition of a topology on X by passing
to the complement.

Definition 1.13. Let (X,T ) be a topological space and A ⊂ X a subset. The closure A of A
is defined by

A =
⋂

{B ⊂ X : B ⊃ A and B is closed}.

Analogously, the interior A◦ of A is defined by

A◦ =
⋃

{U ⊂ X : U ⊂ A and U is open}.

The boundary ∂A of A is defined as ∂A = ArA◦.

It is immediate that, in the situation above, A and ∂A are closed subsets of X and A◦ is an
open subset of X.

Definition 1.14. A continuous map f : X Y between topological spaces (X,TX) and
(Y,TY ) is called a homeomorphism if it admits a continuous inverse, i. e. if there exists a contin-
uous map g : Y X such that g ◦ f = idX and f ◦ g = idY . If there exists a homeomorphism
X Y , then X and Y are called homeomorphic.

Remark 1.15.

(i) Not every continuous bijection is a homeomorphism!
(ii) Let (X,T ) be a topological space and A ⊂ X a subset. Endow A with the subspace

topology with respect to X and consider the inclusion i : A X. Then i induces a
homeomorphism i : A ∼ i(A), i. e. i is an embedding.

(iii) A map f : X Y between topological spaces is a homeomorphism if and only if f is
bijective, continuous and open, that is f(U) is open for all open sets U ⊂ X.

1.2 Separation Properties & Compactness

Definition 1.16. A topological space (X,T ) is called Hausdorff if distinct points can be sepa-
rated by disjoint neighbourhoods. Formally, for all x, y ∈ X with x 6= y there exist neighbour-
hoods U and V of x and y respectively such that U ∩ V = ∅.

For example, if (X, d) is a metric space, the topology T induced by d makes (X,T ) into a
Hausdorff space.

Remark 1.17. If (X,T ) is a Hausdorff space, the following properties hold:
(i) Points are closed: for every x ∈ X the set {x} ⊂ X is closed.
(ii) Limits of convergent sequences are unique.

Definition 1.18. A topological space (X,T ) is called compact if every open cover has a finite
subcover: If (Ui)i∈I is a family of open subsets of X such that X =

⋃
i∈I Ui, then there exists a

finite set J ⊂ I such that X =
⋃
j∈J Uj .
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Recall the Heine–Borel theorem: A subset A ⊂ Rn is compact if and only if A is closed and
bounded. We will now give some consequences of compactness.

Proposition 1.19. If (X,T ) is a compact topological space and A ⊂ X is a closed subset, then
A, endowed with the subspace topology, is compact.

Proof. Let (Ui)i∈I be an open cover of A. Choose open subsets U ′
i ⊂ X such that Ui = U ′

i ∩ A
and observe that X r A, (U ′

i)i∈I is an open cover of X. Because X is compact there exists a
finite set J ⊂ I such that X = (X r A) ∪

⋃
j∈J U

′
j . But then A =

⋃
j∈J Uj , i. e. (Uj)j∈J is a

finite subcover of (Ui)i∈I .

Proposition 1.20. Let f : X Y be a continuous map between topological spaces (X,TX)
and (Y,TY ) and assume (X,TX) to be compact. Then the image f(X) ⊂ Y is compact in the
subspace topology.

Proof. First observe that the map f : X f(X) induced by f is continuous. Any open cover
(Ui)i∈I of f(X) pulls back to an open cover (f−1(Ui))i∈I of X. Hence, there exists a finite set
J ⊂ I such that (f−1(Uj))j∈J is a cover of X. But then

⋃
j∈J Uj = f(X).

Proposition 1.21. If (X,T ) is a Hausdorff space and A ⊂ X is compact in the subspace
topology, then A is closed in X.

Proof. We will show that X r A is open. For any point x ∈ X r A there exists an open
neighbourhood U of x with U ∩A = ∅: For any y ∈ A there exist disjoint open neighbourhoods
Uy of x and Vy of y. Then A = A ∩

⋃
y∈A Vy, hence by compactness there exists a finite subset

A′ ⊂ A such that A = A ∩
⋃
y∈A′ Vy. Then U =

⋂
y∈A′ Uy is an open neighbourhood of x with

U ∩A = ∅.
Now, choosing an open neighbourhood Ux as above for any point x ∈ X r A, it is immediate

that
⋃
x∈XrA Ux = X rA is open.

Definition 1.22. A subset A of a topological space (X,T ) is called relatively compact if A is
compact.

For example, if A ⊂ Rn is bounded, then by Heine–Borel A is relatively compact. For metric
spaces there is a related notion:

Definition 1.23. A metric space (X, d) is called precompact or totally bounded if for any ε > 0
there exists a finite ε–net in X, that is a finite collection of points (xi)i∈I in X such that
X =

⋃
i∈I Bε(xi).

Theorem 1.24. Let (X, d) be a metric space. Then the following are equivalent:
(i) X is compact.
(ii) Any sequence (xn) in X has a convergent subsequence.
(iii) X is precompact and complete.

Proof. For (i ii) let (xn) be a sequence in X. Consider the sets

Xn = {xn, xn+1, . . . }.

Clearly Xn ⊃ Xn+1 for all n. Since X is compact X∞ =
⋂
n∈N

Xn is not empty: Otherwise we
would have X =

⋃
n∈N

(X rXn). Choosing a finite set I ⊂ N with X =
⋃
n∈I(X rXn) one sees

4



∅ =
⋂
n∈I Xn = Xmax I . But this is impossible. Hence, we can choose some x∞ ∈ X∞. For k ∈ N

pick nk ∈ N such that xnk
∈ B1/k(x∞). Choosing the nk to be distinct, (xnk

)k is a subsequence
converging to x∞.

The completeness part of (ii iii) is clear. To see that X has to be precompact, suppose there
exists some ε > 0 such that X admits no finite ε–net. Then for any finite collection x1, . . . , xn
of points of X there exists some xn+1 ∈ X with d(xn+1, xi) ≥ ε for all 1 ≤ i ≤ n. Inductively,
one obtains a sequence (xn) in X that admits no convergent subsequence which contradicts (ii).

Now suppose that X is precompact and complete and consider any open cover (Ui)i∈I of X.
For contradiction, suppose that (Ui)i∈I has no finite subcover. Because X is assumed precompact,

it admits a finite 1–net, e. g. X =
⋃N(1)
j=1 B1(yj). Then there exists some j0 ∈ {1, . . . , N(1)} such

that B1(yj0
) is not covered by finitely many of the Ui. Set x0 = yj0

and B0 = B1(x0).
Continuing inductively one obtains a sequence of points (xn) of X such that Bn = B2−n(xn)

cannot be covered by finitely many of the Ui and furthermore this sequence may be chosen such
that Bn−1 ∩ Bn 6= ∅ for all n, for otherwise Bn−1 could be covered by finitely many of the Ui.
Then d(xn, xn+1) ≤ 2−n+1 and indeed (xn) is a Cauchy sequence: For m > n one has

d(xn, xm) ≤ d(xn, xn+1) + · · · + d(xm−1, xm) ≤ 2−n+1 + · · · + 2−m+2 =

= 2−n+1(1 + · · · + 2n−m+1) ≤ 2−n+2.

Completeness gives the existence of a limit x∞ for (xn). Take some i0 ∈ I such that x∞ ∈ Ui0 .
Then there exists some N ∈ N such that BN ⊂ Ui0 , i. e. BN can be covered by finitely many of
the Ui which is impossible by the construction of (xn).

1.3 Connectedness & Path–Connectedness

From now on we will write X for the topological space (X,T ) if the topology is understood.

Definition 1.25. A topological space X is called connected, if it admits no partition X = U ∪V
with U, V ⊂ X open, nonempty and disjoint.

Proposition 1.26. Let f : X Y be a continuous map. If X is connected, then so is f(X).

Proof. Any partition of f(X) pulls back to a partition of X.

Proposition 1.27. Let (Aj)j∈J be a family of connected subsets of X such that
⋂
j∈J Aj 6= ∅.

Then
⋃
j∈J Aj is connected.

Proof. Write A =
⋃
j∈J Aj and suppose there exists a nontrivial partition A = U ∪ V with

U, V ⊂ A open. Since the Aj are connected, for any j, either Aj ∩ U = ∅ or Aj ∩ V = ∅. Fix
j0 ∈ J and suppose without loss of generality that Aj0

∩ V = ∅. Then, because
⋂
j∈J Aj 6= ∅, for

any j ∈ J one has Aj ∩ U 6= ∅. Hence, A ⊂ U . But this contradicts V 6= ∅.

Proposition 1.28. Let A ⊂ X be some subspace. If A is connected, then so is A.

Proof. Suppose there exists a nontrivial open partition A = U ∪ V . Write U = U ′ ∩ A and
V = V ′ ∩ A with open subset U ′, V ′ ⊂ X. Then A = (U ′ ∩ A) ∪ (V ′ ∩ A) and of course
U ′ ∩ V ′ ∩A = ∅. Because A is connected, it is contained in U ′ or V ′, for instance A ⊂ U ′. Then
A ⊂ X r V ′, so A ⊂ X r V ′. Hence, A ⊂ U in contradiction to V 6= ∅.
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Definition 1.29. Let x0 ∈ X. The connected component of x0 is defined as

X0 =
⋃

{A ⊂ X : x0 ∈ A and A is connected}.

Remark 1.30.

(i) Of course, X is the disjoint union of its connected components.
(ii) The connected components are connected and closed.

Definition 1.31. Denote by I = [0, 1] the unit interval. A path in X is a continuous map
γ : I X. A path γ is called closed if γ(0) = γ(1). In this case, we say that γ is based at
γ(0) = γ(1).

For any point x ∈ X, we denote by cx the constant path at x; given any path γ : I X,
we define its inverse path via γ−(t) = γ(1 − t). The concatenation of paths γ1, γ2 : I X is
defined by

γ1 ∗ γ2(t) =

{
γ1(2t) t ∈ [0, 1/2]

γ2(2t− 1) t ∈ [1/2, 1].

Define an equivalence relation onX such that x ∼ y if and only if there exists a path γ : I X
with γ(0) = x and γ(1) = y. The path components of X are the equivalence classes of ∼. A
space X is called path–connected if it has precisely one path component.

Remark 1.32.

(i) Again, X is the disjoint union of its path components.
(ii) A space X is path connected if and only any two points of X can be joined by a path.
(iii) If X is path connected, then it is connected. Indeed, if there were a nontrivial partition

X = U ∪ V , choose x ∈ U and y ∈ V and a path γ : I X joining x and y. Then γ(I)
is connected, but the partition X = U ∪ V would restrict to a nontrivial partition of γ(I).

(iv) The condition of path–connectedness is strictly stronger than connectedness: There exist
connected spaces which are not path–connected.

Definition 1.33. A topological space X is called locally (path–)connected if any point x ∈ X
admits a neighbourhood basis of (path–)connected subsets of X, i. e. for any neighbourhood U
of x there exists a (path–)connected neighbourhood V ⊂ U of x.

For example, euclidean space Rn is locally path–connected, because balls are path–connected
and give a neighbourhood base for any point.

Remark 1.34. There do exist path–connected spaces which are not even locally connected!
An example can be constructed by considering the set N = {0} ∪ {(1/n, 0) : n ∈ N} ⊂ R2 and
taking lines from (0, 1) to all points of N . In the resulting space, the point (0, 0) admits no small
connected neighbourhood.

Proposition 1.35. If X is locally (path–)connected, then its connected components (path–com-
ponents respectively) are open.

Proof. Pick x0 ∈ X and denote by X0 its connected component (or path–component). If y ∈ X0

and U is a (path–)connected neighbourhood of y, then U ⊂ X0. This implies the claim.

Proposition 1.36. Let X be locally path–connected. Then an open subset U ⊂ X is path–
connected if and only if U is connected.
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Figure 1: The space of Remark 1.34.

Proof. For the nontrivial direction let U ⊂ X be a connected open subset. Because U is open,
it is locally path–connected. Hence, its path–components are open and closed and, if there were
more than one, this would yield a nontrivial partition of U .

Remark 1.37. The previous proposition implies that the connected components of a locally
path–connected space are open and coincide with the path–components.

1.4 Products, Sums, Quotients

We already know one construction on topological spaces: To any topological space (X,TX) with
a subset A ⊂ X we can associate the topological space (A,TA), that is A with the subspace
topology. This construction comes with a natural continuous map i : A X.

Definition 1.38. Let X be a set and consider topologies T and T ′ on X. The topology T is
called finer than T ′ (or equivalently T ′ is coarser than T ), if T ′ ⊂ T . That is, any open set
with respect to T ′ is also open with respect to T .

Remark 1.39. Every topology is coarser than the discrete topology and finer than the indiscrete
topology. This corresponds to the trivial fact that {∅,X} ⊂ T ⊂ P(X).

Now we can formulate an alternative characterisation of the subspace topology. Namely, TA

is the coarsest topology on A such that i : A X is continuous. Furthermore, the subspace
topology is characterised by the following universal property: For any topological space Y , a map
f : Y A is continuous if and only if i ◦ f : Y X is continuous:

A X.

Y

i

f
i◦f

The following is immediate.

Proposition 1.40. Let X be a set and S ⊂ P(X) an arbitrary subset. Then there exists a
unique coarsest topology T (S ) containing S .

Definition 1.41. For a set X and an arbitrary subset S ⊂ P(X), the topology T (S ) of
Proposition 1.40 is called the topology generated by S .

Definition 1.42. Let (X,T ) be a topological space. A subsystem
(i) B ⊂ T is called basis of T if any U ⊂ T can be written as a union of set in B.
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(ii) S ⊂ T is called subbasis if the system of finite intersection of sets in S is a basis for T .

Remark 1.43.

(i) If T is a topology on X and S ⊂ T is some subsystem, then S is a subbasis if and only
if T (S ) = T .

(ii) A map f : (X,TX) (Y,TY ) is continuous if and only if f−1(S) ∈ TX for all S ∈ SY ,
where SY is a subbasis for TY .

Let (Xi,Ti) be a family of topological spaces indexed by an arbitrary set I. Consider the
cartesian product X =

∏
i∈I Xi together with the projections πi : X Xi.

Definition 1.44. The product topology T on X is the topology generated by the cylinders
π−1
i (Ui) for Ui ∈ Ti.

Proposition 1.45.

(i) The topology T of Definition 1.44 is the coarsest topology on X such that all projections
πi : X Xi are continuous.

(ii) A map f : Y X from a topological space Y is continuous if and only if all πi ◦ f are
continuous:

X Xi.

Y

πi

f
πi◦f

Proof. The continuity of πi requires π−1
i (Ui) to be open for every open subset Ui ⊂ Xi, which

proves (i). Furthermore, f−1(π−1
i (Ui)) = (πi ◦ f)−1(Ui) is open for every open set Ui ⊂ X. This

proves continuity of f .

Remark 1.46. If X and Y are Hausdorff, then so is X × Y .

Proposition 1.47. If X and Y are compact, then so is X × Y .

Proof. Let (Ui)i∈I be an open cover of X × Y . Without loss of generality we may assume that
Ui = Vi × Wi for open subsets Vi ⊂ X and Wi ⊂ Y . Fix some x ∈ X. Then Y ∼= {x} × Y
is compact, so there is a finite subset J(x) ⊂ I such that {x} × Y ⊂

⋃
j∈J(x) Vj × Wj . Now,

the set Vx =
⋂
j∈J(x) Vj is open in X and the family (Vx)x∈X is an open cover of X. Because

X is compact, there is some finite subset X ′ ⊂ X such that X =
⋃
x∈X′ Vx. Then, writing

J ′ =
⋃
x∈X′ J(x), the family (Vj ×Wj)j∈J ′ is a finite subcover of (Ui)i∈I .

Remark 1.48. More generally, one has Tychonoff’s theorem: If (Xi)i∈I is an arbitrary collection
of compact spaces, then

∏
i∈I Xi is compact.

Let (Xi,Ti) be topological spaces indexed by some set I. Let X =
∐
i∈I be the disjoint union

and denote by ιi : Xi X the inclusions.

Definition 1.49. The sum topology T on X is defined such that U ∈ T if and only if U∩Xi ∈ Ti

for all i ∈ I.
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The proof of the following is immediate.

Proposition 1.50.

(i) The topology T of Definition 1.49 is the finest topology on X such that all inclusions
ιi : Xi X are continuous.

(ii) A map f : X Y to another topological space Y is continuous if and only if all maps
f ◦ ιi : Xi Y are continuous:

Xi X.

Y

ιi

f
f◦ιi

Remark 1.51.

(i) The subspace topology of Xi ⊂ X is the original topology Ti.
(ii) Let X be the disjoint union of subsets Xi for i ∈ I. Then X is the sum of the Xi if and

only if all Xi ⊂ X are open.

Let X be a topological space and ∼ some equivalence relation on X. We denote by X/∼ the
set of equivalence classes and by π : X X/∼ the projection.

Definition 1.52. The topology on X/∼ such that U ⊂ X/∼ is open if and only if π−1(U) ⊂ X
is open is called the quotient topology on X/∼.

Again, the proof of the following proposition is straightforward.

Proposition 1.53.

(i) The quotient topology is the finest topology on X/∼ such that π : X X/∼ is continuous.
(ii) A map f : X/∼ Y to any other space Y is continuous if and only if f ◦ π : X Y is

continuous:

X X/∼

Y

π

f
f◦π

Remark 1.54.

(i) If X is compact, then so is X/∼.
(ii) In general, X/∼ may fail to be Hausdorff even if X is. For example, consider the relation

∼ on X = R such that x ∼ y if and only if x− y ∈ Q.

Examples 1.55.

(i) Let A ⊂ X and define an equivalence relation ∼ on X such that

x ∼ y ⇐⇒

{
x, y ∈ A or

x = y.

Then one may picture X/∼ as X with the subspace A collapsed to a point. We usually
write X/A instead of X/∼. For example, consider the closed n–disk Dn ⊂ Rn and its
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boundary, the (n − 1)–sphere Sn−1 = ∂Dn. Then Dn/Sn−1 ∼= Sn, the homeomorphism
being induced by the map f : Dn Sn ⊂ Rn+1 such that

f(x) =

(
cosπ‖x‖,

x sin π‖x‖

‖x‖

)
.

(ii) Let I2 ⊂ R2 be the unit square. Define an equivalence relation ∼ on X such that

(s1, s2) ∼ (t1, t2) ⇐⇒





s1 = t1 and s2 = t2 or

s1 = t1 and s2, t2 ∈ {0, 1} or

s2 = t2 and s1, t1 ∈ {0, 1}.

The quotient space T 2 = I2/∼ is called the 2–torus. It can be shown that T 2 ∼= S1 × S1.
Specifically, a homemorphism is induced by

R2 S1 × S1

(θ, ϕ) (e2πiθ, e2πiϕ).

Some further quotients of I2 are pictured in (picture). More generally, one can construct
closed, orientable surfaces Σg of any genus g ≥ 0 as a quotient of a 4g–gon in R2.

Group actions provide further examples of quotient spaces.

Definition 1.56. Let G be a group and X a topological space. A (left) action of G on X is a
continuous map

G×X X

(g, x) gx,

where G is given the discrete topology, satisfying g(hx) = (gh)x and ex = x.
Equivalently, a group action is a group homomorphism G Aut(X) from G to the group

Aut(X) of homeomorphisms X X. In this description g maps to the homeomorphism
ℓg : X X with ℓg(x) = gx—the left translation by g.

Definition 1.57. For x ∈ X the set Gx = {gx : g ∈ G} is called the orbit of x. The subgroup
Gx = {g ∈ G : gx = x} is called the stabiliser or isotropy subgroup of x. The orbit space X/G is
the quotient space X/∼ for the equivalence relation ∼ such that x ∼ y if and only if gx = y for
some g ∈ G.

The action of G on X is called transitive if X/G = ∗. It is called free if Gx = 1 for all x ∈ X.

Examples 1.58. Real projective space RP
n is the space of 1–dimensional subspaces of Rn+1.

More formally, RPn = (Rn+1 r {0})/∼ where ∼ is given by

v ∼ w ⇐⇒ w = λv for some λ ∈ R×.

The equivalence class of (x0, . . . , xn) = x ∈ Rn+1 r {0}, i. e. the line spanned by x, is denoted
by [x0 : . . . : xn]. The xi are called the homogeneous coordinates of [x] ∈ RP

n. They are only
determined up to multiplication by λ ∈ R×.
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An alternative characterisation may be obtained from group actions. The multiplicative group
Z× acts on Sn by scalar multiplication. The left translation ℓ−1 : Sn Sn is called the antipodal
map and of course ℓ−1(x) = −x. It is a nice exercise that the inclusion Sn Rn+1r{0} induces
a homeomorphism Sn/Z× ∼ RP

n. In particular, this implies that RPn is compact. Furthermore,
it may be shown that RP

n is Hausdorff.
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2 Fundamental Groups & Covering Spaces

2.1 Homotopy

In the sequel I = [0, 1] will denote the unit interval.

Definition 2.1. Let X and Y be topological spaces with continuous maps f, g : X Y . A
homotopy H from f to g is a continuous map H : X × I Y such that H(_, 0) = f and
H(_, 1) = g. The maps f and g are called homotopic if there exists a homotopy from f to g.
The maps f and g are called homotopic relative A, where A is a subspace of X, if there exists
a homotopy H from f to g that fixes A, i. e. such that H(a, t) = f(a) = g(a) for all t ∈ I and
a ∈ A. We will write f ≃ g if f and g are homotopic and f ≃A g if f and g are homotopic
relative A.

Remark 2.2.

(i) If f, g : X Y are homotopic maps and h : Y Z is continuous, then h ◦ f ≃ h ◦ g.
(ii) Homotopy (relative A) is an equivalence relation. We will write [f ] for the homotopy class

(relative A) of a map f : X Y .

Definition 2.3. A map f : X Y is called a homotopy equivalence if there exists a map
g : Y X such that g ◦ f ≃ idX and f ◦ g ≃ idY . In this case, g is called a homotopy inverse
to f . The spaces X and Y are called homotopy equivalent if there exists a homotopy equivalence
X Y ; we write X ≃ Y .

Remark 2.4. If spaces X and Y are homeomorphic then they are homotopy equivalent.

Write cy0
: X Y for the constant map with value y0 ∈ Y . If f ≃ cy0

for some y0 ∈ Y then
we say that f is null–homotopic. A space X is called contractible if X ≃ ∗, i. e. X is homotopy
equivalent to a point. This is the case if and only if idX is null–homotopic. A null–homotopy of
idX is called a contraction.

Examples 2.5. A subset A ⊂ Rn is called star–shaped with respect to a point a0 ∈ A if for all
a ∈ A the line segment [a0, a] = {a0 + t(a − a0) : t ∈ [0, 1]} is contained in A. Such subsets are
contractible; a contraction is given by H(a, t) = a0 + t(a− a0).

Definition 2.6. Two paths γ0, γ1 : I X with common endpoints are called homotopic (as
paths) if γ0 ≃∂I γ1.

Proposition 2.7.

(i) If γ : I X is a path in X and α : I I is a continuous map fixing the boundary ∂I,
then γ ≃∂I γ ◦ α. The path γ ◦ α is called a reparametrisation of γ.

(ii) If γ1, γ2, γ3 : I X are paths in X with γ1(1) = γ2(0) and γ2(1) = γ3(0), then concate-
nation is homotopy associative, i. e. γ1 ∗ (γ2 ∗ γ3) ≃∂I (γ1 ∗ γ2) ∗ γ3.

(iii) Let γ1, γ2 : I X and γ′
1, γ

′
2 : I X be paths in X such that γi and γ′

i have the same
endpoints for i = 1, 2 (separately) and γ1(1) = γ2(0) and such that γ′

1 ≃∂I γ1 and γ′
2 ≃∂I γ2.

Then γ1 ∗ γ2 ≃∂I γ
′
1 ∗ γ′

2.
(iv) One has cγ(0) ∗ γ ≃∂I γ ≃∂I γ ∗ cγ(1) for any path γ : I X.
(v) One has γ ∗ γ− ≃∂I cγ(0).

12



γ1 γ2 γ3

γ1 γ2 γ3

Figure 2: Associativity up to homotopy

Proof.
(i) To show γ ◦ α ≃∂I γ it is enough to show that α ≃∂I idI . A homotopy is given by linear

interpolation:

H : I × I I

(s, t) tα(s) + (1 − t)s.

(ii) One has γ1 ∗ (γ2 ∗ γ3) = (γ1 ∗ γ2) ∗ γ3 ◦ α for

α(s) =





1/2 · s, s ∈ [0, 1/2]

s− 1/4, s ∈ [1/2, 3/4]

2s− 1, s ∈ [3/4, 1].

(iii) Let Hi be the homotopy from γi to γ′
i. Then

H(s, t) =

{
H1(2s, t), s ∈ [0, 1/2]

H2(2s− 1, t), s ∈ [1/2, 1]

yields a homotopy from γ1 ∗ γ2 to γ′
1 ∗ γ′

2.
(iv) One has cγ(0) ∗ γ = γ ◦ α for

α(s) =

{
0, s ∈ [0, 1/2]

2s− 1, s ∈ [1/2, 1].

The result follows from (i). An analogous construction works for γ ∗ cγ(1).
(v) The map H : I × I X given by

H(s, t) =

{
γ(2s(1 − t)), 0 ≤ s ≤ 1/2

γ(2(1 − s)(1 − t)), 1/2 ≤ s ≤ 1

is a homotopy from γ ∗ γ− to cγ(0).
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Definition 2.8. Let X be a topological space with a fixed base point x0 ∈ X. Then the set of
homotopy classes relative ∂I of closed paths γ : I X at x0, i. e. of loops at x0,

π1(X,x0) = {[γ] : γ : I X a loop at x0}

together with the multiplication [γ1] · [γ2] = [γ1 ∗ γ2] is called the fundamental group of X at x0.
This product is well–defined by Proposition 2.7.

Remark 2.9. Observe that π1(X,x0) is in fact a group with neutral element [cx0
].

We will now discuss in which manner π1(X,x0) depends on the base point x0 ∈ X. Fix some
other point x1 ∈ X and let τ : I X be a path from x0 to x1. This path induces a map
c(τ) : π1(X,x1) π1(X,x0) which maps a homotopy class [γ] ∈ π1(X,x1) to [τ ∗ γ ∗ τ−]. This
map is in fact a group homomorphism, because

c(τ)([γ1] · [γ2]) = [τ ∗ γ1 ∗ γ2 ∗ τ−] = [τ ∗ γ1 ∗ τ−] · [τ ∗ γ2 ∗ τ−].

The morphism c(τ) is even isomorphism with inverse c(τ−). This shows that the isomorphism
class of π1(X,x0) only depends on the path component of x0 ∈ X. In particular, if X is path–
connected, the isomorphism class of its fundamental group does not depend on the basepoint.
The concrete isomorphism π1(X,x1) π1(X,x0) depends only on the homotopy class of a
choice of path from x0 to x1. For this reason, we will simply write π1(X) for the fundamental
group of a path–connected space if there is no danger of confusion.

Definition 2.10. A path–connected space X is called simply connected if π1(X) = 1.

Remark 2.11. A space X is simply connected if and only if for any x0, x1 ∈ X there is a unique
homotopy class of paths from x0 to x1.

The fundamental group is a functorial construction in the following sense. Any continuous map
f : X Y between topological spaces X and Y induces a map f∗ : π1(X,x0) π1(Y, f(x0))
such that f∗([γ]) = [f ◦ γ]. Because of f ◦ (γ1 ∗ γ2) = (f ◦ γ1) ∗ (f ◦ γ2), this map is a group
homomorphism. Given another continuous map g : Y Z to a third space Z, it is immediate
that g∗ ◦ f∗ = (g ◦ f)∗; and of course (idX)∗ = idπ1(X,x0).

Additionally, the fundamental group enjoys a kind of homotopy invariance. Let f, g : X Y
be continuous maps admitting a homotopy H : X×I Y from f to g. Fix a base point x0 ∈ X
and write τ = H(x0,_). Then τ is a path from f(x0) to g(x0) in Y .

Lemma 2.12. In this situation, the diagram

π1(X,x0)

π1(Y, f(x0)) π1(Y, g(x0))

f∗ g∗

c(τ)

∼

commutes.

Proof. Take some [γ] ∈ π1(X,x0). Then (c(τ) ◦ g∗)([γ]) = [τ ∗ (g ◦ γ) ∗ τ−] and f∗([γ]) = [f ◦ γ].
We construct a homotopy relative ∂I between these two paths as follows. Write Ht = H(_, t)
and set K(_, t) = τt ∗ (Ht ◦γ)∗ τ−

t where τt(s) = τ(ts). This defines a homotopy K : I× I Y
relative ∂I from f ◦ γ to τ ∗ (g ◦ γ) ∗ τ−.
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f◦γ

τ g◦γ τ−

H

τt τ−

t

Figure 3: The homotopy K in the proof of Lemma 2.12

Proposition 2.13. If a continuous map f : X Y is a homotopy equivalence, then the induced
map f∗ : π1(X,x0) π1(Y, f(x0)) is an isomorphism.

Proof. Let g : Y X be a homotopy inverse for f . Lemma 2.12 implies the existence of a
commutative diagram

π1(X,x0) π1(Y, f(x0))

π1(X,x0) π1(X, g(f(x0)),

f∗

g∗

∼

i. e. that g∗ ◦f∗ is a group isomorphism. Hence, f∗ is injective. Similarly, there is a commutative
square

π1(Y, f(x0)) π1(X, g(f(x0)))

π1(Y, f(x0)) π1(Y, f(g(f(x0))))

g∗

f∗

∼

which implies that f∗ : π1(X, g(f(x0))) π1(Y, f(g(f(x0)))) is surjective. To fix the apparent
issue with base points, observe that there is a commutative diagram

π1(X, g(f(x0))) π1(Y, f(g(f(x0))))

π1(X,x0) π1(Y, f(x0))

f∗

∼=∼=

f∗

which implies that the homomorphism f∗ : π1(X,x0) π1(Y, f(x0)) is surjective, too.

The fundamental group interacts very nicely with products of topological space. Let (X,x0)
and (Y, y0) be topological space with base points. Then it is easy to check that the map

π1(X × Y, (x0, y0)) π1(X,x0) × π1(Y, y0)
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induced by the projections πX : X × Y X and πY : X × Y Y is an isomorphism.

Examples 2.14.

(i) If X is contractible, then π1(X) = 1.
(ii) If A ⊂ Rn is star–shaped, then π(A) = 1.
(iii) π1(Sn) = 1 for all n ≥ 2.

Proof.
(i) Let X be contractible, so there exists a continuous H : I × X X such that H0 = idX

and H1 = cx0
. Let γI X be a loop. Then H̃ : I × I X with H̃(s, t) = H(s, γ(t)) is

a homotopy between γ and cx0
.

(ii) Follows from (1).
(iii) Let γ : I X be a loop based at some point x0 ∈ Sn and assume there is a x ∈ X such

that x 6∈ γ(I). Then γ : I X r {x} ∼= Rn via the stereographic projection. Since Rn

is contractible, we have γ ≃∂I cx0
. What remains to show is that for any loop γ based on

x0, we can find a homotopy to a loop γ′ such that γ′(I) ⊂ X r {x} for some point x ∈ X.
Let B ∼= Bn = {x ∈ Rn : ‖x‖ < 1} be an open neighbourhood of x such that x0 6∈ B. Then
γ−1(B) ⊂ (0, 1) is a disjoint union of open intervals (ai, bi) ⊂ (0, 1). Because γ−1({x}) is
compact there exists a finite subset J ⊂ I such that γ−1({x}) is covered by ((ai, bi))i∈J .
For every i ∈ J , connect γ(ai) and γ(bi) with a path ηi which is fully contained in ∂B.
Because B ∼= Dn is simply connected, the path ηi will be homotopic to γ|[ai,bi]. Now, let
γ′ be the loop γ but with the sections on (ai, bi) replaced by ηi. Then γ′ will not meet x
and is homotopic to γ.

2.2 The Fundamental Group of the Circle

Consider the circle S1 = {z ∈ C : |z| = 1}. As a matter of convention, we choose 1 ∈ S1 as a
base point. We will consider the exponential map π : R S1 with π(ξ) = e2πiξ. This map is
an example of a covering map, a notion that we will defined later. For now, we will prove some
characteristic properties of covering maps for π.

Theorem 2.15. Let π : R S1 be as above.
(i) The map π has the path lifting property: Given z0 ∈ S1, z′

0 ∈ π−1(z0) ⊂ R and any path
γ : I S1 with start point z0 there exists a unique path γ′ : I R starting at z′

0 such
that π ◦ γ′ = γ, i. e. such that

∗ R

I S1

z′

0

π0

γ

γ′

commutes. We will usually call γ′ a lift of γ with base point z′
0.

(ii) The map π has the homotopy lifting property: Given paths γ0, γ1 : I S1 from z0 to
z1, a homotopy H from γ0 to γ1 and any lift γ′

0 of γ0, there exists a unique homotopy
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H ′ : I × I R such that H ′(_, 0) = γ′
0 and π ◦H ′ = H, i. e. such that

I R

I × I S1

γ′

0

πid×0

H

H′

commutes. Again, H ′ will be called a lift of H.

Proof.
(i) First, suppose that γ′, γ′′ : I R are two lifts of γ starting at z′

0. Then γ′(t) − γ′′(t) ∈ Z

for all t and because of continuity, γ′ − γ′′ will be constant. But γ′(0) = γ′′(0), hence
γ′ = γ′′. To prove existence the existence of a lift γ′, observe that for every ξ ∈ R the map
πξ = π|(ξ,ξ+1) : (ξ, ξ+ 1) S1 r π(ξ) is homeomorphism. Denote its inverse by sξ. Since
I is compact, there is a partition 0 = t0 < t1 < · · · < tn = 1 such that γ|[ti,ti+1] ⊂ S1 r{zi}
for all i and some zi ∈ S1. Inductively assume γ′|[0,ti] is already constructed. Choose
ξi ∈ π−1(zi) such that γ′(ti) ∈ (ξi, ξi + 1). Now, set γ′|[ti,ti+1] = sξi

◦ γ|[ti,ti+1] and we have
defined γ′ on [0, ti+1].

(ii) If H ′ is as required, then H ′(s,_) is the lift of the path Hs starting at γ′
0(s). This proves

uniqueness. We are left to check is that this defines a continuous map H : I × I R.
Take s0 ∈ I. Since I is compact, there is a partition 0 = t0 < t1 < · · · < tn = 1 and a
connected neighbourhood U of s0 such that H(U×[ti, ti+1]) ⊂ S1r{zi} for some zi and all i.
Inductively, assume H ′ is continuous on U×[0, ti]. Then H ′(U×{ti}) ⊂ (ξi, ξi+1) for some
ξi ∈ π−1(zi) and H ′ = sξi

◦H on U × [ti, ti+1], hence H ′ is continuous on U × [0, ti+1].

Remark 2.16. Lifts of homotopic paths with the same start point are homotopic and have the
same end point. Hence, the map ϕ : π1(S1) Z such that ϕ([γ]) = γ′(1) for some lift γ′ of γ
starting at 0 is well defined.

Theorem 2.17. The map ϕ : π1(S1) Z of Remark 2.16 is an isomorphism.

Proof. To prove that ϕ is a homomorphism, note that a lift of γ1 ∗ γ2 is given by γ′
1 ∗ γ′

2 where
γ′

1 is a lift γ1 starting at 0 and γ′
2 is a lift of γ2 starting at γ′

1(1). By continuity, the difference
between γ′

2 and a lift of γ2 starting at 0 is constant. This implies ϕ([γ1][γ2]) = ϕ([γ1]) + ϕ([γ2]).
The map ϕ is surjective, because for n ∈ Z consider the path γ′ : I R with γ′(t) = nt.

Then ϕ([π ◦γ′]) = n. It is also injective: Let γ : I S1 be a loop such that ϕ([γ]) = 0. Choose
a lift γ′ of γ starting at 0. Then γ′ is homotopic to c0 via some homotopy H ′ in R and H = π◦H ′

will be a homotopy from γ to c1.

Remark 2.18.

(i) From the description of π1(S1) one immediately deduces π1(T 2) ∼= π1(S1 × S1) ∼= Z2.
(ii) Given spaces X and Y , denote the set of homotopy classes of continuous maps X Y by

[X,Y ]. The circle S1 becomes a topological group when given the multiplication induced
from C. Hence, any set [X,S1] inherits a canonical group structure; in particular, [S1, S1]
is a group.

(iii) Consider the restriction π0 : I S1 of the exponential map R S1. Given a continuous
map f : S1 S1 consider the loop g = f ◦ π0 : I S1 and take some lift g′ : I R

along the exponential map. Then g′(1)−g′(0) ∈ Z will be independent of the choice of lift g′
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and we define deg(f) = g′(1)−g′(0). One can show that, if f0 ≃ f1, then deg(f0) = deg(f1)
and that deg descends to an isomorphism [S1, S1] Z.

2.3 The Theorem of Seifert and van Kampen

We will investigate how to calculate the fundamental group of a topological space X admitting
an open cover X = U ∪ V where U , V and U ∩ V are path–connected and nonempty. It turns
out that π1(X,x0), with x0 ∈ U ∩ V , is completely determined by π1(U, x0), π1(V, x0) and
π1(U ∩V, x0). To give the explicit connection, we will first need to introduce some constructions
on groups.

For groups G1 and G2 we define their free product G1 ∗ G2 as the set of reduced words
ω = ω1 · · ·ωn such that any ωi is an element of G1 r {e1} or G2 r {e2} and neighbouring letters
come from different groups. Note that the empty word is allowed. Define an operation on G1 ∗G2

by

ωω′ =

{
ω1 · · ·ωnω

′
1 · · ·ω′

n if ωn and ω′
1 are in different groups,

ω1 · · ·ωn−1(ωn · ω′
1)ω′

2 · · ·ω′
n otherwise.

It is straightforward to check that this defines a group structure on G1 ∗G2 with neutral element
the empty word. There are obvious maps ι1 : G1 G1 ∗ G2 and ι2 : G2 G1 ∗ G2 which
induce an isomorphism

(ι∗1, ι
∗
2) : Hom(G1 ∗G2,H) ∼ Hom(G1,H) × Hom(G2,H)

for any group H. More explicitly, for homomorphisms ϕ1 : G1 H and ϕ2 : G2 H there
exists precisely one homomorphism ϕ : G1 ∗ G2 H such that ϕ ◦ ιi = ϕi. As usual, this
universal property determines G1 ∗G2 up to unique isomorphism.

More generally, let G1, G2 and A be groups together with homomorphisms ii : A Gi.
Denote by N the normal subgroup of G1 ∗G2 generated by the elements i1(a)i2(a)−1 for a ∈ A.
We define the amalgamated free product G1 ∗AG2 as (G1 ∗G2)/N . Again, there are obvious maps
ι1 : G1 G1 ∗A G2 and ι2 : G2 G1 ∗A G2 which make

A G1

G2 G1 ∗A G2

i1

ι1i2

ι2

commute and these maps induce an isomorphism

(ι∗1, ι
∗
2) : Hom(G1 ∗A G2,H) ∼ Hom(G1,H) ×Hom(A,H) Hom(G2,H)

for any group H. In other words, for any commutative square

A G1

G2 H

i1

ϕ1i2

ϕ2

there exists a unique homomorphism ϕ : G1 ∗A G2 H such that ϕ ◦ ιi = ϕi. We are now
ready to state the Seifert–van Kampen theorem.
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Theorem 2.19 (Seifert–van Kampen). Let X be a topological space admitting an open cover
X = U ∪ V such that U , V and U ∩ V are path–connected and nonempty. Then the inclusions
U X and V X induce an isomorphism

ϕ : π1(U, x0) ∗π1(U∩V,x0) π1(V, x0) ∼ π1(X,x0)

for any point x0 ∈ U ∩ V .

Proof. We will suppress the base point x0 for ease of notation. The relevant homomorphism
ϕ : π1(U) ∗π1(U∩V ) π1(V ) π1(X) is given by the universal property of π1(U) ∗π1(U∩V ) π1(V ).

To show that ϕ is surjective consider any loop γ in X based at x0. We will show that γ is
homotopic to a product γ1 ∗ · · · ∗ γn of loops lying fully in U or fully in V . Since I is compact,
there is a partition 0 = t0 < · · · < tn = 1 such that γ|[ti,ti+1] is fully in U or fully in V ,
but not the same for neighbouring intervals. For every γ(ti) choose a path τi from γ(ti) to x0

lying fully in U ∩ V—this is possible because U ∩ V was assumed to be path–connected. Then
γ ≃ γ′

1 ∗ τ1 ∗ τ−1
1 ∗ · · · ∗ τnτ

−1
n ∗ γ′

n where γ′
i is the path γ|[ti−1,ti] reparametrised to be a path

γ′
i : I X. This is a representation of γ as a product of loops lying fully in U or fully in V .
To see that ϕ is injective we show that if ω = [γ1] · · · [γn] is a word in π1(U) ∗ π1(V ) such

that γ1 ∗ · · · ∗ γn ≃ cx0
, then ω is of the form ω1i1(a1)i2(a1)−1ω−1

1 · · ·ωki1(ak)i2(ak)−1ω−1
k with

ai ∈ π1(U ∩ V ). Let H : I × I X be a homotopy from γ1 ∗ · · · ∗ γn to cx0
. Because I × I is

compact there exist finite partitions 0 = t0 < · · · < tn = 1 and 0 = s0 < · · · < sℓ = 1 such that
H([si, si+1] × [tj , tj+1]) lies fully in U or V . Without loss of generality we may assume that the
γi are reparametrisations of H0|[sk,sk′ ] for some k < k′. Choose paths τij from H(si, tj) to x0

lying fully in U or V respectively. Let fij be a reparametrisation of H(_, tj)|[si−1,si] and gij a

reparametrisation of H(si,_)|[tj−1,tj ] and write f ′
ij = τ−

i−1,j ∗ fij ∗ τij and g′
ij = τ−

i,j−1 ∗ gij ∗ τij .
We show that

[f ′
1j ] · · · [f ′

n,j ] ≡ [f ′
1,j+1] · · · [f ′

n,j+1] (mod N).

Then we will find inductively that ω = e. But

[f ′
1j ] · · · [f ′

ij ] · · · [f ′
n,j+1] = [f ′

1,j+1 ∗ (g′
2j)

−] · · · [g′
i+1,j ∗ f ′

i,j+1 ∗ (g′
i,j+1)−] · · · =

= [f ′
1,j+1][g′

2j ]
−1[g′

2j ] · · · [g′
nj ]

−1[g′
nj ][f

′
n,j+1]

and a factor [g′
ij ]

−1[g′
ij ] is either trivial or an element of N . This proves injectivity of ϕ.

Definition 2.20. Let Xi, i ∈ I, be based topological spaces, with base points xi ∈ Xi. The
wedge sum or one–point union of the Xi is

∨

i∈I

Xi =
∐
i∈I

Xi ∐
i∈I

{xi}.

Examples 2.21. Let X = S1 ∨ · · · ∨ S1 be a bouquet of n circles. Then π1(X) = Fn, the free
group on n generators Fn = Z∗n.

If G is a finitely generated group, e. g. G = 〈s1, . . . , sn〉, then s1, . . . , sn define a surjective
group homomorphism ϕ : Fn G. Hence, G ∼= Fn/N for the normal subgroup N = kerϕ ⊂ Fn.
If N is generated (as a normal subgroup) by elements ri for i ∈ I, then we write

G = 〈s1, . . . , sn | (ri)i∈I〉.
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Figure 4: A bouquet of 3 circles

This is called a presentation of G. If N is finitely generated as a normal subgroup, then G is
called finitely presented. For example, if Σg is the orientable surface of genus g, it is possible to
use the Seifert–van Kampen theorem to compute the fundamental group π1(Σg). One decompose
the 4g–gon from which Σg is obtained into a disk U around the origin and the complement V of
a disk strictly contained in U . Then U is contractible and V is homotopy equivalent to ∂P4g/∼,
the boundary ∂P4g with the identifications made in P4g to obtain Σg. Hence, V is homotopy
equivalent to a bouquet of 2g circles. Seifert–van Kampen implies that π1(Σg) ∼= 1 ∗Z F2g where
the relevant map ϕ : π1(U ∩ V ) π1(V ) is given by the commutative diagram

π1(U ∩ V ) π1(V )

Z F2g

ϕ

∼=∼=

ψ

and ψ(1) = a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g . This implies that we have the presentation

π1(Σg) = 〈a1, b1, . . . , ag, bg | a1b1a
−1
1 b−1

1 · · · agbga
−1
g b−1

g 〉.

2.4 Covering Spaces

Definition 2.22. A continuous map π : E B is called locally trivial with typical fiber F , if for
all b ∈ B there exists an open neighbourhood U of b and a homeomorphism ϕ : U×F π−1(U)
such that

U × F π−1(U) E

U B

∼
ϕ

projU

π

commutes. The homeomorphism ϕ−1 : π−1(U) U × F is called a local trivialisation of
π : E B. For any b ∈ B, the subset π−1({b}) ⊂ E is called the fibre over b. Observe that
every fibre π−1({b}) is homeomorphic to F .

A locally trivially map π : E B with discrete typical fibre F is called a covering space. In
this case E is called the total space and B is called the base.

Remark 2.23.

(i) If F is discrete, then U × F ∼=
∐
f∈F U × {f}.

(ii) The projection projU : U × F U restricts to homeomorphisms U × {f} U . Hence,
the covering space π : E B is a local homeomorphism.
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(iii) If |F | = n is finite, then a covering space π : E B with typical fibre F is called n–sheeted.

Examples 2.24.

(i) We have already encountered a covering space, namely the exponential map R S1. Its
typical fibre is Z.

(ii) For every n ≥ 1 there is an n–sheeted covering space π : S1 S1 such that π(z) = zn.
Here, S1 is considered to be a subset of C.

Further examples of covering spaces may be obtained by certain “good” group actions.

Definition 2.25. A group action G × X X of a group G on a space X is called covering
space action or properly discontinuous, if for all points x ∈ X there exists an open neighbourhood
U of x such that gU ∩ U = ∅ for all g ∈ Gr {e}.

Remark 2.26.

(i) Any covering space action is free, i. e. for all x ∈ X and g 6= e ∈ G one has gx 6= x.
(ii) The converse to (i) is false. For z0 = exp(2πiξ0) ∈ S1 with ξ0 ∈ R r Q the action of Z on

S1 given by n.z = zn0 z is free but not a covering space action. In fact, every orbit is dense.
(iii) Any free action of a finite group on a Hausdorff space is a covering space action.

Proposition 2.27. If G × X X is a covering space action, then the canonical projection
π : X X/G is a covering space with typical fibre G.

Proof. The projection π : X X/G is an open map, since for an open subset U ⊂ X the image
π(U) satisfies π−1(π(U)) =

⋃
g∈G gU and gU ⊂ X is open for any g ∈ G. Take any x ∈ X and

choose some open neighbourhood U of x such that gU ∩ U = ∅ for all g 6= e. For such a U
the restriction π|U : U V = π(U) is a homeomorphism because it is continuous, open and
bijective. Denote the inverse by s : V U . Then a local trivialisation over U is given by the
map ϕ : V ×G π−1(V ) with ϕ(y, g) = g · s(y).

Examples 2.28.

(i) The group Z× acts freely on Sn. Hence, π : Sn Sn/Z× ∼= RP
n is a 2–sheeted covering

space. We will see soon, that this implies that π1(RPn) ∼= Z× ∼= Z/2.
(ii) The additive group Z2 acts on R2 by translation. This is a covering space action and

R2/Z2 ∼= T 2.

Definition 2.29. Let π : E B be a covering space and consider any continuous map
f : X B. A continuous map f ′ : X E such that

E

X B

π

f

f ′

commutes is called a lift of f to E.

Proposition 2.30. Let π : E B be a covering space and f : X B a continuous map. Let
x0 ∈ X. and consider lifts f ′, f ′′ : X E of f with f ′(x0) = f ′′(x0). If X is connected, then
f ′ = f ′′.
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Proof. We show that the set A = {x ∈ X : f ′(x) = f ′′(x)} ⊂ X is open and closed. To see that A
is open, consider any point x ∈ A and choose a local trivialisation ϕ : π−1(V ) V ×F over some
neighbourhood V of f(x). Then ϕ(f ′(x)) = ϕ(f ′′(x)) ∈ V × {a} for some a ∈ F . Because f ′ and
f ′′ are continuous, there exists some open neighbourhood U of x such that ϕ(f ′(U)) ⊂ V × {a}
and ϕ(f ′′(U)) ⊂ V × {a}. Because π restricts to a homeomorphism ϕ−1(V × {a}) V , this
implies that f ′|U = f ′′|U .

To see that A is closed, take some x ∈ X r A. Let ϕ : π−1(V ) V × F be as above. Then
ϕ(f ′(x)) ∈ V × {a} and ϕ(f ′′(x)) ∈ V × {b} for a 6= b. Because f ′ and f ′′ are continuous, there
exists an open neighbourhood U of x such that ϕ(f ′(U)) ⊂ V × {a} and ϕ(f ′′(U)) ⊂ V × {b}.
This implies that U ⊂ X rA.

Proposition 2.31. A covering space π : E B satisfies the homotopy lifting property, i. e.
for any homotopy H : X×I B from f to g and any chosen lift f ′ : X E of f there exists
a unique lift H ′ : X × I E such that

X E

X × I B

f ′

πid×0

H

H′

commutes. In particular H ′ ◦ (id × 1) =: g′ is a lift of g.

Proof. We will call an open subset U ⊂ B admissible if there exists a local trivialisation over U .
Fix x ∈ X. Then there exists an open neighbourhood Vx of x and a subdivision 0 = t0 < · · · <
tn = 1 such that H(Vx × [ti−1, ti]) ⊂ Ui for some admissible Ui. Inductively assume that H ′ is
already constructed on Vx × [0, ti]. By assumption H(Vx × [ti, ti+1]) ⊂ U for some admissible U
and in particular H ′(Vx × {ti}) ⊂ π−1(U). For a ∈ F write Vx,a = H ′(_, ti)

−1(U × {a}) ∩ Vx,
where we identify U × {a} with ϕ−1(U × {a}). Observe that π restricts to a homeomorphism
U×{a} U and define H ′ : Vx,a×[ti, ti−1] U×{a} by H ′(y, t) = π−1(H(y, t)). Inductively,
one obtains a lift H ′ : Vx × I E. Proposition 2.30 implies that such lifts are unique and in
particular the constructed lifts coincide on (Vx × I) ∩ (Vx′ × I) for x, x′ ∈ X. Hence, we arrive
at a lift H ′ : X × I E.

As special cases of the previous proposition we obtain:

Proposition 2.32. Let π : E B be a covering map.
(i) For b0 ∈ B, e0 ∈ π−1({b0}) and a path γ : I B with γ(0) = b0 there is a unique lift γ′

in

∗ E

I B.

e0

π0

γ

γ′

(ii) Consider paths γ0, γ1 : I B and a homotopy H relative ∂I from γ0 to γ1. For any lift
γ′

0 : I E of γ0 there exists a unique lift H ′ : I × I E of H to E which yields a
homotopy relative ∂I from γ′

0 to a lift of γ1.
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2.5 Fundamental Groups and Covering Spaces

Let π : E B be a covering map of pointed spaces, i. e. a covering space together with fixed
base points b0 ∈ B and e0 ∈ π−1({b0}).

Proposition 2.33. The homomorphism π∗ : π1(E, e0) π1(B, b0) induced by π is injective.

Proof. Take a loop γ in B such that π∗([γ]) = e ∈ π1(B, b0), i. e. π ◦ γ ≃∂I cb0
via a homotopy

H. Lifting this homotopy to B gives a homotopy γ ≃∂I ce0
.

Definition 2.34. The subgroup π∗(π1(E, e0)) ⊂ π1(B, b0) is called the characteristic subgroup
of π : E B.

Consider the lifting problem for a map f : X B, that is the problem of finding a map
f ′ : X E such that π ◦ f = f ′. We have already proven that such a lift is unique up to
a choice of basepoint if X is connected. Moreover, the existence of a lift only depends on the
homotopy class of f : if f ≃ g and there exists a lift of f then there also exists a lift of g.

We have a necessary condition for the existence of a lift f ′. If

(E, e0)

(X,x0) (B, b0)
f

f ′

π

is a commutative diagram of pointed spaces, then passing to fundamental groups we get a
commutative diagram

π1(E, e0)

π1(X,x0) π1(B, b0).
f∗

f ′

∗ π∗

Hence, the image of f∗ must lie in the characteristic subgroup of π : E B. Perhaps surpris-
ingly, this condition is also sufficient for nice enough spaces.

Proposition 2.35. If X is path–connected and locally path–connected, then there exists a lift
f ′ : X E of f if and only if im f∗ ⊂ im π∗.

Proof. For every point x ∈ X choose a path τx : I X from x0 to x and consider the unique
lift γx : I E of f ◦ τx to E starting at e0. Now set f ′(x) = γx(1). In fact, this definition is
independent of the choice of τx: For any other path τ ′

x from x0 to x, consider the loop τ ′
x ∗ τ−

x

at x0. Then on fundamental groups [(f ◦ τ ′
x) ∗ (f ◦ τ−

x )] = f∗([τ ′
x ∗ τ−

x ]) ∈ π∗(π1(E, e0)). Hence,
(f ◦ τ ′

x) ∗ (f ◦ τ ′
x) lifts to a loop in E at e0; this implies that f ′(x) was in fact independent of the

choice of τx.
The only thing left to check is that f ′ is continuous. Let V ⊂ B be an open neighbourhood

of f(x) such that π : E B is trivial over V and let U ⊂ E be an open neighbourhood of
f ′(x) such that π(U) = V . Fix any open, path–connected neighbourhood W ⊂ X of x such
that f(W ) ⊂ V . For y ∈ W choose a path ηy from x to y. Then τx ∗ ηy is a path from x0 to
y, hence f ′(y) = η′(1) for a lift η′ of f ◦ (τx ◦ ηy) to E starting at f ′(x). On the other hand
γx ∗ (π|−1

U ◦ f ◦ ηy) is a lift of f ◦ (τx ∗ ηy). This implies that f ′(y) ∈ U which proves continuity
of f ′.
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Remark 2.36. One cannot get rid of the assumption that X be locally path–connected.

There is a general notion of fibre transport. Given a covering space π : E B, fix points
b0, b1 ∈ B. Let B be path–connected and choose a path γ : I B from b0 to b1. Define a
map Tγ : π−1({b0}) π−1({b1}) via Tγ(e) = γ′

e(1) where γ′
e is the lift of γ to E starting at

e. This map only depends on the homotopy class of γ relative ∂I. This construction satisfies
Tcb

= idπ−1({b}) for any b ∈ B and Tγ1∗γ2
= Tγ2

◦ Tγ1
. This latter property immediately implies

that Tγ is a bijection for any path γ in B. If b1 = b0 we obtain a right action of π1(B, b0) on
π−1({b0}).

Remark 2.37.

(i) The stabiliser of e0 ∈ π−1({b0}) under this action is just the characteristic subgroup im π∗.
(ii) The action is transitive if E is path–connected.

2.6 Deck Transformations

Let π : E B be a covering space. We will investigate what the “symmetries” of such an
object are.

Definition 2.38. A homeomorphism φ : E E such that

E E

B

φ

π π

commutes is called a deck transformation. In other words, a deck transformation is a fibre–
preserving homeomorphism.

The deck transformation forms a group. We will denote it by Deck(π) or DeckB(E).

Remark 2.39. If E is connected and φ, φ′ : E E are deck transformations which satisfy
φ(e) = φ′(e) for some point e ∈ E, then φ = φ′.

Proof. This follows from the uniqueness of lifts because φ and φ′ are both lifts of π : E B to
E.

Examples 2.40.

(i) Consider the exponential map π : R S1. All deck transformations are of the form
φn(ξ) = ξ + n with n ∈ Z, since given k, l ∈ Z = π−1({1}) there exists a φn such that
φn(k) = l. The uniqueness statement of the previous remark allows us to conclude. We
obtain an isomorphism Z ∼ Deck(π).

(ii) For n ∈ N consider the covering n–sheeted covering π : S1 S1 such that π(z) = zn.
All deck transformations are given by φk(z) = e2πik/n with k ∈ Z/n. We obtain an
isomorphism Z/n ∼ Deck(π).

Definition 2.41. A covering space π : E B is called regular (or normal or Galois) if Deck(π)
acts transitively on every fibre π−1({b0}).
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Fix b0 ∈ B and e0, e
′
0 ∈ π−1({b0}). When is there a deck transformation φ : E E with

φ(e0) = e′
0? Assume that E is connected and locally path–connected. Then Proposition 2.35

implies that such a deck transformation φ exists if and only if π∗(π1(E, e0)) = π∗(π1(E, e′
0)).

Proposition 2.42. Let π : (E, e0) (B, b0) be a pointed covering space with E path–connected
and locally path–connected. Then there is an isomorphism

N(π∗π1(E, e0))
π∗π1(E, e0)

∼ Deck(π)

where N(π∗π1(E, e0)) denotes the normaliser of π∗π1(E, e0) in π1(B, b0)

Remark 2.43. We have already seen that under the assumptions of Proposition 2.42 the cover-
ing space π : E B is regular if and only if π∗π1(E, e0) is a normal subgroup in π1(B, b0).

Corollary 2.44. If under the assumptions of Proposition 2.42 the covering space π : E B
is regular, then

Deck(π) ∼= π1(B, b0)
π∗π1(E, e0).

Proof of Proposition 2.42. Define a map ϕ : N(π∗π1(E, e0)) Deck(π) via ϕ([γ]) = φ where φ
denotes the unique deck transformation with φ(e0) = γ′(1) = e′

0 for a lift γ′ of γ to E. Because
of

ϕ([γ1][γ2])(e0) = η′(1) = (γ′
1 ∗ (ϕ([γ1]) ◦ γ′

2))(1) = ϕ([γ1])(γ′
2(1)) = (ϕ([γ1]) ◦ ϕ([γ2]))(e0)

for some lift η′ of γ1 ∗ γ2 starting at e0, the map ϕ is a group homomorphism.
Furthermore, ϕ is surjective because, for ψ ∈ Deck(π), choose a path τ from e0 to e′

0 = ψ(e0).
Then γ = π ◦ τ satisfies [γ] ∈ N(π∗π1(E, e0)) and ϕ([γ]) = ψ.

It remains to compute kerϕ. We have ϕ([γ]) = id if and only if γ′(0) = γ′(1) for some lift γ′

of γ, i. e. γ lifts to a loop in E. This is equivalent to [γ] ∈ π∗π1(E, e0).

Proposition 2.45. Let G×X X be a covering space action. Then
(i) the covering space π : X X/G is regular.
(ii) if X is connected, Deck(π) ∼= G.
(iii) if X is path–connected and locally path–connected, there is an isomorphism

π1(X/G,Gx0)
π∗π1(X,x0)

∼ G

for any x0 ∈ X.

Proof.
(i) Clearly, G may be considered as a subgroup of Deck(π) because π(gx) = π(x) for all g ∈ G.

Because G acts transitively on each orbit, this implies that π is regular.
(ii) The argument of (i) implies that G = Deck(π) if X is connected.
(iii) This is just a formal consequence of (i) and (ii) in light of Proposition 2.42.

Examples 2.46. Real projective space is given as RP
n ∼= Sn/Z×. The action of Z× is a

covering space action; hence Proposition 2.45 implies that π1(RPn)/π1(Sn) ∼= Z× ∼= Z/2. So,
π1(RPn) ∼= Z/2 for n > 1. On the other hand, π1(RP1) ∼= Z.

25



We have seen that a covering space action of G on a connected space X is nothing but the
action of Deck(π) on the covering space π : X X/G. Conversely, we have the following

Proposition 2.47. Let π : E B be a covering space. Consider any subgroup H ⊂ Deck(π).
Then

(i) if E is connected, the action of H on E is a covering space action and p : E E/H is
a regular covering space.

(ii) the covering space π factors as

E

E/H

B

π

p

q

and, if B is connected and locally connected, q : E/H B is a covering space.

Proof. Take e ∈ E and φ ∈ Deck(π). Let V ⊂ B be an admissible open neighbourhood of π(e)
and U ⊂ E an open neighbourhood of e such that π : U V is a homeomorphism. We will
prove that φ(U) ∩ U 6= ∅ implies φ = id. If e′ ∈ φ(U) ∩ U , then e′ = φ(e′′) for some e′′ ∈ U .
Hence, π(e′) = π(φ(e′′)) = π(e′′) and e′ = e′′ because π is a homeomorphism. The standard
uniqueness statement for deck transformations implies φ = id. This proves (i).

For (ii), let V ⊂ B an admissible and connected open subset. Write π−1(V ) =
∐
i∈I Ui such

that π|Ui
: Ui V is a homeomorphism and the Ui are connected components of π−1(V ). The

group H permutes the Ui (since these are the connected components); hence, the H–orbits of the
components Ui are open in E/H and map bijectively to V . The map q is continuous and open,
so q : E/H B is trivial over V . In summary, q is locally trivial and, because B is connected,
the typical fibre is independent of V .

2.7 Classification of Covering Spaces

Let B be a fixed topological space. We want to classify all possible covering spaces E B up
to isomorphism.

Definition 2.48. Let π : E B and π′ : E′ B be covering spaces over B. A homeomor-
phism φ : E E′ such that

E E′

B

φ

π π′

commutes is called an isomorphism of covering spaces.

We will see that under suitable assumptions there is a natural bijective correspondence be-
tween isomorphism classes of pointed covering spaces π : (E, e0) (B, b0) and subgroups
H ⊂ π1(B, b0) which maps a covering to its characteristic subgroup. In fact, if imπ∗ = im π′

∗

for pointed covering spaces π : (E, e0) (B, b0) and π′ : (E′, e′
0) (B, b0), then (E, e0)
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and (E′, e′
0) are isomorphic, if we assume that E and E′ are path–connected and locally path–

connected. The isomorphism may be constructed as follows: Consider the diagram

(E, e0) (E′, e′
0).

(B, b0)

φ

ψ

π π′

Because im π∗ ⊂ im π′
∗ there exists a unique map φ making this triangle commutative. Anal-

ogously, we find a map ψ making the respective triangle commute and the uniqueness of lifts
implies that φ and ψ are mutually inverse.

To see surjectivity we need to show that for every subgroup H ⊂ π1(B, b0) there exists a
pointed covering π : (E, e0) (B, b0) such that H = im π∗. In particular, we need to find a
covering π such that im π∗ = 1.

Definition 2.49. Let B be a topological space. A covering space π : E B is called universal
if E is simply connected.

Remark 2.50. If B is locally path–connected, then a universal covering of B is unique up to
isomorphism, because in this case any covering of B is locally path–connected and one can apply
the argument above.

Definition 2.51. A topological space X is called semi–locally simply connected if any point
x ∈ X admits an open neighbourhood U such that any loop γ : I U at x is null–homotopic
in X.

Remark 2.52. There exists spaces that are path–connected and locally path–connected but
not semi–locally simply connected. The Hawaiian earrings

⋃
n∈N

∂B1/n(0, 1/n) ⊂ R2 provide an
example.

Proposition 2.53. Every path–connected, locally path–connected and semi–locally simply con-
nected space B admits a universal covering π : E B.

Proof. To give some motivation for the construction consider any universal covering π : E B
with b0 ∈ B and e0 ∈ π−1({b0}). Then for any e1 ∈ E there exists a unique homotopy class of
paths [γ] from e0 to e1. Hence, the points of E may be identified with homotopy classes of paths
in E starting at e0. The composition π ◦ γ is a path in B from b0 to π(e1) = b1. The homotopy
lifting property implies that path γ and γ′ from e0 to e1 are homotopic if and only if the paths
π ◦γ and π ◦γ′ from b0 to b1 are homotopic. Hence, points in E can be identified with homotopy
classes of paths in B starting at b0 ∈ B.

To prove the proposition fix b0 ∈ B. Let E be the set of homotopy classes of paths γ : I B
with γ(0) = b0. For [γ] ∈ E set π([γ]) = γ(1). This defines a surjective map π : E B since B
is path–connected. The second step is to define a topology on E. For γ : I B with γ(0) = b0

and an open neighbourhood U of γ(1) set

Uγ = {[γ ∗ τ ] : τ : I U and τ(0) = γ(1)} ⊂ E.

Clearly, Uγ depends only on the homotopy class of γ. We claim that the sets U[γ] form a basis
of a topology on E: If [γ′′] ∈ U[γ] ∩ U ′

[γ′] then U ′′
[γ′′]

⊂ U[γ] ∩ U ′
[γ′] for an open neighbourhood

U ′′ ⊂ U ∩ U ′ of γ′′(1).
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It follows that π : E B is continuous an open: Let U ⊂ B be an open neighbourhood
of π([γ]) = γ(1) for some [γ] ∈ E. Then U[γ] ⊂ E is open and π([γ ∗ τ ]) = τ(1) ∈ U for any
homotopy class [γ ∗ τ ] ∈ U[γ]. To see that π is open, observe that π(U[γ]) is the path–connected
component of U containing γ(1) which is open because B is locally path–connected. Since the
sets U[γ] form a basis, this implies that π is an open map.

Let b ∈ B. There exists an open neighbourhood U of b which is path–connected and such that
any loop γ : I U is null–homotopic in B. Then

π−1(U) =
∐

[γ] s. t. γ(1) ∈ U

U[γ] :

We have U[γ] ∩ U[γ′] = ∅ for [γ] 6= [γ′] since if there were some [γ′′] ∈ U[γ] ∩ U[γ′] then γ′′ ≃ γ ∗ τ
and γ′′ ≃ γ ∗ τ ′ for some τ and τ ′. But because any loop in U is null–homotopic in B this would
imply that γ ≃ γ′. Additionally, for [γ ∗ τ ] one clearly has π([γ ∗ τ ]) = τ(1) ∈ U and conversely,
if [γ] ∈ π−1(U), then π([γ]) = γ(1) ∈ U and because U is path–connected there exists a path
τ : I U from b to γ(1). Then γ ≃ (γ ∗ τ−) ∗ τ , i. e. [γ] ∈ U[γ∗τ−].

Now, π|U[γ]
: U[γ] U is injective for suppose η(1) = η′(1) for paths [η], [η′] ∈ U[γ], e. g.

η ≃ γ ∗τ and η′ ≃ γ ∗τ ′. Then η ≃ γ ∗τ ′ ∗τ ′− ∗τ ≃ η′ because any loop in U is null–homotopic in
B. In summary, we have constructed a local trivialisation of π : E B around b with discrete
fibre.

The space E is path–connected: Write e0 = [cb0
]. Take any [γ] ∈ E and for s ∈ I let

γs : I B be the path such that γs(t) = γ(st). Then the map α : I E such that α(s) = [γs]
is a path from e0 to [γ] in E.

To see that E is simply connected let γ′ : I E be a loop based at e0. Write γ = π ◦ γ′. As
above consider α : I E with α(s) = [γs]. Then π(α(s)) = γ(s) and α(0) = e0. This implies
α = γ′ because π is a covering. In particular, α is a loop in e0, i. e. [γ0] = [γs]. Hence, γ is
null–homotopic. The homotopy lifting property allows us to conclude.

Examples 2.54.

(i) The exponential map R S1 is a universal covering of S1.
(ii) Similarly, the exponential map C C× is a universal covering of C.
(iii) The quotient map R2 T 2 = R2/Z2 is a universal covering of the torus.
(iv) The quotient map Sn RP

n = Sn/Z× is a universal covering of real projective space.

Let (B, b0) be a path–connected and locally path–connected pointed space, hence admitting a
universal covering π : (E, e0) (B, b0). To classify all coverings of B, it remains to show that
for any subgroup H ⊂ π1(B, b0) there exists a covering π′ : (E′, e′

0) (B, b0) with characteristic
subgroup. But Proposition 2.47 implies that the action of H on E by deck transformations is a
covering space action. We obtain a commutative triangle

(E, e0)

(E/H,He0)

(B, b0)

π

p

q

of coverings with p regular. We claim that q∗π1(E/H,He0) = H: By definition q∗π1(E/H,He0)
are the homotopy classes of loops γ based at b0 which lift to loops based at He0 in the covering
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space E/H. But this is equivalent to γ lifting to a loop in E which is based in the H–orbit in
e0, i. e. [γ] ∈ H.

Furthermore, the constructed covering π′ : (E′, e′
0) (B, b0) with characteristic subgroup H

is regular if and only if H is a normal subgroup of π1(B, b0). In summary, we have proven the
following proposition.

Proposition 2.55. If B is path–connected, locally path–connected and semi–locally simply con-
nected, then there is a natural bijective correspondence

{
Pointed covering spaces

π : (E, e0) (B, b0) up to isomorphism

}
{Subgroups H ⊂ π1(B, b0)}.

Furthermore, π : (E, e0) (B, b0) is regular if and only if the corresponding subgroup H is a
normal subgroup of π1(B, b0).

Corollary 2.56. Under the same conditions on B, there is a natural bijective correspondence
{

Covering spaces π : E B up to
isomorphism

} {
Subgroups H ⊂ π1(B, b0) up to

conjugacy

}
.

In particular, regular covering spaces correspond to normal subgroups in π1(B, b0).

Remark 2.57. There is a formal analogy with Galois theory. If L|k is a Galois extension, there
is a bijective correspondence between intermediate extensions K|k and subgroups H ⊂ Gal(L|k).
Here, normal subgroups correspond to Galois extensions. Instead of the quotient by a group
action one considers the fixed field of H in L.
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Figure 5: The standard 0-simplex, 1-simplex and 2-simplex

3 Singular Homology Theory

3.1 Singular Simplices and the Singular Chain Complex

Definition 3.1. The standard n–simplex ∆n ⊂ Rn+1 is the convex hull of the standard basis
e0, . . . , en, i. e.

∆n =

{
n∑

i=0

tiei : 0 ≤ ti ≤ 1 and

n∑

i=0

ti = 1

}
.

In this presentation the ti are called barycentric coordinates.

Remark 3.2. One can show that ∆n ∼= Dn.

Definition 3.3. Let X be a topological space. A continuous map σ : ∆n X is called a
singular n–simplex in X. We write ∆n(X) for the set of all singular n–simplices in X.

Remark 3.4. A singular simplex σ : ∆n X does not need to be an embedding; the image
σ(∆n) ⊂ X may be degenerate.

Examples 3.5. Take v0, . . . , vn ∈ RN . We denote by [v0, . . . , vn] the affine singular n–simplex
in Rn, i. e. [v0, . . . , vn] : ∆n RN is the map such that

[v0, . . . , vn]
( ∑

tiei

)
=

∑
tivi.

The image of [v0, . . . , vn] is of course just the convex hull of v0, . . . , vn. In particular, for 0 ≤ i ≤ n
we have the affine (n − 1)–simplex [e0, . . . , êi, . . . , en] : ∆n−1 ∆n ⊂ Rn+1 in Rn+1, the ith

face Fni of ∆n. Here êi denotes the omission of ei.

Definition 3.6. Let Cn(X) = Z(∆n(X)) denote the free abelian group generated by ∆n(X), i. e.
Cn(X) consists of formal linear combinations

∑
i niσi of singular n–simplices σi ∈ ∆n(X) with

integral coefficients ni ∈ Z. The elements of Cn(X) are called singular n–chains in X. The
group homomorphism ∂n : Cn(X) Cn−1(X) defined by

∂nσ =
n∑

i=0

(−1)i σ ◦ Fni .

for σ ∈ ∆n(X) is called the boundary operator. The collection of all the Cn(X) together with
the ∂n defines a chain complex

C•(X) = . . . C2(X) C1(X)
∂2

C0(X)
∂1

0
∂0 . . .
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called the singular chain complex of X. That C•(X) is called a chain complex just means that
∂n−1 ◦ ∂n = 0 which we will see shortly.

Lemma 3.7. We have ∂n−1 ◦ ∂n = 0 for all n ∈ Z.

Proof. Of course, it is enough to check this on ∆n(X). For σ ∈ ∆n(X) compute

∂n−1∂nσ = ∂n−1

n∑

i=0

(−1)i σFni =

n∑

i=0

(−1)i∂n−1(σFni ) =

n∑

i=0

(−1)i
n−1∑

j=0

(−1)j σFni F
n−1
j =

=
∑

j<i

(−1)i+j σFni F
n−1
j +

∑

i≤j

(−1)i+j σFni F
n−1
j =

=
∑

j<i

(−1)i+j σFni F
n−1
j +

∑

i≤j

(−1)i+j σFnj+1F
n−1
i =

=
∑

j<i

(−1)i+j σFni F
n−1
j −

∑

i<j

(−1)i+j σFnj F
n−1
i = 0.

Here we have used

Fnk ◦ Fn−1
ℓ =

{
[e0, . . . , êℓ, . . . , êk, . . . , en], ℓ < k

[e0, . . . , êk, . . . , êℓ+1, . . . , en], ℓ ≥ k

which can be checked by direct calculation.

We write Zn(X) := ker ∂n ⊂ Cn(X) and Bn(X) := im ∂n+1 ⊂ Cn(X). The elements of
Zn(X) are called singular n–cycles and the elements of Bn(X) are called singular n–boundaries.
Lemma 3.7 implies that Bn(X) ⊂ Zn(X). Hence, the following definition makes sense.

Definition 3.8. The nth singular homology group of X is the quotient

Hn(X) := Zn(X)
Bn(X).

Remark 3.9.

(i) The quotient Hn(X) is an abelian group for all n ∈ Z by construction.
(ii) Of course, Hn(X) = 0 for n < 0.
(iii) Cycles c1, c2 ∈ Zn(X) are called homologous if and only if c2 − c1 ∈ Bn(X), i. e. if

[c1] = [c2] ∈ Hn(X).

Definition 3.10. A family of abelian groups (Cn)n∈Z together with group homomorphisms
∂n : Cn Cn−1 such that ∂n−1 ◦ ∂n = 0 is called a chain complex. We sometimes write

C• = . . . C2 C1
∂2

C0
∂1

C−1
∂0 . . .

for this collection of data. In general, the groups Cn are called chain groups and the maps ∂n
are called boundary operators. The quotient Hn = Zn/Bn where Zn = ker ∂n and Bn = im ∂n+1

is called the nth homology group of C•.
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A family (ϕn : Cn C ′
n)n∈Z of homomorphisms between chain complexes (C•, ∂•) and

(C ′
•, ∂

′
•) is called a chain map if the diagram

· · · Cn Cn−1 · · ·

· · · C ′
n C ′

n−1 · · ·

∂n

ϕn−1ϕn

∂′

n

is commutative.

Lemma 3.11. Any chain map ϕ• : (C•, ∂•) (C ′
•, ∂

′
•) induces natural group homomorphisms

ϕn : Hn(C•) Hn(C ′
•).

Proof. Let c ∈ Zn ⊂ Cn. Then ∂′
nϕn(c) = ϕn−1∂n(c) = 0. Hence, the ϕn restrict to homomor-

phisms ϕn : Zn Z ′
n. If two cycles c1, c2 ∈ Zn differ only by a boundary, i. e. c2 − c1 = ∂n+1b,

then ϕn(c2) −ϕn(c1) = ∂′
n+1ϕn+1(b). Hence, ϕn(c1) ≡ ϕn(c2) (mod B′

n) and the ϕn descend to
group homomorphisms ϕn : Hn(C•) Hn(C ′

•).

Let f : X X ′ be a continuous map between topological spaces. Then we obtain natu-
ral maps f∗ : ∆n(X) ∆n(X ′) via pre–composition, whence natural group homomorphisms
f∗ : Cn(X) Cn(X ′). These assemble to a chain map f∗ : C•(X) C•(X ′) since

f∗∂n(σ) =
n∑

i=0

(−1)i f ◦ σ ◦ Fni = ∂′
nf∗(σ)

for all σ ∈ ∆n(X). We obtain natural homomorphisms f∗ : Hn(X) Hn(X ′) on singular
homology. It is immediate that (fg)∗ = f∗g∗ and id∗ = id and we obtain a family of functors
Hn : Top Ab. Hence, if X and X ′ are homeomorphic then Hn(X) ∼= Hn(X ′) for all n ∈ Z.
The converse need not hold!

Examples 3.12. We will compute the homology of the one point space ∗. It has a unique
singular simplex σn : ∆n ∗ for all n ≥ 0, i. e. Cn(X) = Zσn for n ≥ 0. The boundary of σn
is

∂nσ =
n∑

i=0

(−1)iσn−1 =

{
0, n odd

σn−1, n even

for n ≥ 1 and ∂n = 0 for n < 1. Hence, ∂n : Cn(∗) Cn−1(∗) is an isomorphism if n ≥ 0 is
even and ∂n = 0 otherwise. The chain complex C•(∗) looks like

. . . Z
0

Z∼ Z
0

0.

We obtain the singular homology as

Hn(∗) =

{
Z, n = 0

0, n 6= 0.
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Figure 6: The 2–simplex σ.

Proposition 3.13. If X =
⊔
i∈I Xi is the decomposition of X into its path components, then

Hn(X) ∼=
⊕

i∈I

Hn(Xi)

for all n ∈ Z.

Proof. Because the standard n–simplex ∆n ⊂ Rn+1 is path–connected, its image σ(∆n) under
any singular simplex σ ∈ ∆n(X) is entirely contained in one of the Xi. This implies that

Cn(X) ∼=
⊕

i∈I

Cn(Xi)

for all n ∈ N. For σ ∈ ∆n(Xi) clearly ∂nσ ∈ ∆n−1(Xi). Hence, ∂Xn =
∑
i ∂

Xi
n and the result

follows.

3.2 H0 and H1

Consider the augmentation homomorphism ε : C0(X) Z satisfying ε(x) = 1 for x ∈ X; here
we have identified a 0–simplex ∆0 X with its image. Then ε ◦ ∂1 = 0. Conversely, if X is
path–connected and non–empty then ε(c) = 0 implies that c ∈ B0(X): If c =

∑k
i=0 nixi, choose

a base point x ∈ X and paths σi from x to xi for i = 0, . . . , k and consider the σi as 1–simplices
in X. Then ∂σi = xi − x and

∂

k∑

i=0

niσi =

k∑

i=0

nixi − ε(c)x = c,

i. e. c ∈ B0(X). In summary, if X 6= ∅ is path–connected, then ker ε = B0(X) and the augmen-
tation factors through Z0(X) H0(X) and yields an isomorphism H0(X) ∼ Z. Hence, for
any space X we have H0(X) = Z(π0(X)).

Suppose now that (X,x0) is a path–connected pointed space and take any loop γ : I X
in x0 considered as a 1–chain in X. Observe that ∂γ = 0, i. e. γ ∈ Z1(X). If γ′ and γ are
homotopic loops in x0 then γ − γ′ ∈ B1(X): Given a homotopy H : I × I X from γ′ to
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γ fixing the endpoints, collapsing {0} × I to a point gives a singular 2–simplex σ : ∆2 X.
Its boundary is given by ∂σ = γ + cx0

− γ′ = γ − γ′ + ∂σ′ where σ′ is the constant 2–simplex
in x0, hence γ − γ′ ∈ B1(X). We obtain a homomorphism φ : π1(X,x0) H1(X) because
γ1∗γ2 = γ1+γ2−∂σ with σ ∈ ∆2(X) given by σ◦[e0, e1] = γ1, σ◦[e1, e2] = γ2, σ◦[e0, e2] = γ1∗γ2

and extending constantly along lines perpendicular to [e0, e2]—see Figure 6. Because H1(X) is
abelian the homomorphism φ factors uniquely as

π1(X,x0) H1(X)

π1(X,x0)ab

φ

Φ

where π1(X,x0)ab denotes the abelianisation of π1(X,x0), i. e. the biggest abelian quotient of
π1(X,x0). The homomorphism Φ is called the Hurewicz homomorphism.

Proposition 3.14 (Hurewicz). For any path–connected pointed space (X,x0) the Hurewicz ho-
momorphism is an isomorphism.

Proof. We construct an inverse Ψ: H1(X) π1(X,x0)ab as follows. For all x ∈ X choose a
path τx from x0 to x. For γ ∈ ∆1(X) set

Ψ(γ) = [τγ(0) ∗ γ ∗ τ−
γ(1)] ∈ π1(X,x0)ab.

By linear extension we obtain a homomorphism Ψ: C1(X) π1(X,x0)ab which satisfies
Ψ(B1(X)) = 0: Indeed, for σ ∈ ∆2(X) write γi = σ ◦ Fni and yi = σ(ei) and observe that

Ψ(∂σ) = Ψ(γ0 − γ1 + γ2) = [τy1
∗ γ0 ∗ τ−

y2
] − [τy0

∗ γ1 ∗ τ−
y2

] + [τy0
∗ γ2 ∗ τ−

y1
] =

= [τy1
∗ γ0 ∗ τ−

y2
∗ τy2

∗ γ−
1 ∗ τ−

y0
∗ τy0

∗ γ2 ∗ τ−
y1

] =

= [τy1
∗ γ0 ∗ γ−

1 ∗ γ2 ∗ τ−
y1

] = 0

because γ0∗γ−
1 ∗γ2 is null–homotopic. Hence, the homomorphism Ψ descends to a homomorphism

H1(X) π1(X,x0)ab.
Now, for a loop γ in x0 one has Ψ(Φ([γ])) = [τx0

∗ γ ∗ τ−
x0

] = [γ] ∈ π1(X,x0)ab. Conversely,
given any singular 1–simplex γ in X we have

Φ(Ψ([γ])) = [τγ(0) ∗ γ ∗ τ−
γ(1)].

As in the case of loops based at x0, we have γ1 ∗ γ2 = γ1 + γ2 + ∂σ for arbitrary paths γi
in X and some 2–simplex σ. Hence, Φ(Ψ([γ])) = [τγ(0)] + [γ] − [τγ(1)]. Now, assume that
C =

∑
i aiγi ∈ Z1(X), i. e. ∂C =

∑
i ai(γi(1) − γi(0)) = 0. Then

Φ(Ψ([C])) =

[∑

i

aiγi +
∑

i

ai(τγi(0) − τγi(1))

]
= [C].

3.3 Homotopy Invariance

Let C• and C ′
• be chain complexes together with chain maps Φ,Ψ: C• C ′

•.
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Definition 3.15. A chain homotopy h from Φ to Ψ is a family of group homomorphisms
hn : Cn C ′

n+1 such that hn−1∂n + ∂′
n+1hn = Ψn − Φn for all n ∈ Z.

Lemma 3.16. Chain maps Φ,Ψ: C• C ′
• admitting a chain homotopy h from Φ to Ψ satisfy

Hn(Φ) = Hn(Ψ) for all n ∈ Z.

Proof. Given any cycle c ∈ Zn(C•) = ker(∂n) we have

Ψn(c) − Φn(c) = hn−1(∂nc) + ∂′
n+1hn(c) ≡ 0 (mod Bn(C ′

•))

and hence Hn(Φ) = Hn(Ψ).

Theorem 3.17. Consider continuous maps f, g : X X ′ between topological spaces X and
Y . Let H : X × I X ′ be a homotopy from f to g. Then H induces a chain homotopy
between from f∗ and g∗ as chain maps C•(X) C•(X ′) between the singular complexes. Hence,
f∗ = g∗ : H•(X) H•(X ′) on homology.

Proof. Take any σ : ∆n X. The homotopy H yields a map Hσ = H◦(σ×idI) : ∆n×I X ′.
Then Hσ(_, 0) = f ◦σ = f∗(σ) and Hσ(_, 1) = g∗(σ). Now, the idea is to turn Hσ into a (n+1)–
chain of X ′ by subdividing ∆n×I into simplices.Consider ∆n×I as a subset of Rn+1 ×R = Rn+2

identifying ei ∈ ∆n with (ei, 0) ∈ Rn+2 and set fi = (ei, 1) ∈ Rn+2. The affine (n+ 1)–simplices
[e0, . . . , ei, fi, . . . , fn] : ∆n+1 ∆n × I form a decomposition of ∆n × I, i. e.

∆n × I =

n⋃

i=0

[e0, . . . , ei, fi, . . . , fn](∆n+1),

and

[e0, . . . , ei, fi, . . . , fn](∆n+1) ∩ [e0, . . . , ei+1, fi+1, . . . , fn](∆n+1) = [e0, . . . , ei, fi+1, . . . , fn](∆n).

Define hn : Cn(X) Cn+1(X ′) by

hn(σ) =

n∑

i=0

(−1)i Hσ ◦ [e0, . . . , ei, fi, . . . , fn]

for σ ∈ ∆n(X).
Compute:

∂′hn(σ) = ∂′
n∑

i=0

(−1)i Hσ ◦ [e0, . . . , ei, fi, . . . , fn] =

=
∑

j≤i

(−1)i+j Hσ ◦ [e0, . . . , êj , . . . , ei, fi, . . . , fn] +

+
∑

j≥i

(−1)i+j+1 Hσ ◦ [e0, . . . , ei, fi, . . . , f̂j , . . . , fn] =

= Hσ ◦ [ê0, f0, . . . , fn] −Hσ ◦ [e0, . . . , en, f̂n] +

+
∑

j<i

(−1)i+j Hσ ◦ [e0, . . . , êj , . . . , ei, fi, . . . , fn] +

+
∑

i<j

(−1)i+j+1 Hσ ◦ [e0, . . . , ei, fi, . . . , f̂j , . . . , fn]
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and

hn−1(∂σ) = hn−1

n∑

i=0

(−1)i σ ◦ [e0, . . . , êi, . . . , en] =

=
∑

j<i

(−1)i+j Hσ ◦ [e0, . . . , ej , fj , . . . , f̂i, . . . , fn] +

+
∑

i<j

(−1)i+j+1Hσ ◦ [e0, . . . , êi, . . . , ej , fj , . . . , fn].

Hence, ∂′hn(σ) + hn+1(∂σ) = g∗(σ) − f∗(σ).

Corollary 3.18. Any homotopy equivalence f : X X ′ between topological spaces X and X ′

induces isomorphisms f∗ : Hn(X) ∼ Hn(X ′) for all n ∈ Z.

3.4 Long Exact Homology Sequence & Excision

Given X and A ⊂ X, can we compute H•(X) from H•(A) and H•(X/A)? We will first replace
H•(X/A) by the “relative homology” H•(X,A).

Definition 3.19. For a pair (X,A), that is a topological space X with a subspace A ⊂ X,
consider Cn(X,A) = Cn(X)/Cn(A) for all n ∈ Z. There is an induced boundary operator
∂n : Cn(X,A) Cn−1(X,A) and the homology H•(X,A) of the corresponding complex is
called the relative homology of the pair (X,A).

Definition 3.20. Given pairs (X,A) and (X ′, A′) of topological spaces, a continuous map
f : X X ′ is called a map of pairs if f(A) ⊂ A′. Any map of pairs f : (X,A) (X ′, A′)
induces a group homomorphism f∗ : H•(X,A) H•(X ′, A′) on relative homology.

Consider the inclusions i : A X and j : (X, ∅) (X,A) with induced homomorphisms
i∗ : H•(A) H•(X) and j∗ : H•(X) H•(X,A). Now, it is immediate that there is a short
exact sequence

0 C•(A) C•(X)
i∗

C•(X,A)
j∗

0

of complexes.

Proposition 3.21. Any short exact sequence

0 A• B•
α

C•

β
0

induces a long exact sequence

. . . Hn+1(C•) Hn(A•)
δn+1

Hn(B•)
Hn(α)

Hn(C•)
Hn(β)

Hn−1(A•)
δn . . .
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where δn is given by the formula δn([c]) = [α−1
n−1∂β

−1
n (c)]. Furthermore, δn is natural in the

sense that for any commutative diagram

0 A• B• C• 0

0 A′
• B′

• C ′
• 0

α β

α′ β′

f g h

the induced diagram

· · · Hn+1(C•) Hn(A•) Hn(B•) Hn(C•) Hn−1(A•) · · ·

· · · Hn+1(C ′
•) Hn(A′

•) Hn(B′
•) Hn(C ′

•) Hn−1(A′
•) · · ·

δn+1 Hn(α) Hn(β) δn

δ′

n+1 Hn(α′) Hn(β′) δ′

n

Hn+1(h) Hn(f) Hn(g) Hn(h) Hn−1(f)

is also commutative.

Proof. To quote Charles Weibel:

We will not print the proof in these notes, because it is best done visually. In
fact, a clear proof is given by Jill Clayburgh at the beginning of the movie It’s
My Turn (Rastar–Martin Elfand Studios, 1980). As an exercise in “diagram chas-
ing” of elements, the student should find a proof (but privately—keep the proof to
yourself!).

We obtain a long exact sequence

. . . Hn+1(X,A) Hn(A)
δn+1

Hn(X)
i∗

Hn(X,A)
j∗

Hn−1(A)
δn . . .

called the long exact sequence of the pair (X,A). There is a geometric description of the connect-
ing homomorphisms δn. A homology class γ ∈ Hn(X,A) is represented by a relative cycle, i. e. a
chain b ∈ Cn(X) such that ∂b ∈ Cn(A). Then δn(γ) is just the homology class [∂n(b)] ∈ Hn(A).

Let (X,A) be a pair and B ⊂ A such that B ⊂ A◦. We wish to show that the inclusion
i : (X r B,A r B) (X,A) induces isomorphisms on homology. To this end we will try to
invert i∗ : C•(X r B,Ar B) C•(X,A)—which of course won’t work literally. Consider the
open cover U = {A◦,X rB} of X. If for a relative cycle c =

∑
i niσi ∈ Cn(X) one always has

σi ∈ ∆n(A◦) or σi ∈ ∆n(X r B), then by throwing away the summands of c with σi ∈ ∆n(A◦)
one would obtain a chain which is disjoint from B and which is equivalent to c modulo Cn(A).
But in general this will not be possible.

Instead, we will construct a chain map φ : C•(X) C•(X) together with a chain homotopy
h : C•(X) C•+1(X) from φ to id such that for an open cover U = (Ui)i∈I of X and
σ ∈ ∆n(X) there exists a k ∈ N such that any simplex of φk(σ) ∈ Cn(X) lies completely in one
of the Ui. There is a systematic way of doing this called barycentric subdivision.

Consider ∆n ⊂ Rn+1 and the subcomplex L•(∆n) ⊂ C•(∆n) generated by the affine singular
simplices [v0, . . . , vp] : ∆p ∆n with vi ∈ ∆n. For σ = [v0, . . . , vp] and v ∈ ∆n consider
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Figure 7: Barycentric subdivision

the cone cv(σ) = [v, v0, . . . , vp] on σ with vertex v. This extends linearly to a homomorphism
cv : Lp(∆

n) Lp+1(∆n). We have

∂cv([v0, . . . , vp]) = [v0, . . . , vp] +

p+1∑

i=0

(−1)i+1[v, v0, . . . , vi, . . . , vp] = σ − cv(∂σ)

for p > 0 and
∂cv(σ) = ∂[v, σ(e0)] = σ − [v]

for p = 0. For a chain c ∈ Lp(∆
n) we have similarly

∂cv(σ) =

{
c− cv(∂σ) p > 0

c− ε(c)[v] p = 0.

Definition 3.22. Define φ : L•(∆n) L•(∆n) inductively as follows:

φ(σ) =

{
cb(σ)(φ(∂σ)) p > 0

σ p = 0,

where σ = [v0, . . . , vp] and

b([v0, . . . , vp) =
1

p+ 1

p∑

i=0

vi

is the barycenter of [v0, . . . , vp]. This extends linearly to chains.

Examples 3.23. For σ = [v0, v1] we have ∂σ = [v1] − [v0] and

φ(σ) = [(v0 + v1)/2, v1] − [(v0 + v1)/2, v0].

For σ = [v0, v1, v2] we have ∂σ = [v1, v2] − [v0, v2] + [v0, v1] and

φ(∂σ) = [(v1 + v2)/2, v2] − [(v1 + v2)/2, v1] − [(v0 + v2)/2, v2] + [(v0 + v2)/2, v0] +

+ [(v0 + v1)/2, v1] − [(v0 + v1)/2, v0].
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Hence,

φ(σ) = [b, (v1 + v2)/2, v2] − [b, (v1 + v2)/2, v1] − [b, (v0 + v2)/2, v2] + [b, (v0 + v2)/2, v0] +

+ [b, (v0 + v1)/2, v1] − [b, (v0 + v1)/2, v0].

where b = (v0 + v1 + v2)/3.

Lemma 3.24. The homomorphism φ : L•(∆n) L•(∆n) is a chain map.

Proof. Let σ = [v0, . . . , vp] be an affine p–simplex in ∆n. For p = 0, we have φ(∂σ) = ∂φ(σ)
trivially. For p > 0 we have

∂φ(σ) = φ(∂σ) − cb(σ)(∂φ(∂σ)) =

= φ(∂σ) − cb(σ)(φ(∂2σ)) = φ(∂σ).

Define a chain map h : L•(∆n) L•+1(∆n) inductively by

h(σ) =

{
0 p = 0

cb(σ)(φ(σ) − σ − h(∂σ)) p > 0

on p–simplices σ and extend linearly to chains.

Lemma 3.25. The map h is a chain homotopy from φ to id, i. e. ∂ ◦ h+ h ◦ ∂ = φ− id.

Proof. For p = 0 we trivially have ∂h(σ) + h(∂σ) = 0 = φ(σ) − σ. For p > 0 we have

∂h(σ) = ∂cb(σ)(φ(σ) − σ − h(∂σ)) =

= φ(σ) − σ − h(∂σ) − cb(σ)(∂φ(σ) − ∂σ − ∂h(∂σ)) =

= φ(σ) − σ − h(∂σ) − cb(σ)(∂φ(σ) − ∂σ − φ(∂σ) + ∂σ) =

= φ(σ) − σ − h(∂σ).

Coming back to the general situation, define φ : C•(X) C•(X) by φ(σ) = σ∗(φ(id∆n)) for
σ ∈ ∆n(X) and linear extension. Similarly, define a chain homotopy h : C•(X) C•+1(X) by
h(σ) = σ∗(h(id∆n)) for σ ∈ ∆n(X). It can be checked that this is compatible with the previous
definitions for X = ∆n on L•(∆n).

Lemma 3.26. Defined this way, we obtain a chain map φ : C•(X) C•(X) which is chain
homotopic to id via h. Consequently, for any k ≥ 1 the iterate φk is chain homotopic to id.

Proof. First note that for f : X X ′ we have φ◦f∗ = f∗ ◦φ and h◦f∗ = f∗ ◦h. For σ ∈ ∆n(X)
it follows that

φ(∂σ) = φ(∂σ∗(id∆n)) = φ(σ∗(∂ id∆n)) = σ∗(φ(∂ id∆n)) =

= σ∗(∂φ(id∆n)) = ∂σ∗(φ(id∆n)) = ∂φ(σ)

by Lemma 3.24.
Additionally,

∂h(σ) = ∂σ∗(h(id∆n)) = σ∗(∂h(id∆n))
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and
h(∂σ) = h(∂σ∗(id∆n)) = σ∗(h(∂ id∆n))

which implies
∂h(σ) + h(∂σ) = σ∗(φ(id∆n) − id∆n) = φ(σ) − σ

because of Lemma 3.25.

Lemma 3.27. For σ = [v0, . . . , vp] : ∆p ∆n the diameter of any simplex appearing in φ(σ)
is at most

p

p+ 1
diam(σ(∆p)).

Consequently, any simplex appearing in φk(σ) has diameter at most

(
p

p+ 1

)k

diam(σ(∆p)).

Proof. Each simplex σ′ appearing in φ(σ) has the form

σ′ =

[
1

p+ 1

p∑

i=0

vi, . . . ,
1

3
(vi2 + vi1 + vi0),

1

2
(vi1 + vi0), vi0

]
=: [v′

0, . . . , v
′
p−2, v

′
p−1, v

′
p].

Furthermore, diam σ(∆p) = max ‖vi − vj‖ and diam σ′(∆p) = max ‖v′
i − v′

j‖. The claim then

follows from the following general statement: For vectors w0, . . . , wp ∈ Rn+1 and 0 ≤ ℓ < k ≤ p
one has the estimate

∥∥∥∥∥
1

k + 1

k∑

i=0

wi −
1

ℓ+ 1

ℓ∑

i=0

wi

∥∥∥∥∥ ≤
p

p+ 1
max

0≤i,j≤p
‖wi − wj‖.

This follows from the following computation:

∥∥∥∥∥
1

k + 1

k∑

i=0

wi −
1

ℓ+ 1

ℓ∑

i=0

wi

∥∥∥∥∥ =

∥∥∥∥∥
1

k + 1

ℓ∑

i=0

wi −
1

ℓ+ 1

ℓ∑

i=0

wi +
1

k + 1

k∑

i=ℓ+1

wi

∥∥∥∥∥ =

=

∥∥∥∥∥
ℓ− k

(k + 1)(ℓ+ 1)

ℓ∑

i=0

wi +
1

k + 1

k∑

i=ℓ+1

wi

∥∥∥∥∥ =

=
k − ℓ

k + 1

∥∥∥∥∥
1

ℓ+ 1

ℓ∑

i=0

wi −
1

k − ℓ

k∑

i=ℓ+1

wi

∥∥∥∥∥ ≤

≤
k

k + 1
max

0≤i,j≤p
‖wi − wj‖ ≤

p

p+ 1
max

0≤i,j≤p
‖wi − wj‖.

Definition 3.28. Let U = (Ui)i∈I be a cover of a topological space X such that X =
⋃
i U

◦
i .

A singular chain c =
∑
j ajσj ∈ Cp(X) is called U –small if for each j there is some i ∈ I such

that σj(∆
p) ⊂ Ui.

Exercise 3.29 (Lebesgue Lemma). Let X be a compact metric space together with an open
cover U = (Ui)i∈I of X. Then there exists a δ > 0 such that any closed subset A ⊂ X with
diam(A) < δ is completely contained in some Ui.
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Lemma 3.30. Let U = (Ui)i∈I be a cover of a topological space X such that X =
⋃
i U

◦
i . For

each σ ∈ ∆n(X) there exists a k ≥ 0 such that φk(σ) is U –small.

Proof. Consider the induced open cover (σ−1(U◦
i ))i∈I of ∆n and then apply Lemma 3.27 and

Exercise 3.29.

Definition 3.31. Let CU
• (X) be the subcomplex of C•(X) consisting of U –small chains. Write

HU
n (X) = Hn(CU

• (X)) for n ∈ Z.

Proposition 3.32. The map HU
n (X) Hn(X) induced by the inclusion CU

• (X) C•(X)
is an isomorphism for all n ∈ Z.

Proof. To prove surjectivity consider any [c] ∈ Hn(X). Then there exists some c′ ∈ CU
n (X) such

that ∂c′ = 0 and [c′] = [c] ∈ Hn(X): Indeed, Lemma 3.30 implies that c′ = φk(c) is U –small for
k ≫ 0. Furthermore φk is chain homotopic to id, that is c′ − c = hk(∂c) + ∂hk(c) for some chain
homotopy hk. Hence, ∂c′ = 0 and c′ − c ≡ 0 (mod Bn(X)), i. e. [c′] = [c] ∈ Hn(X).

For injectivity consider any [c] ∈ HU
n (X) such that [c] = 0 ∈ Hn(X), i. e. c = ∂b for

some b ∈ Cn+1(X). Lemma 3.30 implies that φk(b) is U –small for k ≫ 0 and we again have
φk(b) − b = hk(c) + ∂hk(b) and ∂φk(b) − c = ∂hk(c) ≡ 0 (mod BU

n (X)) because c and hk(c) are
U –small. This implies [c] = 0 ∈ HU

n (X).

For a pair (X,A) of spaces and a cover U = (Ui)i∈I of X we write U ∩A = (Ui∩A)i∈I for the
induced cover of A. Also, define the relative singular complex CU

• (X,A) := CU
• (X)/CU ∩A

• (A)
and the relative homology HU

n (X,A) := Hn(CU
• (X,A)). We obtain a commutative diagram

0 CU
• (A) CU

• (X) CU
• (X,A) 0

0 C•(A) C•(X) C•(X,A) 0

i∗ j∗

i∗ j∗

of chain complexes with exact rows and hence a commutative diagram

· · · HU
n+1(X,A) HU

n (A) HU
n (X) HU

n (X,A) HU
n−1(A) · · ·

· · · Hn+1(X,A) Hn(A) Hn(X) Hn(X,A) Hn−1(A) · · ·

∂n+1 i∗ j∗ ∂n

∂n+1 i∗ j∗ ∂n

∼= ∼= ∼=

in homology with exact rows. Hence, the five lemma implies that the inclusion CU
• (X) C•(X)

also induces isomorphisms HU
n (X,A) ∼ Hn(X,A).

Theorem 3.33 (Excision). Let (X,A) be a pair of spaces and assume B ⊂ A is a subspace such
that B ⊂ A◦. Then the inclusion i : (X rB,ArB) (X,A) induces isomorphisms

i∗ : Hn(X rB,ArB) ∼ Hn(X,A)

for all n ∈ Z.
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Proof. Consider the cover U = {X r B,A} of X. Then X = (X r B)◦ ∪ A◦ and in particular
there is an isomorphism HU

n (X,A) ∼ Hn(X,A). Now,

CU

• (X) = C•(X rB) + C•(A)

and

CU ∩A
• (A) = C•(A),

hence

CU

• (X,A) = C•(X rB) + C•(A)
C•(A).

We factor the inclusion on the chain level,

C•(X rB,ArB) C•(X,A).

CU
• (X,A)

i∗

and pass to homology. We obtain a commutative diagram

Hn(X rB,ArB) Hn(X,A).

HU
n (X,A)

i∗

∼=

Observe that C•(ArB) = C•(A) ∩ C•(X rB). This means we can write

C•(X rB,ArB) = C•(X rB)
C•(ArB) = C•(X rB)

C•(A) ∩ C•(X rB)

and it is immediate that

C•(X rB,ArB) CU

• (X,A) = C•(X rB) + C•(A)
C•(A)

is an isomorphism. Combined, this implies that i∗ is an isomorphism.

We now return to question how to compute Hn(X) form Hn(A) and Hn(X/A).

Definition 3.34. Let X be a space with a subset A ⊂ X.
(i) The subspace A is called a retract of X if there exists a continuous map r : X A such

that r|A = idA. Such a map r is called a retraction.
(ii) The subspace A is called a deformation retract of X if there exists a retraction r : X A

such that r ≃ idX .
(iii) The subspace A is called a strong deformation retract of X if there exists a retraction

r : X A such that r ≃A idX .

Definition 3.35. A pair (X,A) is called a good pair if A is closed and there exists an open
subset U ⊂ X such that A ⊂ U and A is a strong deformation retract of U .
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Proposition 3.36. If (X,A) is a good pair then there exists a long exact sequence

. . . H̃n(A) H̃n(X)
i∗

H̃n(X/A)
g∗

H̃n−1(A) . . .

in reduced homology where i : A X is the inclusion and g : X X/A is the quotient map.

Proof. We have a long exact sequence

. . . H̃n(A) H̃n(X)
i∗

Hn(X,A)
j∗

H̃n−1(A) . . .

with the inclusion j : (X, ∅) (X,A). Take an open neighbourhood U of A such that A is a
strong deformation retract of U . For the triple (X,U,A) look at the short exact sequence

0 C•(U,A) C•(X,A) C•(X,U) 0

of chain complexes. We obtain a long exact sequence

. . . Hn(U,A) Hn(X,A) Hn(X,U) Hn−1(U,A) . . .

But H•(U,A) ∼= H•(A,A) = 0, hence the inclusion induces an isomorphism Hn(X,A) ∼

Hn(X,U). Observe that the quotient map q : X X/A induces a homeomorphism

(X rA,U rA) ∼ ((X/A) r (U/A), (U/A) r (A/A))

and that there is a commutative diagram

Hn(X,A) Hn(X,U) Hn(X rA,U rA)

Hn(X/A,A/A) Hn(X/A,U/A) Hn((X/A) r (A/A), (U/A) r (A/A)).

∼ ∼

∼ ∼

q∗ q∗ q∗
∼=

Hence, we obtain a commutative diagram

H̃n(X) Hn(X,A)

H̃n(X/A)

j∗

q∗
∼=q∗

which gives the result.

This may be applied to compute H•(Sn). For n = 0 we have H0(S0) = Z2, H̃0(S0) = Z and

Hn(S0) = H̃n(S0) = 0 for n 6= 0. Inductively, (Dn, Sn−1) is a good pair and we obtain an exact
sequence

. . . H̃k(Dn) H̃k(Dn/Sn−1) H̃k−1(Sn−1)
∂k

H̃n−1(Dn) . . .
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where H̃k(Dn) = 0 for all k. Hence, H̃k(Sn) ∼= H̃k−1(Sn−1) which implies

H̃k(Sn) =

{
Z, for k = n

0, otherwise.

Corollary 3.37. The sphere Sn−1 is not a retract of Dn.

Proof. Let i : Sn−1 Dn be the inclusion. Suppose r : Dn Sn−1 were a retraction. Taking
reduced homology we would get a commutative diagram

Z = H̃n−1(Sn−1) H̃n−1(Dn) = 0

H̃n−1(Dn−1) = Z

idZ

which is impossible.

3.5 Classical Theorems of Topology

Theorem 3.38 (Brouwer fixed–point theorem). Any continuous map f : Dn Dn has a fixed
point.

Proof. Suppose to the contrary that f(x) 6= x for all x ∈ Dn. Consider the ray through x starting
at f(x). Let r(x) be the unique point of intersection of this ray with Sn−1 = ∂Dn ⊂ Dn. This
clearly defines a retraction r : Dn Sn−1. But this is impossible by Corollary 3.37.

Theorem 3.39 (Invariance of Dimension). Let U ⊂ Rn and V ⊂ Rm be non–empty open sets.
If U and V are homeomorphic as topological spaces then n = m.

Proof. For x0 ∈ U excision implies that there is an isomorphism

Hk(U,U r {x0}) ∼ Hk(Rn,Rn r {x0}).

There is a long exact sequence

. . . H̃k(Rn) Hk(Rn,Rn r {x0}) H̃k−1(Rn r {x0}) H̃k−1(Rn) . . .

which implies that Hk(Rn,Rn r {x0}) ∼= H̃k−1(Rn r {x0}) ∼= H̃k−1(Sn−1) because Rn is con-
tractible. In summary,

Hk(U,U r {x0}) ∼=

{
Z k = n

0 k 6= n.

This implies the result.

Let f : Sn Sn be continuous. We can look at the induced map f∗ : H̃n(Sn) H̃n(Sn)

on reduced homology. Because H̃n(Sn) ∼= Z this is an endomorphism Z Z which is given by
multiplication by some uniquely determined n ∈ Z. We call deg(f) := n the degree of f . The
degree satisfies a number of elementary properties:
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(i) We always have deg(idSn) = 1.
(ii) The degree of f vanishes if f is not surjective, because for x0 ∈ Sn r f(Sn) the map f

factors as Sn Sn r {x0} Sn. But Sn r {x0} is contractible which implies that
f∗ = 0 on reduced homology.

(iii) The degree is homotopy invariant.
(iv) The degree is multiplicative with respect to composition, i. e. deg(f ◦ g) = deg(f) deg(g).

In particular, any homotopy equivalence f : Sn Sn satisfies deg(f) = ±1.

Lemma 3.40. Let F : Rn+1 Rn+1 be the reflection at a hyperplane H ⊂ Rn+1. In particular
F ∈ O(n+ 1) with det(F ) = −1 and hence F (Sn) ⊂ Sn. Write f = F |Sn . Then deg(f) = −1.

Proof. Without loss of generality assume H = {0} × Rn and that F is given by the formula
F (x1, . . . , xn+1) = (−x1, x2, . . . , xn+1). In the case n = 0 write S0 = {x} ∪ {y} ⊂ R and observe

that f just interchanges x and y. The reduced homology H̃0(S0) = Z is generated by [x − y].
Hence, f∗([x− y]) = [y − x] = −[x− y] which implies that deg(f) = −1.

Inductively, consider the upper hemisphere Dn
+ = {xn+1 ≥ 0} ⊂ Sn whose boundary is

∂Dn
+ = {xn+1 = 0} ∼= Sn−1. It is clear that f(Dn

+) ⊂ Dn
+ and f(∂Dn

+) = ∂Dn
+. We have a good

pair (Dn
+, S

n−1) and hence a long exact sequence

. . . H̃n(Dn
+) H̃n(Dn

+/S
n−1) H̃n−1(Sn−1) H̃n−1(Dn

+) . . .

By naturality we have a diagram

0 H̃n(Dn
+/S

n−1) H̃n−1(Sn−1) 0

0 H̃n(Dn
+/S

n−1) H̃n−1(Sn−1) 0

∼

∼

f∗ f∗

Now, by induction f∗ : H̃n−1(Sn−1) H̃n−1(Sn−1) is just multiplication by −1 and the com-
mutativity of this diagram implies the result.

Corollary 3.41.

(i) For any orthogonal map A ∈ O(n) we have deg(A|Sn−1) = det(A).
(ii) The antipodal map −id : Sn Sn has degree deg(−id) = (−1)n+1.
(iii) If f : Sn Sn has no fixed point then deg(f) = (−1)n+1.

Proof. We only prove (iii). If f(x) 6= x for all x ∈ Sn then

H(x, t) =
(1 − t)f(x) − tx

‖(1 − t)f(x) − tx‖

defines a homotopy from f to the antipodal map − id.

Theorem 3.42 (Hairy Ball Theorem). The n–sphere Sn admits a continuous vector field without
zeroes if and only if n is odd.
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